1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
|
/* fresnl.c
*
* Fresnel integral
*
*
*
* SYNOPSIS:
*
* double x, S, C;
* void fresnl();
*
* fresnl( x, _&S, _&C );
*
*
* DESCRIPTION:
*
* Evaluates the Fresnel integrals
*
* x
* -
* | |
* C(x) = | cos(pi/2 t**2) dt,
* | |
* -
* 0
*
* x
* -
* | |
* S(x) = | sin(pi/2 t**2) dt.
* | |
* -
* 0
*
*
* The integrals are evaluated by a power series for x < 1.
* For x >= 1 auxiliary functions f(x) and g(x) are employed
* such that
*
* C(x) = 0.5 + f(x) sin( pi/2 x**2 ) - g(x) cos( pi/2 x**2 )
* S(x) = 0.5 - f(x) cos( pi/2 x**2 ) - g(x) sin( pi/2 x**2 )
*
*
*
* ACCURACY:
*
* Relative error.
*
* Arithmetic function domain # trials peak rms
* IEEE S(x) 0, 10 10000 2.0e-15 3.2e-16
* IEEE C(x) 0, 10 10000 1.8e-15 3.3e-16
*/
/*
* Cephes Math Library Release 2.1: January, 1989
* Copyright 1984, 1987, 1989 by Stephen L. Moshier
* Direct inquiries to 30 Frost Street, Cambridge, MA 02140
*/
#include "mconf.h"
/* S(x) for small x */
static double sn[6] = {
-2.99181919401019853726E3,
7.08840045257738576863E5,
-6.29741486205862506537E7,
2.54890880573376359104E9,
-4.42979518059697779103E10,
3.18016297876567817986E11,
};
static double sd[6] = {
/* 1.00000000000000000000E0, */
2.81376268889994315696E2,
4.55847810806532581675E4,
5.17343888770096400730E6,
4.19320245898111231129E8,
2.24411795645340920940E10,
6.07366389490084639049E11,
};
/* C(x) for small x */
static double cn[6] = {
-4.98843114573573548651E-8,
9.50428062829859605134E-6,
-6.45191435683965050962E-4,
1.88843319396703850064E-2,
-2.05525900955013891793E-1,
9.99999999999999998822E-1,
};
static double cd[7] = {
3.99982968972495980367E-12,
9.15439215774657478799E-10,
1.25001862479598821474E-7,
1.22262789024179030997E-5,
8.68029542941784300606E-4,
4.12142090722199792936E-2,
1.00000000000000000118E0,
};
/* Auxiliary function f(x) */
static double fn[10] = {
4.21543555043677546506E-1,
1.43407919780758885261E-1,
1.15220955073585758835E-2,
3.45017939782574027900E-4,
4.63613749287867322088E-6,
3.05568983790257605827E-8,
1.02304514164907233465E-10,
1.72010743268161828879E-13,
1.34283276233062758925E-16,
3.76329711269987889006E-20,
};
static double fd[10] = {
/* 1.00000000000000000000E0, */
7.51586398353378947175E-1,
1.16888925859191382142E-1,
6.44051526508858611005E-3,
1.55934409164153020873E-4,
1.84627567348930545870E-6,
1.12699224763999035261E-8,
3.60140029589371370404E-11,
5.88754533621578410010E-14,
4.52001434074129701496E-17,
1.25443237090011264384E-20,
};
/* Auxiliary function g(x) */
static double gn[11] = {
5.04442073643383265887E-1,
1.97102833525523411709E-1,
1.87648584092575249293E-2,
6.84079380915393090172E-4,
1.15138826111884280931E-5,
9.82852443688422223854E-8,
4.45344415861750144738E-10,
1.08268041139020870318E-12,
1.37555460633261799868E-15,
8.36354435630677421531E-19,
1.86958710162783235106E-22,
};
static double gd[11] = {
/* 1.00000000000000000000E0, */
1.47495759925128324529E0,
3.37748989120019970451E-1,
2.53603741420338795122E-2,
8.14679107184306179049E-4,
1.27545075667729118702E-5,
1.04314589657571990585E-7,
4.60680728146520428211E-10,
1.10273215066240270757E-12,
1.38796531259578871258E-15,
8.39158816283118707363E-19,
1.86958710162783236342E-22,
};
extern double MACHEP;
int fresnl(xxa, ssa, cca)
double xxa, *ssa, *cca;
{
double f, g, cc, ss, c, s, t, u;
double x, x2;
if (cephes_isinf(xxa)) {
cc = 0.5;
ss = 0.5;
goto done;
}
x = fabs(xxa);
x2 = x * x;
if (x2 < 2.5625) {
t = x2 * x2;
ss = x * x2 * polevl(t, sn, 5) / p1evl(t, sd, 6);
cc = x * polevl(t, cn, 5) / polevl(t, cd, 6);
goto done;
}
if (x > 36974.0) {
/*
* http://functions.wolfram.com/GammaBetaErf/FresnelC/06/02/
* http://functions.wolfram.com/GammaBetaErf/FresnelS/06/02/
*/
cc = 0.5 + 1/(NPY_PI*x) * sin(NPY_PI*x*x/2);
ss = 0.5 - 1/(NPY_PI*x) * cos(NPY_PI*x*x/2);
goto done;
}
/* Asymptotic power series auxiliary functions
* for large argument
*/
x2 = x * x;
t = NPY_PI * x2;
u = 1.0 / (t * t);
t = 1.0 / t;
f = 1.0 - u * polevl(u, fn, 9) / p1evl(u, fd, 10);
g = t * polevl(u, gn, 10) / p1evl(u, gd, 11);
t = NPY_PI_2 * x2;
c = cos(t);
s = sin(t);
t = NPY_PI * x;
cc = 0.5 + (f * s - g * c) / t;
ss = 0.5 - (f * c + g * s) / t;
done:
if (xxa < 0.0) {
cc = -cc;
ss = -ss;
}
*cca = cc;
*ssa = ss;
return (0);
}
|