File: struve.c

package info (click to toggle)
python-scipy 1.1.0-7
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 93,828 kB
  • sloc: python: 156,854; ansic: 82,925; fortran: 80,777; cpp: 7,505; makefile: 427; sh: 294
file content (422 lines) | stat: -rw-r--r-- 10,750 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
/*
 * Compute the Struve function.
 *
 * Notes
 * -----
 *
 * We use three expansions for the Struve function discussed in [1]:
 *
 * - power series
 * - expansion in Bessel functions
 * - asymptotic large-z expansion
 *
 * Rounding errors are estimated based on the largest terms in the sums.
 *
 * ``struve_convergence.py`` plots the convergence regions of the different
 * expansions.
 *
 * (i)
 *
 * Looking at the error in the asymptotic expansion, one finds that
 * it's not worth trying if z ~> 0.7 * v + 12 for v > 0.
 *
 * (ii)
 *
 * The Bessel function expansion tends to fail for |z| >~ |v| and is not tried
 * there.
 *
 * For Struve H it covers the quadrant v > z where the power series may fail to
 * produce reasonable results.
 *
 * (iii)
 *
 * The three expansions together cover for Struve H the region z > 0, v real.
 *
 * They also cover Struve L, except that some loss of precision may occur around
 * the transition region z ~ 0.7 |v|, v < 0, |v| >> 1 where the function changes
 * rapidly.
 *
 * (iv)
 *
 * The power series is evaluated in double-double precision. This fixes accuracy
 * issues in Struve H for |v| << |z| before the asymptotic expansion kicks in.
 * Moreover, it improves the Struve L behavior for negative v.
 *
 *
 * References
 * ----------
 * [1] NIST Digital Library of Mathematical Functions
 *     http://dlmf.nist.gov/11
 */

/*
 * Copyright (C) 2013  Pauli Virtanen
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *
 * a. Redistributions of source code must retain the above copyright notice,
 *    this list of conditions and the following disclaimer.
 * b. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 * c. Neither the name of Enthought nor the names of the SciPy Developers
 *    may be used to endorse or promote products derived from this software
 *    without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR CONTRIBUTORS
 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
 * THE POSSIBILITY OF SUCH DAMAGE.
 */

/* Do NOT remove python.h inclusion as it sets up configuration for stdio.h and
 * math.h inclusion */
#include <Python.h>
#include <stdio.h>
#include <math.h>

#include "cephes.h"
#include "amos_wrappers.h"
#include "misc.h"

#include "cephes/dd_real.h"

#define MAXITER 10000
#define SUM_EPS 1e-16   /* be sure we are in the tail of the sum */
#define SUM_TINY 1e-100
#define GOOD_EPS 1e-12
#define ACCEPTABLE_EPS 1e-7
#define ACCEPTABLE_ATOL 1e-300

#define MIN(a, b) ((a) < (b) ? (a) : (b))

double struve_power_series(double v, double x, int is_h, double *err);
double struve_asymp_large_z(double v, double z, int is_h, double *err);
double struve_bessel_series(double v, double z, int is_h, double *err);

static double bessel_y(double v, double x);
static double bessel_i(double v, double x);
static double bessel_j(double v, double x);
static double struve_hl(double v, double x, int is_h);
extern double polevl ( double x, void *P, int N );

double struve_h(double v, double z)
{
    return struve_hl(v, z, 1);
}

double struve_l(double v, double z)
{
    return struve_hl(v, z, 0);
}

static double struve_hl(double v, double z, int is_h)
{
    double value[4], err[4], tmp;
    int n;

    if (z < 0) {
        n = v;
        if (v == n) {
            tmp = (n % 2 == 0) ? -1 : 1;
            return tmp * struve_hl(v, -z, is_h);
        }
        else {
            return NPY_NAN;
        }
    }
    else if (z == 0) {
        if (v < -1) {
            return gammasgn(v + 1.5) * NPY_INFINITY;
        }
        else if (v == -1) {
            return 2 / sqrt(M_PI) / Gamma(0.5);
        }
        else {
            return 0;
        }
    }

    n = -v - 0.5;
    if (n == -v - 0.5 && n > 0) {
        if (is_h) {
            return (n % 2 == 0 ? 1 : -1) * bessel_j(n + 0.5, z);
        }
        else {
            return bessel_i(n + 0.5, z);
        }
    }

    /* Try the asymptotic expansion */
    if (z >= 0.7*v + 12) {
        value[0] = struve_asymp_large_z(v, z, is_h, &err[0]);
        if (err[0] < GOOD_EPS * fabs(value[0])) {
            return value[0];
        }
    }
    else {
        err[0] = NPY_INFINITY;
    }

    /* Try power series */
    value[1] = struve_power_series(v, z, is_h, &err[1]);
    if (err[1] < GOOD_EPS * fabs(value[1])) {
        return value[1];
    }

    /* Try bessel series */
    if (fabs(z) < fabs(v) + 20) {
        value[2] = struve_bessel_series(v, z, is_h, &err[2]);
        if (err[2] < GOOD_EPS * fabs(value[2])) {
            return value[2];
        }
    }
    else {
        err[2] = NPY_INFINITY;
    }

    /* Return the best of the three, if it is acceptable */
    n = 0;
    if (err[1] < err[n]) n = 1;
    if (err[2] < err[n]) n = 2;
    if (err[n] < ACCEPTABLE_EPS * fabs(value[n]) || err[n] < ACCEPTABLE_ATOL) {
        return value[n];
    }

    /* Maybe it really is an overflow? */
    tmp = -lgam(v + 1.5) + (v + 1)*log(z/2);
    if (!is_h) {
        tmp = fabs(tmp);
    }
    if (tmp > 700) {
        sf_error("struve", SF_ERROR_OVERFLOW, "overflow in series");
        return NPY_INFINITY * gammasgn(v + 1.5);
    }

    /* Failure */
    sf_error("struve", SF_ERROR_NO_RESULT, "total loss of precision");
    return NPY_NAN;
}


/*
 * Power series for Struve H and L
 * http://dlmf.nist.gov/11.2.1
 *
 * Starts to converge roughly at |n| > |z|
 */
double struve_power_series(double v, double z, int is_h, double *err)
{
    int n, sgn;
    double term, sum, maxterm, scaleexp, tmp;
    double2 cterm, csum, cdiv, z2, c2v, ctmp;

    if (is_h) {
        sgn = -1;
    }
    else {
        sgn = 1;
    }

    tmp = -lgam(v + 1.5) + (v + 1)*log(z/2);
    if (tmp < -600 || tmp > 600) {
        /* Scale exponent to postpone underflow/overflow */
        scaleexp = tmp/2;
        tmp -= scaleexp;
    }
    else {
        scaleexp = 0;
    }
    
    term = 2 / sqrt(M_PI) * exp(tmp) * gammasgn(v + 1.5);
    sum = term;
    maxterm = 0;

    cterm = dd_create_d(term);
    csum = dd_create_d(sum);
    z2 = dd_create_d(sgn*z*z);
    c2v = dd_create_d(2*v);

    for (n = 0; n < MAXITER; ++n) {
        /* cdiv = (3 + 2*n) * (3 + 2*n + 2*v)) */
        cdiv = dd_create_d(3 + 2*n);
        ctmp = dd_create_d(3 + 2*n);
        ctmp = dd_add(ctmp, c2v);
        cdiv = dd_mul(cdiv, ctmp);

        /* cterm *= z2 / cdiv */
        cterm = dd_mul(cterm, z2);
        cterm = dd_div(cterm, cdiv);

        csum = dd_add(csum, cterm);

        term = dd_to_double(cterm);
        sum = dd_to_double(csum);

        if (fabs(term) > maxterm) {
            maxterm = fabs(term);
        }
        if (fabs(term) < SUM_TINY * fabs(sum) || term == 0 || !npy_isfinite(sum)) {
            break;
        }
    }

    *err = fabs(term) + fabs(maxterm) * 1e-22;

    if (scaleexp != 0) {
        sum *= exp(scaleexp);
        *err *= exp(scaleexp);
    }

    if (sum == 0 && term == 0 && v < 0 && !is_h) {
        /* Spurious underflow */
        *err = NPY_INFINITY;
        return NPY_NAN;
    }

    return sum;
}


/*
 * Bessel series
 * http://dlmf.nist.gov/11.4.19
 */
double struve_bessel_series(double v, double z, int is_h, double *err)
{
    int n;
    double term, cterm, sum, maxterm;

    if (is_h && v < 0) {
        /* Works less reliably in this region */
        *err = NPY_INFINITY;
        return NPY_NAN;
    }

    sum = 0;
    maxterm = 0;

    cterm = sqrt(z / (2*M_PI));

    for (n = 0; n < MAXITER; ++n) {
        if (is_h) {
            term = cterm * bessel_j(n + v + 0.5, z) / (n + 0.5);
            cterm *= z/2 / (n + 1);
        }
        else {
            term = cterm * bessel_i(n + v + 0.5, z) / (n + 0.5);
            cterm *= -z/2 / (n + 1);
        }
        sum += term;
        if (fabs(term) > maxterm) {
            maxterm = fabs(term);
        }
        if (fabs(term) < SUM_EPS * fabs(sum) || term == 0 || !npy_isfinite(sum)) {
            break;
        }
    }

    *err = fabs(term) + fabs(maxterm) * 1e-16;

    /* Account for potential underflow of the Bessel functions */
    *err += 1e-300 * fabs(cterm);

    return sum;
}


/*
 * Large-z expansion for Struve H and L
 * http://dlmf.nist.gov/11.6.1
 */
double struve_asymp_large_z(double v, double z, int is_h, double *err)
{
    int n, sgn, maxiter;
    double term, sum, maxterm;
    double m;

    if (is_h) {
        sgn = -1;
    }
    else {
        sgn = 1;
    }

    /* Asymptotic expansion divergenge point */
    m = z/2;
    if (m <= 0) {
        maxiter = 0;
    }
    else if (m > MAXITER) {
        maxiter = MAXITER;
    }
    else {
        maxiter = (int)m;
    }
    if (maxiter == 0) {
        *err = NPY_INFINITY;
        return NPY_NAN;
    }

    if (z < v) {
        /* Exclude regions where our error estimation fails */
        *err = NPY_INFINITY;
        return NPY_NAN;
    }

    /* Evaluate sum */
    term = -sgn / sqrt(M_PI) * exp(-lgam(v + 0.5) + (v - 1) * log(z/2)) * gammasgn(v + 0.5);
    sum = term;
    maxterm = 0;

    for (n = 0; n < maxiter; ++n) {
        term *= sgn * (1 + 2*n) * (1 + 2*n - 2*v) / (z*z);
        sum += term;
        if (fabs(term) > maxterm) {
            maxterm = fabs(term);
        }
        if (fabs(term) < SUM_EPS * fabs(sum) || term == 0 || !npy_isfinite(sum)) {
            break;
        }
    }

    if (is_h) {
        sum += bessel_y(v, z);
    }
    else {
        sum += bessel_i(v, z);
    }

    /*
     * This error estimate is strictly speaking valid only for
     * n > v - 0.5, but numerical results indicate that it works
     * reasonably.
     */
    *err = fabs(term) + fabs(maxterm) * 1e-16;

    return sum;
}


static double bessel_y(double v, double x)
{
    return cbesy_wrap_real(v, x);
}

static double bessel_i(double v, double x)
{
    return cephes_iv(v, x);
}

static double bessel_j(double v, double x)
{
    return cbesj_wrap_real(v, x);
}