File: unity.c

package info (click to toggle)
python-scipy 1.1.0-7
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 93,828 kB
  • sloc: python: 156,854; ansic: 82,925; fortran: 80,777; cpp: 7,505; makefile: 427; sh: 294
file content (190 lines) | stat: -rw-r--r-- 3,501 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
/*                                                     unity.c
 *
 * Relative error approximations for function arguments near
 * unity.
 *
 *    log1p(x) = log(1+x)
 *    expm1(x) = exp(x) - 1
 *    cosm1(x) = cos(x) - 1
 *    lgam1p(x) = lgam(1+x)
 *
 */

/* Scipy changes:
 * - 06-10-2016: added lgam1p
 */

#include "mconf.h"

extern double MACHEP;



/* log1p(x) = log(1 + x)  */

/* Coefficients for log(1+x) = x - x**2/2 + x**3 P(x)/Q(x)
 * 1/sqrt(2) <= x < sqrt(2)
 * Theoretical peak relative error = 2.32e-20
 */
static const double LP[] = {
    4.5270000862445199635215E-5,
    4.9854102823193375972212E-1,
    6.5787325942061044846969E0,
    2.9911919328553073277375E1,
    6.0949667980987787057556E1,
    5.7112963590585538103336E1,
    2.0039553499201281259648E1,
};

static const double LQ[] = {
    /* 1.0000000000000000000000E0, */
    1.5062909083469192043167E1,
    8.3047565967967209469434E1,
    2.2176239823732856465394E2,
    3.0909872225312059774938E2,
    2.1642788614495947685003E2,
    6.0118660497603843919306E1,
};

double log1p(double x)
{
    double z;

    z = 1.0 + x;
    if ((z < NPY_SQRT1_2) || (z > NPY_SQRT2))
	return (log(z));
    z = x * x;
    z = -0.5 * z + x * (z * polevl(x, LP, 6) / p1evl(x, LQ, 6));
    return (x + z);
}


/* log(1 + x) - x */
double log1pmx(double x)
{
    if (fabs(x) < 0.5) {
	int n;
	double xfac = x;
	double term;
	double res = 0;

	for(n = 2; n < MAXITER; n++) {
	    xfac *= -x;
	    term = xfac / n;
	    res += term;
	    if (fabs(term) < MACHEP * fabs(res)) {
		break;
	    }
	}
	return res;
    }
    else {
	return log1p(x) - x;
    }
}


/* expm1(x) = exp(x) - 1  */

/*  e^x =  1 + 2x P(x^2)/( Q(x^2) - P(x^2) )
 * -0.5 <= x <= 0.5
 */

static double EP[3] = {
    1.2617719307481059087798E-4,
    3.0299440770744196129956E-2,
    9.9999999999999999991025E-1,
};

static double EQ[4] = {
    3.0019850513866445504159E-6,
    2.5244834034968410419224E-3,
    2.2726554820815502876593E-1,
    2.0000000000000000000897E0,
};

double expm1(double x)
{
    double r, xx;

    if (!cephes_isfinite(x)) {
	if (cephes_isnan(x)) {
	    return x;
	}
	else if (x > 0) {
	    return x;
	}
	else {
	    return -1.0;
	}

    }
    if ((x < -0.5) || (x > 0.5))
	return (exp(x) - 1.0);
    xx = x * x;
    r = x * polevl(xx, EP, 2);
    r = r / (polevl(xx, EQ, 3) - r);
    return (r + r);
}



/* cosm1(x) = cos(x) - 1  */

static double coscof[7] = {
    4.7377507964246204691685E-14,
    -1.1470284843425359765671E-11,
    2.0876754287081521758361E-9,
    -2.7557319214999787979814E-7,
    2.4801587301570552304991E-5,
    -1.3888888888888872993737E-3,
    4.1666666666666666609054E-2,
};

double cosm1(double x)
{
    double xx;

    if ((x < -NPY_PI_4) || (x > NPY_PI_4))
	return (cos(x) - 1.0);
    xx = x * x;
    xx = -0.5 * xx + xx * xx * polevl(xx, coscof, 6);
    return xx;
}


/* Compute lgam(x + 1) around x = 0 using its Taylor series. */
static double lgam1p_taylor(double x)
{
    int n;
    double xfac, coeff, res;

    if (x == 0) {
        return 0;
    }
    res = -NPY_EULER * x;
    xfac = -x;
    for (n = 2; n < 42; n++) {
        xfac *= -x;
        coeff = zeta(n, 1) * xfac / n;
	res += coeff;
	if (fabs(coeff) < MACHEP * fabs(res)) {
            break;
	}
    }
    
    return res;
}


/* Compute lgam(x + 1). */
double lgam1p(double x)
{
    if (fabs(x) <= 0.5) {
	return lgam1p_taylor(x);
    } else if (fabs(x - 1) < 0.5) {
	return log(x) + lgam1p_taylor(x - 1);
    } else {
	return lgam(x + 1);
    }
}