File: test_mstats_extras.py

package info (click to toggle)
python-scipy 1.1.0-7
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 93,828 kB
  • sloc: python: 156,854; ansic: 82,925; fortran: 80,777; cpp: 7,505; makefile: 427; sh: 294
file content (136 lines) | stat: -rw-r--r-- 5,464 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
from __future__ import division, print_function, absolute_import

import numpy as np
import numpy.ma as ma
import scipy.stats.mstats as ms

from numpy.testing import (assert_equal, assert_almost_equal, assert_,
    assert_allclose)


def test_compare_medians_ms():
    x = np.arange(7)
    y = x + 10
    assert_almost_equal(ms.compare_medians_ms(x, y), 0)

    y2 = np.linspace(0, 1, num=10)
    assert_almost_equal(ms.compare_medians_ms(x, y2), 0.017116406778)


def test_hdmedian():
    # 1-D array
    x = ma.arange(11)
    assert_allclose(ms.hdmedian(x), 5, rtol=1e-14)
    x.mask = ma.make_mask(x)
    x.mask[:7] = False
    assert_allclose(ms.hdmedian(x), 3, rtol=1e-14)

    # Check that `var` keyword returns a value.  TODO: check whether returned
    # value is actually correct.
    assert_(ms.hdmedian(x, var=True).size == 2)

    # 2-D array
    x2 = ma.arange(22).reshape((11, 2))
    assert_allclose(ms.hdmedian(x2, axis=0), [10, 11])
    x2.mask = ma.make_mask(x2)
    x2.mask[:7, :] = False
    assert_allclose(ms.hdmedian(x2, axis=0), [6, 7])


def test_rsh():
    np.random.seed(132345)
    x = np.random.randn(100)
    res = ms.rsh(x)
    # Just a sanity check that the code runs and output shape is correct.
    # TODO: check that implementation is correct.
    assert_(res.shape == x.shape)

    # Check points keyword
    res = ms.rsh(x, points=[0, 1.])
    assert_(res.size == 2)


def test_mjci():
    # Tests the Marits-Jarrett estimator
    data = ma.array([77, 87, 88,114,151,210,219,246,253,262,
                      296,299,306,376,428,515,666,1310,2611])
    assert_almost_equal(ms.mjci(data),[55.76819,45.84028,198.87875],5)


def test_trimmed_mean_ci():
    # Tests the confidence intervals of the trimmed mean.
    data = ma.array([545,555,558,572,575,576,578,580,
                     594,605,635,651,653,661,666])
    assert_almost_equal(ms.trimmed_mean(data,0.2), 596.2, 1)
    assert_equal(np.round(ms.trimmed_mean_ci(data,(0.2,0.2)),1),
                 [561.8, 630.6])


def test_idealfourths():
    # Tests ideal-fourths
    test = np.arange(100)
    assert_almost_equal(np.asarray(ms.idealfourths(test)),
                        [24.416667,74.583333],6)
    test_2D = test.repeat(3).reshape(-1,3)
    assert_almost_equal(ms.idealfourths(test_2D, axis=0),
                        [[24.416667,24.416667,24.416667],
                         [74.583333,74.583333,74.583333]],6)
    assert_almost_equal(ms.idealfourths(test_2D, axis=1),
                        test.repeat(2).reshape(-1,2))
    test = [0, 0]
    _result = ms.idealfourths(test)
    assert_(np.isnan(_result).all())


class TestQuantiles(object):
    data = [0.706560797,0.727229578,0.990399276,0.927065621,0.158953014,
        0.887764025,0.239407086,0.349638551,0.972791145,0.149789972,
        0.936947700,0.132359948,0.046041972,0.641675031,0.945530547,
        0.224218684,0.771450991,0.820257774,0.336458052,0.589113496,
        0.509736129,0.696838829,0.491323573,0.622767425,0.775189248,
        0.641461450,0.118455200,0.773029450,0.319280007,0.752229111,
        0.047841438,0.466295911,0.583850781,0.840581845,0.550086491,
        0.466470062,0.504765074,0.226855960,0.362641207,0.891620942,
        0.127898691,0.490094097,0.044882048,0.041441695,0.317976349,
        0.504135618,0.567353033,0.434617473,0.636243375,0.231803616,
        0.230154113,0.160011327,0.819464108,0.854706985,0.438809221,
        0.487427267,0.786907310,0.408367937,0.405534192,0.250444460,
        0.995309248,0.144389588,0.739947527,0.953543606,0.680051621,
        0.388382017,0.863530727,0.006514031,0.118007779,0.924024803,
        0.384236354,0.893687694,0.626534881,0.473051932,0.750134705,
        0.241843555,0.432947602,0.689538104,0.136934797,0.150206859,
        0.474335206,0.907775349,0.525869295,0.189184225,0.854284286,
        0.831089744,0.251637345,0.587038213,0.254475554,0.237781276,
        0.827928620,0.480283781,0.594514455,0.213641488,0.024194386,
        0.536668589,0.699497811,0.892804071,0.093835427,0.731107772]

    def test_hdquantiles(self):
        data = self.data
        assert_almost_equal(ms.hdquantiles(data,[0., 1.]),
                            [0.006514031, 0.995309248])
        hdq = ms.hdquantiles(data,[0.25, 0.5, 0.75])
        assert_almost_equal(hdq, [0.253210762, 0.512847491, 0.762232442,])
        hdq = ms.hdquantiles_sd(data,[0.25, 0.5, 0.75])
        assert_almost_equal(hdq, [0.03786954, 0.03805389, 0.03800152,], 4)

        data = np.array(data).reshape(10,10)
        hdq = ms.hdquantiles(data,[0.25,0.5,0.75],axis=0)
        assert_almost_equal(hdq[:,0], ms.hdquantiles(data[:,0],[0.25,0.5,0.75]))
        assert_almost_equal(hdq[:,-1], ms.hdquantiles(data[:,-1],[0.25,0.5,0.75]))
        hdq = ms.hdquantiles(data,[0.25,0.5,0.75],axis=0,var=True)
        assert_almost_equal(hdq[...,0],
                            ms.hdquantiles(data[:,0],[0.25,0.5,0.75],var=True))
        assert_almost_equal(hdq[...,-1],
                            ms.hdquantiles(data[:,-1],[0.25,0.5,0.75], var=True))

    def test_hdquantiles_sd(self):
        # Only test that code runs, implementation not checked for correctness
        res = ms.hdquantiles_sd(self.data)
        assert_(res.size == 3)

    def test_mquantiles_cimj(self):
        # Only test that code runs, implementation not checked for correctness
        ci_lower, ci_upper = ms.mquantiles_cimj(self.data)
        assert_(ci_lower.size == ci_upper.size == 3)