File: zetac.c

package info (click to toggle)
python-scipy 1.1.0-7
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 93,828 kB
  • sloc: python: 156,854; ansic: 82,925; fortran: 80,777; cpp: 7,505; makefile: 427; sh: 294
file content (309 lines) | stat: -rw-r--r-- 7,063 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
/*                                                     zetac.c
 *
 *     Riemann zeta function
 *
 *
 *
 * SYNOPSIS:
 *
 * double x, y, zetac();
 *
 * y = zetac( x );
 *
 *
 *
 * DESCRIPTION:
 *
 *
 *
 *                inf.
 *                 -    -x
 *   zetac(x)  =   >   k   ,   x > 1,
 *                 -
 *                k=2
 *
 * is related to the Riemann zeta function by
 *
 *     Riemann zeta(x) = zetac(x) + 1.
 *
 * Extension of the function definition for x < 1 is implemented.
 * Zero is returned for x > log2(NPY_INFINITY).
 *
 * An overflow error may occur for large negative x, due to the
 * Gamma function in the reflection formula, so nan is returned
 * for x < -30.8148.
 *
 * ACCURACY:
 *
 * Tabulated values have full machine accuracy.
 *
 *                      Relative error:
 * arithmetic   domain     # trials      peak         rms
 *    IEEE      1,50        10000       9.8e-16            1.3e-16
 *
 *
 */

/*
 * Cephes Math Library Release 2.1:  January, 1989
 * Copyright 1984, 1987, 1989 by Stephen L. Moshier
 * Direct inquiries to 30 Frost Street, Cambridge, MA 02140
 */

#include "mconf.h"
#include "lanczos.h"

/* Riemann zeta(x) - 1
 * for integer arguments between 0 and 30.
 */
static const double azetac[] = {
    -1.50000000000000000000E0,
    0.0,  /* Not used; zetac(1.0) is infinity. */
    6.44934066848226436472E-1,
    2.02056903159594285400E-1,
    8.23232337111381915160E-2,
    3.69277551433699263314E-2,
    1.73430619844491397145E-2,
    8.34927738192282683980E-3,
    4.07735619794433937869E-3,
    2.00839282608221441785E-3,
    9.94575127818085337146E-4,
    4.94188604119464558702E-4,
    2.46086553308048298638E-4,
    1.22713347578489146752E-4,
    6.12481350587048292585E-5,
    3.05882363070204935517E-5,
    1.52822594086518717326E-5,
    7.63719763789976227360E-6,
    3.81729326499983985646E-6,
    1.90821271655393892566E-6,
    9.53962033872796113152E-7,
    4.76932986787806463117E-7,
    2.38450502727732990004E-7,
    1.19219925965311073068E-7,
    5.96081890512594796124E-8,
    2.98035035146522801861E-8,
    1.49015548283650412347E-8,
    7.45071178983542949198E-9,
    3.72533402478845705482E-9,
    1.86265972351304900640E-9,
    9.31327432419668182872E-10
};

/* 2**x (1 - 1/x) (zeta(x) - 1) = P(1/x)/Q(1/x), 1 <= x <= 10 */
static double P[9] = {
    5.85746514569725319540E11,
    2.57534127756102572888E11,
    4.87781159567948256438E10,
    5.15399538023885770696E9,
    3.41646073514754094281E8,
    1.60837006880656492731E7,
    5.92785467342109522998E5,
    1.51129169964938823117E4,
    2.01822444485997955865E2,
};

static double Q[8] = {
    /*  1.00000000000000000000E0, */
    3.90497676373371157516E11,
    5.22858235368272161797E10,
    5.64451517271280543351E9,
    3.39006746015350418834E8,
    1.79410371500126453702E7,
    5.66666825131384797029E5,
    1.60382976810944131506E4,
    1.96436237223387314144E2,
};

/* log(zeta(x) - 1 - 2**-x), 10 <= x <= 50 */
static double A[11] = {
    8.70728567484590192539E6,
    1.76506865670346462757E8,
    2.60889506707483264896E10,
    5.29806374009894791647E11,
    2.26888156119238241487E13,
    3.31884402932705083599E14,
    5.13778997975868230192E15,
    -1.98123688133907171455E15,
    -9.92763810039983572356E16,
    7.82905376180870586444E16,
    9.26786275768927717187E16,
};

static double B[10] = {
    /* 1.00000000000000000000E0, */
    -7.92625410563741062861E6,
    -1.60529969932920229676E8,
    -2.37669260975543221788E10,
    -4.80319584350455169857E11,
    -2.07820961754173320170E13,
    -2.96075404507272223680E14,
    -4.86299103694609136686E15,
    5.34589509675789930199E15,
    5.71464111092297631292E16,
    -1.79915597658676556828E16,
};

/* (1-x) (zeta(x) - 1), 0 <= x <= 1 */
static double R[6] = {
    -3.28717474506562731748E-1,
    1.55162528742623950834E1,
    -2.48762831680821954401E2,
    1.01050368053237678329E3,
    1.26726061410235149405E4,
    -1.11578094770515181334E5,
};

static double S[5] = {
    /* 1.00000000000000000000E0, */
    1.95107674914060531512E1,
    3.17710311750646984099E2,
    3.03835500874445748734E3,
    2.03665876435770579345E4,
    7.43853965136767874343E4,
};

static double TAYLOR0[10] = {
    -1.0000000009110164892,
    -1.0000000057646759799,
    -9.9999983138417361078e-1,
    -1.0000013011460139596,
    -1.000001940896320456,
    -9.9987929950057116496e-1,
    -1.000785194477042408,
    -1.0031782279542924256,
    -9.1893853320467274178e-1,
    -1.5,
};

#define MAXL2 127
#define SQRT_2_PI 0.79788456080286535587989

extern double MACHEP;

static double zetac_reflection(double);
static double zetac_smallneg(double);
static double zetac_positive(double);


/*
 * Riemann zeta function, minus one
 */
double zetac(double x)
{
    if (npy_isnan(x)) {
	return x;
    }
    else if (x == -NPY_INFINITY) {
	return NPY_NAN;
    }
    else if (x < 0.0 && x > -0.01) {
	return zetac_smallneg(x);
    }
    else if (x < 0.0) {
	return zetac_reflection(-x);
    }
    else {
	return zetac_positive(x);
    }
}


/*
 * Compute zetac for positive arguments
 */
static NPY_INLINE double zetac_positive(double x)
{
    int i;
    double a, b, s, w;

    if (x == 1.0) {
        return NPY_INFINITY;
    }

    if (x >= MAXL2) {
	/* because first term is 2**-x */
        return 0.0;
    }

    /* Tabulated values for integer argument */
    w = floor(x);
    if (w == x) {
        i = x;
        if (i < 31) {
#ifdef UNK
            return (azetac[i]);
#else
            return (*(double *) &azetac[4 * i]);
#endif
        }
    }

    if (x < 1.0) {
        w = 1.0 - x;
        a = polevl(x, R, 5) / (w * p1evl(x, S, 5));
        return a;
    }

    if (x <= 10.0) {
        b = pow(2.0, x) * (x - 1.0);
        w = 1.0 / x;
        s = (x * polevl(w, P, 8)) / (b * p1evl(w, Q, 8));
        return s;
    }

    if (x <= 50.0) {
        b = pow(2.0, -x);
        w = polevl(x, A, 10) / p1evl(x, B, 10);
        w = exp(w) + b;
        return w;
    }

    /* Basic sum of inverse powers */
    s = 0.0;
    a = 1.0;
    do {
        a += 2.0;
        b = pow(a, -x);
        s += b;
    }
    while (b / s > MACHEP);

    b = pow(2.0, -x);
    s = (s + b) / (1.0 - b);
    return s;
}


/*
 * Compute zetac for small negative x. We can't use the reflection
 * formula because to double precision 1 - x = 1 and zetac(1) = inf.
 */
static NPY_INLINE double zetac_smallneg(double x)
{
    return polevl(x, TAYLOR0, 9);
}


/*
 * Compute zetac using the reflection formula (see DLMF 25.4.2) plus
 * the Lanczos approximation for Gamma to avoid overflow.
 */
static NPY_INLINE double zetac_reflection(double x)
{
    double s, hx, x_shift;

    hx = x / 2;
    if (hx == floor(hx)) {
	/* Hit a zero of the sine factor */
	return -1.0;
    }

    /* Group large terms together to prevent overflow */
    s = pow((x + lanczos_g + 0.5) / (2 * NPY_PI * NPY_E), x + 0.5);
    /* Reduce the argument to sine */
    x_shift = fmod(x, 4);
    s *= -SQRT_2_PI * sin(0.5 * NPY_PI * x_shift);
    s *= lanczos_sum_expg_scaled(x + 1) * zeta(x + 1, 1);
    return s - 1.0;
}