1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
|
/* fdtr.c
*
* F distribution
*
*
*
* SYNOPSIS:
*
* double df1, df2;
* double x, y, fdtr();
*
* y = fdtr( df1, df2, x );
*
* DESCRIPTION:
*
* Returns the area from zero to x under the F density
* function (also known as Snedcor's density or the
* variance ratio density). This is the density
* of x = (u1/df1)/(u2/df2), where u1 and u2 are random
* variables having Chi square distributions with df1
* and df2 degrees of freedom, respectively.
*
* The incomplete beta integral is used, according to the
* formula
*
* P(x) = incbet( df1/2, df2/2, (df1*x/(df2 + df1*x) ).
*
*
* The arguments a and b are greater than zero, and x is
* nonnegative.
*
* ACCURACY:
*
* Tested at random points (a,b,x).
*
* x a,b Relative error:
* arithmetic domain domain # trials peak rms
* IEEE 0,1 0,100 100000 9.8e-15 1.7e-15
* IEEE 1,5 0,100 100000 6.5e-15 3.5e-16
* IEEE 0,1 1,10000 100000 2.2e-11 3.3e-12
* IEEE 1,5 1,10000 100000 1.1e-11 1.7e-13
* See also incbet.c.
*
*
* ERROR MESSAGES:
*
* message condition value returned
* fdtr domain a<0, b<0, x<0 0.0
*
*/
/* fdtrc()
*
* Complemented F distribution
*
*
*
* SYNOPSIS:
*
* double df1, df2;
* double x, y, fdtrc();
*
* y = fdtrc( df1, df2, x );
*
* DESCRIPTION:
*
* Returns the area from x to infinity under the F density
* function (also known as Snedcor's density or the
* variance ratio density).
*
*
* inf.
* -
* 1 | | a-1 b-1
* 1-P(x) = ------ | t (1-t) dt
* B(a,b) | |
* -
* x
*
*
* The incomplete beta integral is used, according to the
* formula
*
* P(x) = incbet( df2/2, df1/2, (df2/(df2 + df1*x) ).
*
*
* ACCURACY:
*
* Tested at random points (a,b,x) in the indicated intervals.
* x a,b Relative error:
* arithmetic domain domain # trials peak rms
* IEEE 0,1 1,100 100000 3.7e-14 5.9e-16
* IEEE 1,5 1,100 100000 8.0e-15 1.6e-15
* IEEE 0,1 1,10000 100000 1.8e-11 3.5e-13
* IEEE 1,5 1,10000 100000 2.0e-11 3.0e-12
* See also incbet.c.
*
* ERROR MESSAGES:
*
* message condition value returned
* fdtrc domain a<0, b<0, x<0 0.0
*
*/
/* fdtri()
*
* Inverse of F distribution
*
*
*
* SYNOPSIS:
*
* double df1, df2;
* double x, p, fdtri();
*
* x = fdtri( df1, df2, p );
*
* DESCRIPTION:
*
* Finds the F density argument x such that the integral
* from -infinity to x of the F density is equal to the
* given probability p.
*
* This is accomplished using the inverse beta integral
* function and the relations
*
* z = incbi( df2/2, df1/2, p )
* x = df2 (1-z) / (df1 z).
*
* Note: the following relations hold for the inverse of
* the uncomplemented F distribution:
*
* z = incbi( df1/2, df2/2, p )
* x = df2 z / (df1 (1-z)).
*
* ACCURACY:
*
* Tested at random points (a,b,p).
*
* a,b Relative error:
* arithmetic domain # trials peak rms
* For p between .001 and 1:
* IEEE 1,100 100000 8.3e-15 4.7e-16
* IEEE 1,10000 100000 2.1e-11 1.4e-13
* For p between 10^-6 and 10^-3:
* IEEE 1,100 50000 1.3e-12 8.4e-15
* IEEE 1,10000 50000 3.0e-12 4.8e-14
* See also fdtrc.c.
*
* ERROR MESSAGES:
*
* message condition value returned
* fdtri domain p <= 0 or p > 1 NaN
* v < 1
*
*/
/*
* Cephes Math Library Release 2.3: March, 1995
* Copyright 1984, 1987, 1995 by Stephen L. Moshier
*/
#include "mconf.h"
double fdtrc(double a, double b, double x)
{
double w;
if ((a <= 0.0) || (b <= 0.0) || (x < 0.0)) {
mtherr("fdtrc", DOMAIN);
return NPY_NAN;
}
w = b / (b + a * x);
return incbet(0.5 * b, 0.5 * a, w);
}
double fdtr(double a, double b, double x)
{
double w;
if ((a <= 0.0) || (b <= 0.0) || (x < 0.0)) {
mtherr("fdtr", DOMAIN);
return NPY_NAN;
}
w = a * x;
w = w / (b + w);
return incbet(0.5 * a, 0.5 * b, w);
}
double fdtri(double a, double b, double y)
{
double w, x;
if ((a <= 0.0) || (b <= 0.0) || (y <= 0.0) || (y > 1.0)) {
mtherr("fdtri", DOMAIN);
return NPY_NAN;
}
y = 1.0 - y;
/* Compute probability for x = 0.5. */
w = incbet(0.5 * b, 0.5 * a, 0.5);
/* If that is greater than y, then the solution w < .5.
* Otherwise, solve at 1-y to remove cancellation in (b - b*w). */
if (w > y || y < 0.001) {
w = incbi(0.5 * b, 0.5 * a, y);
x = (b - b * w) / (a * w);
}
else {
w = incbi(0.5 * a, 0.5 * b, 1.0 - y);
x = b * w / (a * (1.0 - w));
}
return x;
}
|