1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309
|
/* zetac.c
*
* Riemann zeta function
*
*
*
* SYNOPSIS:
*
* double x, y, zetac();
*
* y = zetac( x );
*
*
*
* DESCRIPTION:
*
*
*
* inf.
* - -x
* zetac(x) = > k , x > 1,
* -
* k=2
*
* is related to the Riemann zeta function by
*
* Riemann zeta(x) = zetac(x) + 1.
*
* Extension of the function definition for x < 1 is implemented.
* Zero is returned for x > log2(NPY_INFINITY).
*
* An overflow error may occur for large negative x, due to the
* Gamma function in the reflection formula, so nan is returned
* for x < -30.8148.
*
* ACCURACY:
*
* Tabulated values have full machine accuracy.
*
* Relative error:
* arithmetic domain # trials peak rms
* IEEE 1,50 10000 9.8e-16 1.3e-16
*
*
*/
/*
* Cephes Math Library Release 2.1: January, 1989
* Copyright 1984, 1987, 1989 by Stephen L. Moshier
* Direct inquiries to 30 Frost Street, Cambridge, MA 02140
*/
#include "mconf.h"
#include "lanczos.h"
/* Riemann zeta(x) - 1
* for integer arguments between 0 and 30.
*/
static const double azetac[] = {
-1.50000000000000000000E0,
0.0, /* Not used; zetac(1.0) is infinity. */
6.44934066848226436472E-1,
2.02056903159594285400E-1,
8.23232337111381915160E-2,
3.69277551433699263314E-2,
1.73430619844491397145E-2,
8.34927738192282683980E-3,
4.07735619794433937869E-3,
2.00839282608221441785E-3,
9.94575127818085337146E-4,
4.94188604119464558702E-4,
2.46086553308048298638E-4,
1.22713347578489146752E-4,
6.12481350587048292585E-5,
3.05882363070204935517E-5,
1.52822594086518717326E-5,
7.63719763789976227360E-6,
3.81729326499983985646E-6,
1.90821271655393892566E-6,
9.53962033872796113152E-7,
4.76932986787806463117E-7,
2.38450502727732990004E-7,
1.19219925965311073068E-7,
5.96081890512594796124E-8,
2.98035035146522801861E-8,
1.49015548283650412347E-8,
7.45071178983542949198E-9,
3.72533402478845705482E-9,
1.86265972351304900640E-9,
9.31327432419668182872E-10
};
/* 2**x (1 - 1/x) (zeta(x) - 1) = P(1/x)/Q(1/x), 1 <= x <= 10 */
static double P[9] = {
5.85746514569725319540E11,
2.57534127756102572888E11,
4.87781159567948256438E10,
5.15399538023885770696E9,
3.41646073514754094281E8,
1.60837006880656492731E7,
5.92785467342109522998E5,
1.51129169964938823117E4,
2.01822444485997955865E2,
};
static double Q[8] = {
/* 1.00000000000000000000E0, */
3.90497676373371157516E11,
5.22858235368272161797E10,
5.64451517271280543351E9,
3.39006746015350418834E8,
1.79410371500126453702E7,
5.66666825131384797029E5,
1.60382976810944131506E4,
1.96436237223387314144E2,
};
/* log(zeta(x) - 1 - 2**-x), 10 <= x <= 50 */
static double A[11] = {
8.70728567484590192539E6,
1.76506865670346462757E8,
2.60889506707483264896E10,
5.29806374009894791647E11,
2.26888156119238241487E13,
3.31884402932705083599E14,
5.13778997975868230192E15,
-1.98123688133907171455E15,
-9.92763810039983572356E16,
7.82905376180870586444E16,
9.26786275768927717187E16,
};
static double B[10] = {
/* 1.00000000000000000000E0, */
-7.92625410563741062861E6,
-1.60529969932920229676E8,
-2.37669260975543221788E10,
-4.80319584350455169857E11,
-2.07820961754173320170E13,
-2.96075404507272223680E14,
-4.86299103694609136686E15,
5.34589509675789930199E15,
5.71464111092297631292E16,
-1.79915597658676556828E16,
};
/* (1-x) (zeta(x) - 1), 0 <= x <= 1 */
static double R[6] = {
-3.28717474506562731748E-1,
1.55162528742623950834E1,
-2.48762831680821954401E2,
1.01050368053237678329E3,
1.26726061410235149405E4,
-1.11578094770515181334E5,
};
static double S[5] = {
/* 1.00000000000000000000E0, */
1.95107674914060531512E1,
3.17710311750646984099E2,
3.03835500874445748734E3,
2.03665876435770579345E4,
7.43853965136767874343E4,
};
static double TAYLOR0[10] = {
-1.0000000009110164892,
-1.0000000057646759799,
-9.9999983138417361078e-1,
-1.0000013011460139596,
-1.000001940896320456,
-9.9987929950057116496e-1,
-1.000785194477042408,
-1.0031782279542924256,
-9.1893853320467274178e-1,
-1.5,
};
#define MAXL2 127
#define SQRT_2_PI 0.79788456080286535587989
extern double MACHEP;
static double zetac_reflection(double);
static double zetac_smallneg(double);
static double zetac_positive(double);
/*
* Riemann zeta function, minus one
*/
double zetac(double x)
{
if (npy_isnan(x)) {
return x;
}
else if (x == -NPY_INFINITY) {
return NPY_NAN;
}
else if (x < 0.0 && x > -0.01) {
return zetac_smallneg(x);
}
else if (x < 0.0) {
return zetac_reflection(-x);
}
else {
return zetac_positive(x);
}
}
/*
* Compute zetac for positive arguments
*/
static NPY_INLINE double zetac_positive(double x)
{
int i;
double a, b, s, w;
if (x == 1.0) {
return NPY_INFINITY;
}
if (x >= MAXL2) {
/* because first term is 2**-x */
return 0.0;
}
/* Tabulated values for integer argument */
w = floor(x);
if (w == x) {
i = x;
if (i < 31) {
#ifdef UNK
return (azetac[i]);
#else
return (*(double *) &azetac[4 * i]);
#endif
}
}
if (x < 1.0) {
w = 1.0 - x;
a = polevl(x, R, 5) / (w * p1evl(x, S, 5));
return a;
}
if (x <= 10.0) {
b = pow(2.0, x) * (x - 1.0);
w = 1.0 / x;
s = (x * polevl(w, P, 8)) / (b * p1evl(w, Q, 8));
return s;
}
if (x <= 50.0) {
b = pow(2.0, -x);
w = polevl(x, A, 10) / p1evl(x, B, 10);
w = exp(w) + b;
return w;
}
/* Basic sum of inverse powers */
s = 0.0;
a = 1.0;
do {
a += 2.0;
b = pow(a, -x);
s += b;
}
while (b / s > MACHEP);
b = pow(2.0, -x);
s = (s + b) / (1.0 - b);
return s;
}
/*
* Compute zetac for small negative x. We can't use the reflection
* formula because to double precision 1 - x = 1 and zetac(1) = inf.
*/
static NPY_INLINE double zetac_smallneg(double x)
{
return polevl(x, TAYLOR0, 9);
}
/*
* Compute zetac using the reflection formula (see DLMF 25.4.2) plus
* the Lanczos approximation for Gamma to avoid overflow.
*/
static NPY_INLINE double zetac_reflection(double x)
{
double s, hx, x_shift;
hx = x / 2;
if (hx == floor(hx)) {
/* Hit a zero of the sine factor */
return -1.0;
}
/* Group large terms together to prevent overflow */
s = pow((x + lanczos_g + 0.5) / (2 * NPY_PI * NPY_E), x + 0.5);
/* Reduce the argument to sine */
x_shift = fmod(x, 4);
s *= -SQRT_2_PI * sin(0.5 * NPY_PI * x_shift);
s *= lanczos_sum_expg_scaled(x + 1) * zeta(x + 1, 1);
return s - 1.0;
}
|