1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771
|
#include <assert.h>
#include <stdint.h>
#include <string.h>
#include "cpusupport.h"
#include "insecure_memzero.h"
#include "sha256_arm.h"
#include "sha256_shani.h"
#include "sha256_sse2.h"
#include "sysendian.h"
#include "warnp.h"
#include "sha256.h"
#if defined(CPUSUPPORT_X86_SHANI) && defined(CPUSUPPORT_X86_SSSE3) || \
defined(CPUSUPPORT_X86_SSE2) || \
defined(CPUSUPPORT_ARM_SHA256)
#define HWACCEL
static enum {
HW_SOFTWARE = 0,
#if defined(CPUSUPPORT_X86_SHANI) && defined(CPUSUPPORT_X86_SSSE3)
HW_X86_SHANI,
#endif
#if defined(CPUSUPPORT_X86_SSE2)
HW_X86_SSE2,
#endif
#if defined(CPUSUPPORT_ARM_SHA256)
HW_ARM_SHA256,
#endif
HW_UNSET
} hwaccel = HW_UNSET;
#endif
#ifdef _MSC_VER
static void SHA256_Transform(uint32_t state[8],
const uint8_t block[64], uint32_t W[64],
uint32_t S[8]);
#elif POSIXFAIL_ABSTRACT_DECLARATOR
static void SHA256_Transform(uint32_t state[static restrict 8],
const uint8_t block[static restrict 64], uint32_t W[static restrict 64],
uint32_t S[static restrict 8]);
#else
static void SHA256_Transform(uint32_t[static restrict 8],
const uint8_t[static restrict 64], uint32_t[static restrict 64],
uint32_t[static restrict 8]);
#endif
/*
* Encode a length len/4 vector of (uint32_t) into a length len vector of
* (uint8_t) in big-endian form. Assumes len is a multiple of 4.
*/
static void
be32enc_vect(uint8_t * dst, const uint32_t * src, size_t len)
{
size_t i;
/* Sanity-check. */
assert(len % 4 == 0);
/* Encode vector, one word at a time. */
for (i = 0; i < len / 4; i++)
be32enc(dst + i * 4, src[i]);
}
/*
* Decode a big-endian length len vector of (uint8_t) into a length
* len/4 vector of (uint32_t). Assumes len is a multiple of 4.
*/
static void
be32dec_vect(uint32_t * dst, const uint8_t * src, size_t len)
{
size_t i;
/* Sanity-check. */
assert(len % 4 == 0);
/* Decode vector, one word at a time. */
for (i = 0; i < len / 4; i++)
dst[i] = be32dec(src + i * 4);
}
/* SHA256 round constants. */
static const uint32_t Krnd[64] = {
0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5,
0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5,
0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3,
0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174,
0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc,
0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da,
0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7,
0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967,
0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13,
0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85,
0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3,
0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070,
0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5,
0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3,
0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208,
0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2
};
/* Magic initialization constants. */
static const uint32_t initial_state[8] = {
0x6A09E667, 0xBB67AE85, 0x3C6EF372, 0xA54FF53A,
0x510E527F, 0x9B05688C, 0x1F83D9AB, 0x5BE0CD19
};
#ifdef HWACCEL
#if defined(CPUSUPPORT_X86_SHANI) && defined(CPUSUPPORT_X86_SSSE3)
/* Shim so that we can test SHA256_Transform_shani() in the standard manner. */
#ifdef _MSC_VER
static void
SHA256_Transform_shani_with_W_S(uint32_t state[8],
const uint8_t block[64], uint32_t W[64],
uint32_t S[8])
#else
static void
SHA256_Transform_shani_with_W_S(uint32_t state[static restrict 8],
const uint8_t block[static restrict 64], uint32_t W[static restrict 64],
uint32_t S[static restrict 8])
#endif
{
(void)W; /* UNUSED */
(void)S; /* UNUSED */
SHA256_Transform_shani(state, block);
}
#endif
#if defined(CPUSUPPORT_ARM_SHA256)
/* Shim so that we can test SHA256_Transform_arm() in the standard manner. */
#ifdef _MSC_VER
static void
SHA256_Transform_arm_with_W_S(uint32_t state[8],
const uint8_t block[64], uint32_t W[64],
uint32_t S[8])
#else
static void
SHA256_Transform_arm_with_W_S(uint32_t state[static restrict 8],
const uint8_t block[static restrict 64], uint32_t W[static restrict 64],
uint32_t S[static restrict 8])
#endif
{
(void)W; /* UNUSED */
(void)S; /* UNUSED */
SHA256_Transform_arm(state, block);
}
#endif
/*
* Test whether software and hardware extensions transform code produce the
* same results. Must be called with (hwaccel == HW_SOFTWARE).
*/
#ifdef _MSC_VER
static int
hwtest(const uint32_t state[8],
const uint8_t block[64],
uint32_t W[64], uint32_t S[8],
void (* func)(uint32_t state[8],
const uint8_t block[64], uint32_t W[64],
uint32_t S[8]))
#else
static int
hwtest(const uint32_t state[static restrict 8],
const uint8_t block[static restrict 64],
uint32_t W[static restrict 64], uint32_t S[static restrict 8],
void (* func)(uint32_t state[static restrict 8],
const uint8_t block[static restrict 64], uint32_t W[static restrict 64],
uint32_t S[static restrict 8]))
#endif
{
uint32_t state_sw[8];
uint32_t state_hw[8];
/* Software transform. */
memcpy(state_sw, state, sizeof(state_sw));
SHA256_Transform(state_sw, block, W, S);
/* Hardware transform. */
memcpy(state_hw, state, sizeof(state_hw));
func(state_hw, block, W, S);
/* Do the results match? */
return (memcmp(state_sw, state_hw, sizeof(state_sw)));
}
/* Which type of hardware acceleration should we use, if any? */
static void
hwaccel_init(void)
{
uint32_t W[64];
uint32_t S[8];
uint8_t block[64];
uint8_t i;
/* If we've already set hwaccel, we're finished. */
if (hwaccel != HW_UNSET)
return;
/* Default to software. */
hwaccel = HW_SOFTWARE;
/* Test case: Hash 0x00 0x01 0x02 ... 0x3f. */
for (i = 0; i < 64; i++)
block[i] = i;
#if defined(CPUSUPPORT_X86_SHANI) && defined(CPUSUPPORT_X86_SSSE3)
CPUSUPPORT_VALIDATE(hwaccel, HW_X86_SHANI,
cpusupport_x86_shani() && cpusupport_x86_ssse3(),
hwtest(initial_state, block, W, S,
SHA256_Transform_shani_with_W_S));
#endif
#if defined(CPUSUPPORT_X86_SSE2)
CPUSUPPORT_VALIDATE(hwaccel, HW_X86_SSE2, cpusupport_x86_sse2(),
hwtest(initial_state, block, W, S, SHA256_Transform_sse2));
#endif
#if defined(CPUSUPPORT_ARM_SHA256)
CPUSUPPORT_VALIDATE(hwaccel, HW_ARM_SHA256, cpusupport_arm_sha256(),
hwtest(initial_state, block, W, S, SHA256_Transform_arm_with_W_S));
#endif
}
#endif /* HWACCEL */
/* Elementary functions used by SHA256 */
#define Ch(x, y, z) ((x & (y ^ z)) ^ z)
#define Maj(x, y, z) ((x & (y | z)) | (y & z))
#define SHR(x, n) (x >> n)
#define ROTR(x, n) ((x >> n) | (x << (32 - n)))
#define S0(x) (ROTR(x, 2) ^ ROTR(x, 13) ^ ROTR(x, 22))
#define S1(x) (ROTR(x, 6) ^ ROTR(x, 11) ^ ROTR(x, 25))
#define s0(x) (ROTR(x, 7) ^ ROTR(x, 18) ^ SHR(x, 3))
#define s1(x) (ROTR(x, 17) ^ ROTR(x, 19) ^ SHR(x, 10))
/* SHA256 round function */
#define RND(a, b, c, d, e, f, g, h, k) \
h += S1(e) + Ch(e, f, g) + k; \
d += h; \
h += S0(a) + Maj(a, b, c)
/* Adjusted round function for rotating state */
#define RNDr(S, W, i, ii) \
RND(S[(64 - i) % 8], S[(65 - i) % 8], \
S[(66 - i) % 8], S[(67 - i) % 8], \
S[(68 - i) % 8], S[(69 - i) % 8], \
S[(70 - i) % 8], S[(71 - i) % 8], \
W[i + ii] + Krnd[i + ii])
/* Message schedule computation */
#define MSCH(W, ii, i) \
W[i + ii + 16] = s1(W[i + ii + 14]) + W[i + ii + 9] + s0(W[i + ii + 1]) + W[i + ii]
/*
* SHA256 block compression function. The 256-bit state is transformed via
* the 512-bit input block to produce a new state. The arrays W and S may be
* filled with sensitive data, and should be sanitized by the callee.
*/
#ifdef _MSC_VER
static void
SHA256_Transform(uint32_t state[8],
const uint8_t block[64], uint32_t W[64], uint32_t S[8])
#else
static void
SHA256_Transform(uint32_t state[static restrict 8],
const uint8_t block[static restrict 64],
uint32_t W[static restrict 64], uint32_t S[static restrict 8])
#endif
{
int i;
#ifdef HWACCEL
#if defined(__GNUC__) && defined(__aarch64__)
/*
* We require that SHA256_Init() is called before SHA256_Transform(),
* but the compiler has no way of knowing that. This assert adds a
* significant speed boost for gcc on 64-bit ARM, and a minor penalty
* on other systems & compilers.
*/
assert(hwaccel != HW_UNSET);
#endif
switch (hwaccel) {
#if defined(CPUSUPPORT_X86_SHANI) && defined(CPUSUPPORT_X86_SSSE3)
case HW_X86_SHANI:
SHA256_Transform_shani(state, block);
return;
#endif
#if defined(CPUSUPPORT_X86_SSE2)
case HW_X86_SSE2:
SHA256_Transform_sse2(state, block, W, S);
return;
#endif
#if defined(CPUSUPPORT_ARM_SHA256)
case HW_ARM_SHA256:
SHA256_Transform_arm(state, block);
return;
#endif
case HW_SOFTWARE:
case HW_UNSET:
break;
}
#endif /* HWACCEL */
/* 1. Prepare the first part of the message schedule W. */
be32dec_vect(W, block, 64);
/* 2. Initialize working variables. */
memcpy(S, state, 32);
/* 3. Mix. */
for (i = 0; i < 64; i += 16) {
RNDr(S, W, 0, i);
RNDr(S, W, 1, i);
RNDr(S, W, 2, i);
RNDr(S, W, 3, i);
RNDr(S, W, 4, i);
RNDr(S, W, 5, i);
RNDr(S, W, 6, i);
RNDr(S, W, 7, i);
RNDr(S, W, 8, i);
RNDr(S, W, 9, i);
RNDr(S, W, 10, i);
RNDr(S, W, 11, i);
RNDr(S, W, 12, i);
RNDr(S, W, 13, i);
RNDr(S, W, 14, i);
RNDr(S, W, 15, i);
if (i == 48)
break;
MSCH(W, 0, i);
MSCH(W, 1, i);
MSCH(W, 2, i);
MSCH(W, 3, i);
MSCH(W, 4, i);
MSCH(W, 5, i);
MSCH(W, 6, i);
MSCH(W, 7, i);
MSCH(W, 8, i);
MSCH(W, 9, i);
MSCH(W, 10, i);
MSCH(W, 11, i);
MSCH(W, 12, i);
MSCH(W, 13, i);
MSCH(W, 14, i);
MSCH(W, 15, i);
}
/* 4. Mix local working variables into global state. */
for (i = 0; i < 8; i++)
state[i] += S[i];
}
static const uint8_t PAD[64] = {
0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
};
/* Add padding and terminating bit-count. */
#ifdef _MSC_VER
static void
SHA256_Pad(SHA256_CTX * ctx, uint32_t tmp32[72])
#else
static void
SHA256_Pad(SHA256_CTX * ctx, uint32_t tmp32[static restrict 72])
#endif
{
size_t r;
/* Figure out how many bytes we have buffered. */
r = (ctx->count >> 3) & 0x3f;
/* Pad to 56 mod 64, transforming if we finish a block en route. */
if (r < 56) {
/* Pad to 56 mod 64. */
memcpy(&ctx->buf[r], PAD, 56 - r);
} else {
/* Finish the current block and mix. */
memcpy(&ctx->buf[r], PAD, 64 - r);
SHA256_Transform(ctx->state, ctx->buf, &tmp32[0], &tmp32[64]);
/* The start of the final block is all zeroes. */
memset(&ctx->buf[0], 0, 56);
}
/* Add the terminating bit-count. */
be64enc(&ctx->buf[56], ctx->count);
/* Mix in the final block. */
SHA256_Transform(ctx->state, ctx->buf, &tmp32[0], &tmp32[64]);
}
/**
* SHA256_Init(ctx):
* Initialize the SHA256 context ${ctx}.
*/
void
SHA256_Init(SHA256_CTX * ctx)
{
/* Zero bits processed so far. */
ctx->count = 0;
/* Initialize state. */
memcpy(ctx->state, initial_state, sizeof(initial_state));
#ifdef HWACCEL
/* Ensure that we've chosen the type of hardware acceleration. */
hwaccel_init();
#endif
}
/**
* SHA256_Update(ctx, in, len):
* Input ${len} bytes from ${in} into the SHA256 context ${ctx}.
*/
#ifdef _MSC_VER
static void
SHA256_Update_internal(SHA256_CTX * ctx, const void * in, size_t len,
uint32_t tmp32[72])
#else
static void
SHA256_Update_internal(SHA256_CTX * ctx, const void * in, size_t len,
uint32_t tmp32[static restrict 72])
#endif
{
uint32_t r;
const uint8_t * src = in;
/* Return immediately if we have nothing to do. */
if (len == 0)
return;
/* Number of bytes left in the buffer from previous updates. */
r = (ctx->count >> 3) & 0x3f;
/* Update number of bits. */
ctx->count += (uint64_t)(len) << 3;
/* Handle the case where we don't need to perform any transforms. */
if (len < 64 - r) {
memcpy(&ctx->buf[r], src, len);
return;
}
/* Finish the current block. */
memcpy(&ctx->buf[r], src, 64 - r);
SHA256_Transform(ctx->state, ctx->buf, &tmp32[0], &tmp32[64]);
src += 64 - r;
len -= 64 - r;
/* Perform complete blocks. */
while (len >= 64) {
SHA256_Transform(ctx->state, src, &tmp32[0], &tmp32[64]);
src += 64;
len -= 64;
}
/* Copy left over data into buffer. */
memcpy(ctx->buf, src, len);
}
/* Wrapper function for intermediate-values sanitization. */
void
SHA256_Update(SHA256_CTX * ctx, const void * in, size_t len)
{
uint32_t tmp32[72];
/* Call the real function. */
SHA256_Update_internal(ctx, in, len, tmp32);
/* Clean the stack. */
insecure_memzero(tmp32, sizeof(uint32_t) * 72);
}
/**
* SHA256_Final(digest, ctx):
* Output the SHA256 hash of the data input to the context ${ctx} into the
* buffer ${digest}, and clear the context state.
*/
#ifdef _MSC_VER
static void
SHA256_Final_internal(uint8_t digest[32], SHA256_CTX * ctx,
uint32_t tmp32[72])
#else
static void
SHA256_Final_internal(uint8_t digest[32], SHA256_CTX * ctx,
uint32_t tmp32[static restrict 72])
#endif
{
/* Add padding. */
SHA256_Pad(ctx, tmp32);
/* Write the hash. */
be32enc_vect(digest, ctx->state, 32);
}
/* Wrapper function for intermediate-values sanitization. */
void
SHA256_Final(uint8_t digest[32], SHA256_CTX * ctx)
{
uint32_t tmp32[72];
/* Call the real function. */
SHA256_Final_internal(digest, ctx, tmp32);
/* Clear the context state. */
insecure_memzero(ctx, sizeof(SHA256_CTX));
/* Clean the stack. */
insecure_memzero(tmp32, sizeof(uint32_t) * 72);
}
/**
* SHA256_Buf(in, len, digest):
* Compute the SHA256 hash of ${len} bytes from ${in} and write it to ${digest}.
*/
void
SHA256_Buf(const void * in, size_t len, uint8_t digest[32])
{
SHA256_CTX ctx;
uint32_t tmp32[72];
SHA256_Init(&ctx);
SHA256_Update_internal(&ctx, in, len, tmp32);
SHA256_Final_internal(digest, &ctx, tmp32);
/* Clean the stack. */
insecure_memzero(&ctx, sizeof(SHA256_CTX));
insecure_memzero(tmp32, sizeof(uint32_t) * 72);
}
/**
* HMAC_SHA256_Init(ctx, K, Klen):
* Initialize the HMAC-SHA256 context ${ctx} with ${Klen} bytes of key from
* ${K}.
*/
#ifdef _MSC_VER
static void
HMAC_SHA256_Init_internal(HMAC_SHA256_CTX * ctx, const void * _k, size_t Klen,
uint32_t tmp32[72], uint8_t pad[64],
uint8_t khash[32])
#else
static void
HMAC_SHA256_Init_internal(HMAC_SHA256_CTX * ctx, const void * _k, size_t Klen,
uint32_t tmp32[static restrict 72], uint8_t pad[static restrict 64],
uint8_t khash[static restrict 32])
#endif
{
const uint8_t * K = _k;
size_t i;
/* If Klen > 64, the key is really SHA256(K). */
if (Klen > 64) {
SHA256_Init(&ctx->ictx);
SHA256_Update_internal(&ctx->ictx, K, Klen, tmp32);
SHA256_Final_internal(khash, &ctx->ictx, tmp32);
K = khash;
Klen = 32;
}
/* Inner SHA256 operation is SHA256(K xor [block of 0x36] || data). */
SHA256_Init(&ctx->ictx);
memset(pad, 0x36, 64);
for (i = 0; i < Klen; i++)
pad[i] ^= K[i];
SHA256_Update_internal(&ctx->ictx, pad, 64, tmp32);
/* Outer SHA256 operation is SHA256(K xor [block of 0x5c] || hash). */
SHA256_Init(&ctx->octx);
memset(pad, 0x5c, 64);
for (i = 0; i < Klen; i++)
pad[i] ^= K[i];
SHA256_Update_internal(&ctx->octx, pad, 64, tmp32);
}
/* Wrapper function for intermediate-values sanitization. */
void
HMAC_SHA256_Init(HMAC_SHA256_CTX * ctx, const void * K, size_t Klen)
{
uint32_t tmp32[72];
uint8_t pad[64];
uint8_t khash[32];
/* Call the real function. */
HMAC_SHA256_Init_internal(ctx, K, Klen, tmp32, pad, khash);
/* Clean the stack. */
insecure_memzero(tmp32, sizeof(uint32_t) * 72);
insecure_memzero(khash, 32);
insecure_memzero(pad, 64);
}
/**
* HMAC_SHA256_Update(ctx, in, len):
* Input ${len} bytes from ${in} into the HMAC-SHA256 context ${ctx}.
*/
#ifdef _MSC_VER
static void
HMAC_SHA256_Update_internal(HMAC_SHA256_CTX * ctx, const void * in, size_t len,
uint32_t tmp32[72])
#else
static void
HMAC_SHA256_Update_internal(HMAC_SHA256_CTX * ctx, const void * in, size_t len,
uint32_t tmp32[static restrict 72])
#endif
{
/* Feed data to the inner SHA256 operation. */
SHA256_Update_internal(&ctx->ictx, in, len, tmp32);
}
/* Wrapper function for intermediate-values sanitization. */
void
HMAC_SHA256_Update(HMAC_SHA256_CTX * ctx, const void * in, size_t len)
{
uint32_t tmp32[72];
/* Call the real function. */
HMAC_SHA256_Update_internal(ctx, in, len, tmp32);
/* Clean the stack. */
insecure_memzero(tmp32, sizeof(uint32_t) * 72);
}
/**
* HMAC_SHA256_Final(digest, ctx):
* Output the HMAC-SHA256 of the data input to the context ${ctx} into the
* buffer ${digest}, and clear the context state.
*/
#ifdef _MSC_VER
static void
HMAC_SHA256_Final_internal(uint8_t digest[32], HMAC_SHA256_CTX * ctx,
uint32_t tmp32[72], uint8_t ihash[32])
#else
static void
HMAC_SHA256_Final_internal(uint8_t digest[32], HMAC_SHA256_CTX * ctx,
uint32_t tmp32[static restrict 72], uint8_t ihash[static restrict 32])
#endif
{
/* Finish the inner SHA256 operation. */
SHA256_Final_internal(ihash, &ctx->ictx, tmp32);
/* Feed the inner hash to the outer SHA256 operation. */
SHA256_Update_internal(&ctx->octx, ihash, 32, tmp32);
/* Finish the outer SHA256 operation. */
SHA256_Final_internal(digest, &ctx->octx, tmp32);
}
/* Wrapper function for intermediate-values sanitization. */
void
HMAC_SHA256_Final(uint8_t digest[32], HMAC_SHA256_CTX * ctx)
{
uint32_t tmp32[72];
uint8_t ihash[32];
/* Call the real function. */
HMAC_SHA256_Final_internal(digest, ctx, tmp32, ihash);
/* Clear the context state. */
insecure_memzero(ctx, sizeof(HMAC_SHA256_CTX));
/* Clean the stack. */
insecure_memzero(tmp32, sizeof(uint32_t) * 72);
insecure_memzero(ihash, 32);
}
/**
* HMAC_SHA256_Buf(K, Klen, in, len, digest):
* Compute the HMAC-SHA256 of ${len} bytes from ${in} using the key ${K} of
* length ${Klen}, and write the result to ${digest}.
*/
void
HMAC_SHA256_Buf(const void * K, size_t Klen, const void * in, size_t len,
uint8_t digest[32])
{
HMAC_SHA256_CTX ctx;
uint32_t tmp32[72];
uint8_t tmp8[96];
HMAC_SHA256_Init_internal(&ctx, K, Klen, tmp32, &tmp8[0], &tmp8[64]);
HMAC_SHA256_Update_internal(&ctx, in, len, tmp32);
HMAC_SHA256_Final_internal(digest, &ctx, tmp32, &tmp8[0]);
/* Clean the stack. */
insecure_memzero(&ctx, sizeof(HMAC_SHA256_CTX));
insecure_memzero(tmp32, sizeof(uint32_t) * 72);
insecure_memzero(tmp8, 96);
}
/**
* PBKDF2_SHA256(passwd, passwdlen, salt, saltlen, c, buf, dkLen):
* Compute PBKDF2(passwd, salt, c, dkLen) using HMAC-SHA256 as the PRF, and
* write the output to buf. The value dkLen must be at most 32 * (2^32 - 1).
*/
void
PBKDF2_SHA256(const uint8_t * passwd, size_t passwdlen, const uint8_t * salt,
size_t saltlen, uint64_t c, uint8_t * buf, size_t dkLen)
{
HMAC_SHA256_CTX Phctx, PShctx, hctx;
uint32_t tmp32[72];
uint8_t tmp8[96];
size_t i;
uint8_t ivec[4];
uint8_t U[32];
uint8_t T[32];
uint64_t j;
int k;
size_t clen;
#if SIZE_MAX >= (32 * UINT32_MAX)
/* Sanity-check. */
assert(dkLen <= 32 * (size_t)(UINT32_MAX));
#endif
/* Compute HMAC state after processing P. */
HMAC_SHA256_Init_internal(&Phctx, passwd, passwdlen,
tmp32, &tmp8[0], &tmp8[64]);
/* Compute HMAC state after processing P and S. */
memcpy(&PShctx, &Phctx, sizeof(HMAC_SHA256_CTX));
HMAC_SHA256_Update_internal(&PShctx, salt, saltlen, tmp32);
/* Iterate through the blocks. */
for (i = 0; i * 32 < dkLen; i++) {
/* Generate INT(i + 1). */
be32enc(ivec, (uint32_t)(i + 1));
/* Compute U_1 = PRF(P, S || INT(i)). */
memcpy(&hctx, &PShctx, sizeof(HMAC_SHA256_CTX));
HMAC_SHA256_Update_internal(&hctx, ivec, 4, tmp32);
HMAC_SHA256_Final_internal(U, &hctx, tmp32, tmp8);
/* T_i = U_1 ... */
memcpy(T, U, 32);
for (j = 2; j <= c; j++) {
/* Compute U_j. */
memcpy(&hctx, &Phctx, sizeof(HMAC_SHA256_CTX));
HMAC_SHA256_Update_internal(&hctx, U, 32, tmp32);
HMAC_SHA256_Final_internal(U, &hctx, tmp32, tmp8);
/* ... xor U_j ... */
for (k = 0; k < 32; k++)
T[k] ^= U[k];
}
/* Copy as many bytes as necessary into buf. */
clen = dkLen - i * 32;
if (clen > 32)
clen = 32;
memcpy(&buf[i * 32], T, clen);
}
/* Clean the stack. */
insecure_memzero(&Phctx, sizeof(HMAC_SHA256_CTX));
insecure_memzero(&PShctx, sizeof(HMAC_SHA256_CTX));
insecure_memzero(&hctx, sizeof(HMAC_SHA256_CTX));
insecure_memzero(tmp32, sizeof(uint32_t) * 72);
insecure_memzero(tmp8, 96);
insecure_memzero(U, 32);
insecure_memzero(T, 32);
}
|