1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298
|
from __future__ import absolute_import
from cpython cimport bool
from libc cimport math
cimport cython
cimport numpy as np
from numpy.math cimport PI
from numpy cimport ndarray, int64_t, float64_t, intp_t
import numpy as np
import scipy.stats, scipy.special
cdef double von_mises_cdf_series(double k, double x, unsigned int p):
cdef double s, c, sn, cn, R, V
cdef unsigned int n
s = math.sin(x)
c = math.cos(x)
sn = math.sin(p * x)
cn = math.cos(p * x)
R = 0
V = 0
for n in range(p - 1, 0, -1):
sn, cn = sn * c - cn * s, cn * c + sn * s
R = 1. / (2 * n / k + R)
V = R * (sn / n + V)
with cython.cdivision(True):
return 0.5 + x / (2 * PI) + V / PI
cdef von_mises_cdf_normalapprox(k, x):
b = math.sqrt(2 / PI) / scipy.special.i0e(k) # Check for negative k
z = b * np.sin(x / 2.)
return scipy.stats.norm.cdf(z)
@cython.boundscheck(False)
def von_mises_cdf(k_obj, x_obj):
cdef double[:] temp, temp_xs, temp_ks
cdef unsigned int i, p
cdef double a1, a2, a3, a4, CK
cdef np.ndarray k = np.asarray(k_obj)
cdef np.ndarray x = np.asarray(x_obj)
cdef bint zerodim = k.ndim == 0 and x.ndim == 0
k = np.atleast_1d(k)
x = np.atleast_1d(x)
ix = np.round(x / (2 * PI))
x = x - ix * (2 * PI)
# These values should give 12 decimal digits
CK = 50
a1, a2, a3, a4 = 28., 0.5, 100., 5.
bx, bk = np.broadcast_arrays(x, k)
result = np.empty_like(bx, float)
c_small_k = bk < CK
temp = result[c_small_k]
temp_xs = bx[c_small_k].astype(float)
temp_ks = bk[c_small_k].astype(float)
for i in range(len(temp)):
p = <int>(1 + a1 + a2 * temp_ks[i] - a3 / (temp_ks[i] + a4))
temp[i] = von_mises_cdf_series(temp_ks[i], temp_xs[i], p)
temp[i] = 0 if temp[i] < 0 else 1 if temp[i] > 1 else temp[i]
result[c_small_k] = temp
result[~c_small_k] = von_mises_cdf_normalapprox(bk[~c_small_k], bx[~c_small_k])
if not zerodim:
return result + ix
else:
return (result + ix)[0]
@cython.wraparound(False)
@cython.boundscheck(False)
def _kendall_dis(intp_t[:] x, intp_t[:] y):
cdef:
intp_t sup = 1 + np.max(y)
intp_t[::1] arr = np.zeros(sup, dtype=np.intp)
intp_t i = 0, k = 0, size = x.size, idx
int64_t dis = 0
with nogil:
while i < size:
while k < size and x[i] == x[k]:
dis += i
idx = y[k]
while idx != 0:
dis -= arr[idx]
idx = idx & (idx - 1)
k += 1
while i < k:
idx = y[i]
while idx < sup:
arr[idx] += 1
idx += idx & -idx
i += 1
return dis
# The weighted tau will be computed directly between these types.
# Arrays of other types will be turned into a rank array using _toint64().
ctypedef fused ordered:
np.int32_t
np.int64_t
np.float32_t
np.float64_t
# Inverts a permutation in place [B. H. Boonstra, Comm. ACM 8(2):104, 1965].
@cython.wraparound(False)
@cython.boundscheck(False)
cdef _invert_in_place(intp_t[:] perm):
cdef intp_t n, i, j, k
for n in xrange(len(perm)-1, -1, -1):
i = perm[n]
if i < 0:
perm[n] = -i - 1
else:
if i != n:
k = n
while True:
j = perm[i]
perm[i] = -k - 1
if j == n:
perm[n] = i
break
k = i
i = j
@cython.wraparound(False)
@cython.boundscheck(False)
def _toint64(x):
cdef intp_t i, j = 0, l = len(x)
cdef intp_t[::1] perm = np.argsort(x, kind='quicksort')
# The type of this array must be one of the supported types
cdef int64_t[::1] result = np.ndarray(l, dtype=np.int64)
# Find nans, if any, and assign them the lowest value
for i in xrange(l - 1, -1, -1):
if not np.isnan(x[perm[i]]):
break
result[perm[i]] = 0
if i < l - 1:
j = 1
l = i + 1
for i in xrange(l - 1):
result[perm[i]] = j
if x[perm[i]] != x[perm[i + 1]]:
j += 1
result[perm[i + 1]] = j
return np.array(result, dtype=np.int64)
@cython.wraparound(False)
@cython.boundscheck(False)
def _weightedrankedtau(ordered[:] x, ordered[:] y, intp_t[:] rank, weigher, bool additive):
cdef intp_t i, first
cdef float64_t t, u, v, w, s, sq
cdef int64_t n = np.int64(len(x))
cdef float64_t[::1] exchanges_weight = np.zeros(1, dtype=np.float64)
# initial sort on values of x and, if tied, on values of y
cdef intp_t[::1] perm = np.lexsort((y, x))
cdef intp_t[::1] temp = np.empty(n, dtype=np.intp) # support structure
if weigher is None:
weigher = lambda x: 1./(1 + x)
if rank is None:
# To generate a rank array, we must first reverse the permutation
# (to get higher ranks first) and then invert it.
rank = np.empty(n, dtype=np.intp)
rank[...] = perm[::-1]
_invert_in_place(rank)
# weigh joint ties
first = 0
t = 0
w = weigher(rank[perm[first]])
s = w
sq = w * w
for i in xrange(1, n):
if x[perm[first]] != x[perm[i]] or y[perm[first]] != y[perm[i]]:
t += s * (i - first - 1) if additive else (s * s - sq) / 2
first = i
s = sq = 0
w = weigher(rank[perm[i]])
s += w
sq += w * w
t += s * (n - first - 1) if additive else (s * s - sq) / 2
# weigh ties in x
first = 0
u = 0
w = weigher(rank[perm[first]])
s = w
sq = w * w
for i in xrange(1, n):
if x[perm[first]] != x[perm[i]]:
u += s * (i - first - 1) if additive else (s * s - sq) / 2
first = i
s = sq = 0
w = weigher(rank[perm[i]])
s += w
sq += w * w
u += s * (n - first - 1) if additive else (s * s - sq) / 2
if first == 0: # x is constant (all ties)
return np.nan
# this closure recursively sorts sections of perm[] by comparing
# elements of y[perm[]] using temp[] as support
def weigh(intp_t offset, intp_t length):
cdef intp_t length0, length1, middle, i, j, k
cdef float64_t weight, residual
if length == 1:
return weigher(rank[perm[offset]])
length0 = length // 2
length1 = length - length0
middle = offset + length0
residual = weigh(offset, length0)
weight = weigh(middle, length1) + residual
if y[perm[middle - 1]] < y[perm[middle]]:
return weight
# merging
i = j = k = 0
while j < length0 and k < length1:
if y[perm[offset + j]] <= y[perm[middle + k]]:
temp[i] = perm[offset + j]
residual -= weigher(rank[temp[i]])
j += 1
else:
temp[i] = perm[middle + k]
exchanges_weight[0] += weigher(rank[temp[i]]) * (
length0 - j) + residual if additive else weigher(
rank[temp[i]]) * residual
k += 1
i += 1
perm[offset+i:offset+i+length0-j] = perm[offset+j:offset+length0]
perm[offset:offset+i] = temp[0:i]
return weight
# weigh discordances
weigh(0, n)
# weigh ties in y
first = 0
v = 0
w = weigher(rank[perm[first]])
s = w
sq = w * w
for i in xrange(1, n):
if y[perm[first]] != y[perm[i]]:
v += s * (i - first - 1) if additive else (s * s - sq) / 2
first = i
s = sq = 0
w = weigher(rank[perm[i]])
s += w
sq += w * w
v += s * (n - first - 1) if additive else (s * s - sq) / 2
if first == 0: # y is constant (all ties)
return np.nan
# weigh all pairs
s = sq = 0
for i in xrange(n):
w = weigher(rank[perm[i]])
s += w
sq += w * w
tot = s * (n - 1) if additive else (s * s - sq) / 2
tau = ((tot - (v + u - t)) - 2. * exchanges_weight[0]
) / np.sqrt(tot - u) / np.sqrt(tot - v)
return min(1., max(-1., tau))
|