File: test_spherical_voronoi.py

package info (click to toggle)
python-scipy 1.1.0-7
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 93,828 kB
  • sloc: python: 156,854; ansic: 82,925; fortran: 80,777; cpp: 7,505; makefile: 427; sh: 294
file content (166 lines) | stat: -rw-r--r-- 6,854 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
from __future__ import print_function
import numpy as np
import itertools
from numpy.testing import (assert_equal,
                           assert_almost_equal,
                           assert_array_equal,
                           assert_array_almost_equal)
from pytest import raises as assert_raises
from scipy.spatial import SphericalVoronoi, distance
from scipy.spatial import _spherical_voronoi as spherical_voronoi


class TestCircumcenters(object):

    def test_circumcenters(self):
        tetrahedrons = np.array([
            [[1, 2, 3],
             [-1.1, -2.1, -3.1],
             [-1.2, 2.2, 3.2],
             [-1.3, -2.3, 3.3]],
            [[10, 20, 30],
             [-10.1, -20.1, -30.1],
             [-10.2, 20.2, 30.2],
             [-10.3, -20.3, 30.3]]
        ])

        result = spherical_voronoi.calc_circumcenters(tetrahedrons)

        expected = [
            [-0.5680861153262529, -0.133279590288315, 0.1843323216995444],
            [-0.5965330784014926, -0.1480377040397778, 0.1981967854886021]
        ]

        assert_array_almost_equal(result, expected)


class TestProjectToSphere(object):

    def test_unit_sphere(self):
        points = np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1]])
        center = np.array([0, 0, 0])
        radius = 1
        projected = spherical_voronoi.project_to_sphere(points, center, radius)
        assert_array_almost_equal(points, projected)

    def test_scaled_points(self):
        points = np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1]])
        center = np.array([0, 0, 0])
        radius = 1
        scaled = points * 2
        projected = spherical_voronoi.project_to_sphere(scaled, center, radius)
        assert_array_almost_equal(points, projected)

    def test_translated_sphere(self):
        points = np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1]])
        center = np.array([1, 2, 3])
        translated = points + center
        radius = 1
        projected = spherical_voronoi.project_to_sphere(translated, center,
                                                        radius)
        assert_array_almost_equal(translated, projected)


class TestSphericalVoronoi(object):

    def setup_method(self):
        self.points = np.array([
            [-0.78928481, -0.16341094, 0.59188373],
            [-0.66839141, 0.73309634, 0.12578818],
            [0.32535778, -0.92476944, -0.19734181],
            [-0.90177102, -0.03785291, -0.43055335],
            [0.71781344, 0.68428936, 0.12842096],
            [-0.96064876, 0.23492353, -0.14820556],
            [0.73181537, -0.22025898, -0.6449281],
            [0.79979205, 0.54555747, 0.25039913]]
        )

    def test_constructor(self):
        center = np.array([1, 2, 3])
        radius = 2
        s1 = SphericalVoronoi(self.points)
        # user input checks in SphericalVoronoi now require
        # the radius / center to match the generators so adjust
        # accordingly here
        s2 = SphericalVoronoi(self.points * radius, radius)
        s3 = SphericalVoronoi(self.points + center, None, center)
        s4 = SphericalVoronoi(self.points * radius + center, radius, center)
        assert_array_equal(s1.center, np.array([0, 0, 0]))
        assert_equal(s1.radius, 1)
        assert_array_equal(s2.center, np.array([0, 0, 0]))
        assert_equal(s2.radius, 2)
        assert_array_equal(s3.center, center)
        assert_equal(s3.radius, 1)
        assert_array_equal(s4.center, center)
        assert_equal(s4.radius, radius)

    def test_vertices_regions_translation_invariance(self):
        sv_origin = SphericalVoronoi(self.points)
        center = np.array([1, 1, 1])
        sv_translated = SphericalVoronoi(self.points + center, None, center)
        assert_array_equal(sv_origin.regions, sv_translated.regions)
        assert_array_almost_equal(sv_origin.vertices + center,
                                  sv_translated.vertices)

    def test_vertices_regions_scaling_invariance(self):
        sv_unit = SphericalVoronoi(self.points)
        sv_scaled = SphericalVoronoi(self.points * 2, 2)
        assert_array_equal(sv_unit.regions, sv_scaled.regions)
        assert_array_almost_equal(sv_unit.vertices * 2,
                                  sv_scaled.vertices)

    def test_sort_vertices_of_regions(self):
        sv = SphericalVoronoi(self.points)
        unsorted_regions = sv.regions
        sv.sort_vertices_of_regions()
        assert_array_equal(sorted(sv.regions), sorted(unsorted_regions))

    def test_sort_vertices_of_regions_flattened(self):
        expected = sorted([[0, 6, 5, 2, 3], [2, 3, 10, 11, 8, 7], [0, 6, 4, 1], [4, 8,
            7, 5, 6], [9, 11, 10], [2, 7, 5], [1, 4, 8, 11, 9], [0, 3, 10, 9,
                1]])
        expected = list(itertools.chain(*sorted(expected)))
        sv = SphericalVoronoi(self.points)
        sv.sort_vertices_of_regions()
        actual = list(itertools.chain(*sorted(sv.regions)))
        assert_array_equal(actual, expected)

    def test_num_vertices(self):
        # for any n >= 3, a spherical Voronoi diagram has 2n - 4
        # vertices; this is a direct consequence of Euler's formula
        # as explained by Dinis and Mamede (2010) Proceedings of the
        # 2010 International Symposium on Voronoi Diagrams in Science
        # and Engineering
        sv = SphericalVoronoi(self.points)
        expected = self.points.shape[0] * 2 - 4
        actual = sv.vertices.shape[0]
        assert_equal(actual, expected)

    def test_voronoi_circles(self):
        sv = spherical_voronoi.SphericalVoronoi(self.points)
        for vertex in sv.vertices:
            distances = distance.cdist(sv.points,np.array([vertex]))
            closest = np.array(sorted(distances)[0:3])
            assert_almost_equal(closest[0], closest[1], 7, str(vertex))
            assert_almost_equal(closest[0], closest[2], 7, str(vertex))

    def test_duplicate_point_handling(self):
        # an exception should be raised for degenerate generators
        # related to Issue# 7046
        self.degenerate = np.concatenate((self.points, self.points))
        with assert_raises(ValueError):
            sv = spherical_voronoi.SphericalVoronoi(self.degenerate)

    def test_incorrect_radius_handling(self):
        # an exception should be raised if the radius provided
        # cannot possibly match the input generators
        with assert_raises(ValueError):
            sv = spherical_voronoi.SphericalVoronoi(self.points,
                                                    radius=0.98)

    def test_incorrect_center_handling(self):
        # an exception should be raised if the center provided
        # cannot possibly match the input generators
        with assert_raises(ValueError):
            sv = spherical_voronoi.SphericalVoronoi(self.points,
                                                    center=[0.1,0,0])