1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
|
/* unity.c
*
* Relative error approximations for function arguments near
* unity.
*
* log1p(x) = log(1+x)
* expm1(x) = exp(x) - 1
* cosm1(x) = cos(x) - 1
* lgam1p(x) = lgam(1+x)
*
*/
/* Scipy changes:
* - 06-10-2016: added lgam1p
*/
#include "mconf.h"
extern double MACHEP;
/* log1p(x) = log(1 + x) */
/* Coefficients for log(1+x) = x - x**2/2 + x**3 P(x)/Q(x)
* 1/sqrt(2) <= x < sqrt(2)
* Theoretical peak relative error = 2.32e-20
*/
static const double LP[] = {
4.5270000862445199635215E-5,
4.9854102823193375972212E-1,
6.5787325942061044846969E0,
2.9911919328553073277375E1,
6.0949667980987787057556E1,
5.7112963590585538103336E1,
2.0039553499201281259648E1,
};
static const double LQ[] = {
/* 1.0000000000000000000000E0, */
1.5062909083469192043167E1,
8.3047565967967209469434E1,
2.2176239823732856465394E2,
3.0909872225312059774938E2,
2.1642788614495947685003E2,
6.0118660497603843919306E1,
};
double log1p(double x)
{
double z;
z = 1.0 + x;
if ((z < NPY_SQRT1_2) || (z > NPY_SQRT2))
return (log(z));
z = x * x;
z = -0.5 * z + x * (z * polevl(x, LP, 6) / p1evl(x, LQ, 6));
return (x + z);
}
/* log(1 + x) - x */
double log1pmx(double x)
{
if (fabs(x) < 0.5) {
int n;
double xfac = x;
double term;
double res = 0;
for(n = 2; n < MAXITER; n++) {
xfac *= -x;
term = xfac / n;
res += term;
if (fabs(term) < MACHEP * fabs(res)) {
break;
}
}
return res;
}
else {
return log1p(x) - x;
}
}
/* expm1(x) = exp(x) - 1 */
/* e^x = 1 + 2x P(x^2)/( Q(x^2) - P(x^2) )
* -0.5 <= x <= 0.5
*/
static double EP[3] = {
1.2617719307481059087798E-4,
3.0299440770744196129956E-2,
9.9999999999999999991025E-1,
};
static double EQ[4] = {
3.0019850513866445504159E-6,
2.5244834034968410419224E-3,
2.2726554820815502876593E-1,
2.0000000000000000000897E0,
};
double expm1(double x)
{
double r, xx;
if (!cephes_isfinite(x)) {
if (cephes_isnan(x)) {
return x;
}
else if (x > 0) {
return x;
}
else {
return -1.0;
}
}
if ((x < -0.5) || (x > 0.5))
return (exp(x) - 1.0);
xx = x * x;
r = x * polevl(xx, EP, 2);
r = r / (polevl(xx, EQ, 3) - r);
return (r + r);
}
/* cosm1(x) = cos(x) - 1 */
static double coscof[7] = {
4.7377507964246204691685E-14,
-1.1470284843425359765671E-11,
2.0876754287081521758361E-9,
-2.7557319214999787979814E-7,
2.4801587301570552304991E-5,
-1.3888888888888872993737E-3,
4.1666666666666666609054E-2,
};
double cosm1(double x)
{
double xx;
if ((x < -NPY_PI_4) || (x > NPY_PI_4))
return (cos(x) - 1.0);
xx = x * x;
xx = -0.5 * xx + xx * xx * polevl(xx, coscof, 6);
return xx;
}
/* Compute lgam(x + 1) around x = 0 using its Taylor series. */
static double lgam1p_taylor(double x)
{
int n;
double xfac, coeff, res;
if (x == 0) {
return 0;
}
res = -NPY_EULER * x;
xfac = -x;
for (n = 2; n < 42; n++) {
xfac *= -x;
coeff = zeta(n, 1) * xfac / n;
res += coeff;
if (fabs(coeff) < MACHEP * fabs(res)) {
break;
}
}
return res;
}
/* Compute lgam(x + 1). */
double lgam1p(double x)
{
if (fabs(x) <= 0.5) {
return lgam1p_taylor(x);
} else if (fabs(x - 1) < 0.5) {
return log(x) + lgam1p_taylor(x - 1);
} else {
return lgam(x + 1);
}
}
|