File: sha256.c

package info (click to toggle)
python-scrypt 0.9.4-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 832 kB
  • sloc: ansic: 6,290; python: 733; sh: 99; makefile: 5
file content (771 lines) | stat: -rw-r--r-- 20,341 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
#include <assert.h>
#include <stdint.h>
#include <string.h>

#include "cpusupport.h"
#include "insecure_memzero.h"
#include "sha256_arm.h"
#include "sha256_shani.h"
#include "sha256_sse2.h"
#include "sysendian.h"
#include "warnp.h"

#include "sha256.h"

#if defined(CPUSUPPORT_X86_SHANI) && defined(CPUSUPPORT_X86_SSSE3) ||	\
    defined(CPUSUPPORT_X86_SSE2) ||					\
    defined(CPUSUPPORT_ARM_SHA256)
#define HWACCEL

static enum {
	HW_SOFTWARE = 0,
#if defined(CPUSUPPORT_X86_SHANI) && defined(CPUSUPPORT_X86_SSSE3)
	HW_X86_SHANI,
#endif
#if defined(CPUSUPPORT_X86_SSE2)
	HW_X86_SSE2,
#endif
#if defined(CPUSUPPORT_ARM_SHA256)
	HW_ARM_SHA256,
#endif
	HW_UNSET
} hwaccel = HW_UNSET;
#endif

#ifdef _MSC_VER
static void SHA256_Transform(uint32_t state[8],
    const uint8_t block[64], uint32_t W[64],
    uint32_t S[8]);
#elif POSIXFAIL_ABSTRACT_DECLARATOR
static void SHA256_Transform(uint32_t state[static restrict 8],
    const uint8_t block[static restrict 64], uint32_t W[static restrict 64],
    uint32_t S[static restrict 8]);
#else
static void SHA256_Transform(uint32_t[static restrict 8],
    const uint8_t[static restrict 64], uint32_t[static restrict 64],
    uint32_t[static restrict 8]);
#endif

/*
 * Encode a length len/4 vector of (uint32_t) into a length len vector of
 * (uint8_t) in big-endian form.  Assumes len is a multiple of 4.
 */
static void
be32enc_vect(uint8_t * dst, const uint32_t * src, size_t len)
{
	size_t i;

	/* Sanity-check. */
	assert(len % 4 == 0);

	/* Encode vector, one word at a time. */
	for (i = 0; i < len / 4; i++)
		be32enc(dst + i * 4, src[i]);
}

/*
 * Decode a big-endian length len vector of (uint8_t) into a length
 * len/4 vector of (uint32_t).  Assumes len is a multiple of 4.
 */
static void
be32dec_vect(uint32_t * dst, const uint8_t * src, size_t len)
{
	size_t i;

	/* Sanity-check. */
	assert(len % 4 == 0);

	/* Decode vector, one word at a time. */
	for (i = 0; i < len / 4; i++)
		dst[i] = be32dec(src + i * 4);
}

/* SHA256 round constants. */
static const uint32_t Krnd[64] = {
	0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5,
	0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5,
	0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3,
	0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174,
	0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc,
	0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da,
	0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7,
	0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967,
	0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13,
	0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85,
	0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3,
	0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070,
	0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5,
	0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3,
	0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208,
	0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2
};

/* Magic initialization constants. */
static const uint32_t initial_state[8] = {
	0x6A09E667, 0xBB67AE85, 0x3C6EF372, 0xA54FF53A,
	0x510E527F, 0x9B05688C, 0x1F83D9AB, 0x5BE0CD19
};

#ifdef HWACCEL
#if defined(CPUSUPPORT_X86_SHANI) && defined(CPUSUPPORT_X86_SSSE3)
/* Shim so that we can test SHA256_Transform_shani() in the standard manner. */
#ifdef _MSC_VER
static void
SHA256_Transform_shani_with_W_S(uint32_t state[8],
    const uint8_t block[64], uint32_t W[64],
    uint32_t S[8])
#else
static void
SHA256_Transform_shani_with_W_S(uint32_t state[static restrict 8],
    const uint8_t block[static restrict 64], uint32_t W[static restrict 64],
    uint32_t S[static restrict 8])
#endif
{

	(void)W; /* UNUSED */
	(void)S; /* UNUSED */

	SHA256_Transform_shani(state, block);
}
#endif
#if defined(CPUSUPPORT_ARM_SHA256)
/* Shim so that we can test SHA256_Transform_arm() in the standard manner. */
#ifdef _MSC_VER
static void
SHA256_Transform_arm_with_W_S(uint32_t state[8],
    const uint8_t block[64], uint32_t W[64],
    uint32_t S[8])
#else
static void
SHA256_Transform_arm_with_W_S(uint32_t state[static restrict 8],
    const uint8_t block[static restrict 64], uint32_t W[static restrict 64],
    uint32_t S[static restrict 8])
#endif
{

	(void)W; /* UNUSED */
	(void)S; /* UNUSED */

	SHA256_Transform_arm(state, block);
}
#endif

/*
 * Test whether software and hardware extensions transform code produce the
 * same results.  Must be called with (hwaccel == HW_SOFTWARE).
 */
#ifdef _MSC_VER
static int
hwtest(const uint32_t state[8],
    const uint8_t block[64],
    uint32_t W[64], uint32_t S[8],
    void (* func)(uint32_t state[8],
    const uint8_t block[64], uint32_t W[64],
    uint32_t S[8]))
#else
static int
hwtest(const uint32_t state[static restrict 8],
    const uint8_t block[static restrict 64],
    uint32_t W[static restrict 64], uint32_t S[static restrict 8],
    void (* func)(uint32_t state[static restrict 8],
    const uint8_t block[static restrict 64], uint32_t W[static restrict 64],
    uint32_t S[static restrict 8]))
#endif
{
	uint32_t state_sw[8];
	uint32_t state_hw[8];

	/* Software transform. */
	memcpy(state_sw, state, sizeof(state_sw));
	SHA256_Transform(state_sw, block, W, S);

	/* Hardware transform. */
	memcpy(state_hw, state, sizeof(state_hw));
	func(state_hw, block, W, S);

	/* Do the results match? */
	return (memcmp(state_sw, state_hw, sizeof(state_sw)));
}

/* Which type of hardware acceleration should we use, if any? */
static void
hwaccel_init(void)
{
	uint32_t W[64];
	uint32_t S[8];
	uint8_t block[64];
	uint8_t i;

	/* If we've already set hwaccel, we're finished. */
	if (hwaccel != HW_UNSET)
		return;

	/* Default to software. */
	hwaccel = HW_SOFTWARE;

	/* Test case: Hash 0x00 0x01 0x02 ... 0x3f. */
	for (i = 0; i < 64; i++)
		block[i] = i;

#if defined(CPUSUPPORT_X86_SHANI) && defined(CPUSUPPORT_X86_SSSE3)
	CPUSUPPORT_VALIDATE(hwaccel, HW_X86_SHANI,
	    cpusupport_x86_shani() && cpusupport_x86_ssse3(),
	    hwtest(initial_state, block, W, S,
		SHA256_Transform_shani_with_W_S));
#endif
#if defined(CPUSUPPORT_X86_SSE2)
	CPUSUPPORT_VALIDATE(hwaccel, HW_X86_SSE2, cpusupport_x86_sse2(),
	    hwtest(initial_state, block, W, S, SHA256_Transform_sse2));
#endif
#if defined(CPUSUPPORT_ARM_SHA256)
	CPUSUPPORT_VALIDATE(hwaccel, HW_ARM_SHA256, cpusupport_arm_sha256(),
	    hwtest(initial_state, block, W, S, SHA256_Transform_arm_with_W_S));
#endif
}
#endif /* HWACCEL */

/* Elementary functions used by SHA256 */
#define Ch(x, y, z)	((x & (y ^ z)) ^ z)
#define Maj(x, y, z)	((x & (y | z)) | (y & z))
#define SHR(x, n)	(x >> n)
#define ROTR(x, n)	((x >> n) | (x << (32 - n)))
#define S0(x)		(ROTR(x, 2) ^ ROTR(x, 13) ^ ROTR(x, 22))
#define S1(x)		(ROTR(x, 6) ^ ROTR(x, 11) ^ ROTR(x, 25))
#define s0(x)		(ROTR(x, 7) ^ ROTR(x, 18) ^ SHR(x, 3))
#define s1(x)		(ROTR(x, 17) ^ ROTR(x, 19) ^ SHR(x, 10))

/* SHA256 round function */
#define RND(a, b, c, d, e, f, g, h, k)			\
	h += S1(e) + Ch(e, f, g) + k;			\
	d += h;						\
	h += S0(a) + Maj(a, b, c)

/* Adjusted round function for rotating state */
#define RNDr(S, W, i, ii)			\
	RND(S[(64 - i) % 8], S[(65 - i) % 8],	\
	    S[(66 - i) % 8], S[(67 - i) % 8],	\
	    S[(68 - i) % 8], S[(69 - i) % 8],	\
	    S[(70 - i) % 8], S[(71 - i) % 8],	\
	    W[i + ii] + Krnd[i + ii])

/* Message schedule computation */
#define MSCH(W, ii, i)				\
	W[i + ii + 16] = s1(W[i + ii + 14]) + W[i + ii + 9] + s0(W[i + ii + 1]) + W[i + ii]

/*
 * SHA256 block compression function.  The 256-bit state is transformed via
 * the 512-bit input block to produce a new state.  The arrays W and S may be
 * filled with sensitive data, and should be sanitized by the callee.
 */
#ifdef _MSC_VER
static void
SHA256_Transform(uint32_t state[8],
    const uint8_t block[64], uint32_t W[64], uint32_t S[8])
#else
static void
SHA256_Transform(uint32_t state[static restrict 8],
    const uint8_t block[static restrict 64],
    uint32_t W[static restrict 64], uint32_t S[static restrict 8])
#endif
{
	int i;

#ifdef HWACCEL

#if defined(__GNUC__) && defined(__aarch64__)
	/*
	 * We require that SHA256_Init() is called before SHA256_Transform(),
	 * but the compiler has no way of knowing that.  This assert adds a
	 * significant speed boost for gcc on 64-bit ARM, and a minor penalty
	 * on other systems & compilers.
	 */
	assert(hwaccel != HW_UNSET);
#endif

	switch (hwaccel) {
#if defined(CPUSUPPORT_X86_SHANI) && defined(CPUSUPPORT_X86_SSSE3)
	case HW_X86_SHANI:
		SHA256_Transform_shani(state, block);
		return;
#endif
#if defined(CPUSUPPORT_X86_SSE2)
	case HW_X86_SSE2:
		SHA256_Transform_sse2(state, block, W, S);
		return;
#endif
#if defined(CPUSUPPORT_ARM_SHA256)
	case HW_ARM_SHA256:
		SHA256_Transform_arm(state, block);
		return;
#endif
	case HW_SOFTWARE:
	case HW_UNSET:
		break;
	}
#endif /* HWACCEL */

	/* 1. Prepare the first part of the message schedule W. */
	be32dec_vect(W, block, 64);

	/* 2. Initialize working variables. */
	memcpy(S, state, 32);

	/* 3. Mix. */
	for (i = 0; i < 64; i += 16) {
		RNDr(S, W, 0, i);
		RNDr(S, W, 1, i);
		RNDr(S, W, 2, i);
		RNDr(S, W, 3, i);
		RNDr(S, W, 4, i);
		RNDr(S, W, 5, i);
		RNDr(S, W, 6, i);
		RNDr(S, W, 7, i);
		RNDr(S, W, 8, i);
		RNDr(S, W, 9, i);
		RNDr(S, W, 10, i);
		RNDr(S, W, 11, i);
		RNDr(S, W, 12, i);
		RNDr(S, W, 13, i);
		RNDr(S, W, 14, i);
		RNDr(S, W, 15, i);

		if (i == 48)
			break;
		MSCH(W, 0, i);
		MSCH(W, 1, i);
		MSCH(W, 2, i);
		MSCH(W, 3, i);
		MSCH(W, 4, i);
		MSCH(W, 5, i);
		MSCH(W, 6, i);
		MSCH(W, 7, i);
		MSCH(W, 8, i);
		MSCH(W, 9, i);
		MSCH(W, 10, i);
		MSCH(W, 11, i);
		MSCH(W, 12, i);
		MSCH(W, 13, i);
		MSCH(W, 14, i);
		MSCH(W, 15, i);
	}

	/* 4. Mix local working variables into global state. */
	for (i = 0; i < 8; i++)
		state[i] += S[i];
}

static const uint8_t PAD[64] = {
	0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
	0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
	0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
	0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
};

/* Add padding and terminating bit-count. */
#ifdef _MSC_VER
static void
SHA256_Pad(SHA256_CTX * ctx, uint32_t tmp32[72])
#else
static void
SHA256_Pad(SHA256_CTX * ctx, uint32_t tmp32[static restrict 72])
#endif
{
	size_t r;

	/* Figure out how many bytes we have buffered. */
	r = (ctx->count >> 3) & 0x3f;

	/* Pad to 56 mod 64, transforming if we finish a block en route. */
	if (r < 56) {
		/* Pad to 56 mod 64. */
		memcpy(&ctx->buf[r], PAD, 56 - r);
	} else {
		/* Finish the current block and mix. */
		memcpy(&ctx->buf[r], PAD, 64 - r);
		SHA256_Transform(ctx->state, ctx->buf, &tmp32[0], &tmp32[64]);

		/* The start of the final block is all zeroes. */
		memset(&ctx->buf[0], 0, 56);
	}

	/* Add the terminating bit-count. */
	be64enc(&ctx->buf[56], ctx->count);

	/* Mix in the final block. */
	SHA256_Transform(ctx->state, ctx->buf, &tmp32[0], &tmp32[64]);
}

/**
 * SHA256_Init(ctx):
 * Initialize the SHA256 context ${ctx}.
 */
void
SHA256_Init(SHA256_CTX * ctx)
{

	/* Zero bits processed so far. */
	ctx->count = 0;

	/* Initialize state. */
	memcpy(ctx->state, initial_state, sizeof(initial_state));

#ifdef HWACCEL
	/* Ensure that we've chosen the type of hardware acceleration. */
	hwaccel_init();
#endif
}

/**
 * SHA256_Update(ctx, in, len):
 * Input ${len} bytes from ${in} into the SHA256 context ${ctx}.
 */
#ifdef _MSC_VER
static void
SHA256_Update_internal(SHA256_CTX * ctx, const void * in, size_t len,
    uint32_t tmp32[72])
#else
static void
SHA256_Update_internal(SHA256_CTX * ctx, const void * in, size_t len,
    uint32_t tmp32[static restrict 72])
#endif
{
	uint32_t r;
	const uint8_t * src = in;

	/* Return immediately if we have nothing to do. */
	if (len == 0)
		return;

	/* Number of bytes left in the buffer from previous updates. */
	r = (ctx->count >> 3) & 0x3f;

	/* Update number of bits. */
	ctx->count += (uint64_t)(len) << 3;

	/* Handle the case where we don't need to perform any transforms. */
	if (len < 64 - r) {
		memcpy(&ctx->buf[r], src, len);
		return;
	}

	/* Finish the current block. */
	memcpy(&ctx->buf[r], src, 64 - r);
	SHA256_Transform(ctx->state, ctx->buf, &tmp32[0], &tmp32[64]);
	src += 64 - r;
	len -= 64 - r;

	/* Perform complete blocks. */
	while (len >= 64) {
		SHA256_Transform(ctx->state, src, &tmp32[0], &tmp32[64]);
		src += 64;
		len -= 64;
	}

	/* Copy left over data into buffer. */
	memcpy(ctx->buf, src, len);
}

/* Wrapper function for intermediate-values sanitization. */
void
SHA256_Update(SHA256_CTX * ctx, const void * in, size_t len)
{
	uint32_t tmp32[72];

	/* Call the real function. */
	SHA256_Update_internal(ctx, in, len, tmp32);

	/* Clean the stack. */
	insecure_memzero(tmp32, sizeof(uint32_t) * 72);
}

/**
 * SHA256_Final(digest, ctx):
 * Output the SHA256 hash of the data input to the context ${ctx} into the
 * buffer ${digest}, and clear the context state.
 */
#ifdef _MSC_VER
static void
SHA256_Final_internal(uint8_t digest[32], SHA256_CTX * ctx,
    uint32_t tmp32[72])
#else
static void
SHA256_Final_internal(uint8_t digest[32], SHA256_CTX * ctx,
    uint32_t tmp32[static restrict 72])
#endif
{

	/* Add padding. */
	SHA256_Pad(ctx, tmp32);

	/* Write the hash. */
	be32enc_vect(digest, ctx->state, 32);
}

/* Wrapper function for intermediate-values sanitization. */
void
SHA256_Final(uint8_t digest[32], SHA256_CTX * ctx)
{
	uint32_t tmp32[72];

	/* Call the real function. */
	SHA256_Final_internal(digest, ctx, tmp32);

	/* Clear the context state. */
	insecure_memzero(ctx, sizeof(SHA256_CTX));

	/* Clean the stack. */
	insecure_memzero(tmp32, sizeof(uint32_t) * 72);
}

/**
 * SHA256_Buf(in, len, digest):
 * Compute the SHA256 hash of ${len} bytes from ${in} and write it to ${digest}.
 */
void
SHA256_Buf(const void * in, size_t len, uint8_t digest[32])
{
	SHA256_CTX ctx;
	uint32_t tmp32[72];

	SHA256_Init(&ctx);
	SHA256_Update_internal(&ctx, in, len, tmp32);
	SHA256_Final_internal(digest, &ctx, tmp32);

	/* Clean the stack. */
	insecure_memzero(&ctx, sizeof(SHA256_CTX));
	insecure_memzero(tmp32, sizeof(uint32_t) * 72);
}

/**
 * HMAC_SHA256_Init(ctx, K, Klen):
 * Initialize the HMAC-SHA256 context ${ctx} with ${Klen} bytes of key from
 * ${K}.
 */
#ifdef _MSC_VER
static void
HMAC_SHA256_Init_internal(HMAC_SHA256_CTX * ctx, const void * _k, size_t Klen,
    uint32_t tmp32[72], uint8_t pad[64],
    uint8_t khash[32])
#else
static void
HMAC_SHA256_Init_internal(HMAC_SHA256_CTX * ctx, const void * _k, size_t Klen,
    uint32_t tmp32[static restrict 72], uint8_t pad[static restrict 64],
    uint8_t khash[static restrict 32])
#endif
{
	const uint8_t * K = _k;
	size_t i;

	/* If Klen > 64, the key is really SHA256(K). */
	if (Klen > 64) {
		SHA256_Init(&ctx->ictx);
		SHA256_Update_internal(&ctx->ictx, K, Klen, tmp32);
		SHA256_Final_internal(khash, &ctx->ictx, tmp32);
		K = khash;
		Klen = 32;
	}

	/* Inner SHA256 operation is SHA256(K xor [block of 0x36] || data). */
	SHA256_Init(&ctx->ictx);
	memset(pad, 0x36, 64);
	for (i = 0; i < Klen; i++)
		pad[i] ^= K[i];
	SHA256_Update_internal(&ctx->ictx, pad, 64, tmp32);

	/* Outer SHA256 operation is SHA256(K xor [block of 0x5c] || hash). */
	SHA256_Init(&ctx->octx);
	memset(pad, 0x5c, 64);
	for (i = 0; i < Klen; i++)
		pad[i] ^= K[i];
	SHA256_Update_internal(&ctx->octx, pad, 64, tmp32);
}

/* Wrapper function for intermediate-values sanitization. */
void
HMAC_SHA256_Init(HMAC_SHA256_CTX * ctx, const void * K, size_t Klen)
{
	uint32_t tmp32[72];
	uint8_t pad[64];
	uint8_t khash[32];

	/* Call the real function. */
	HMAC_SHA256_Init_internal(ctx, K, Klen, tmp32, pad, khash);

	/* Clean the stack. */
	insecure_memzero(tmp32, sizeof(uint32_t) * 72);
	insecure_memzero(khash, 32);
	insecure_memzero(pad, 64);
}

/**
 * HMAC_SHA256_Update(ctx, in, len):
 * Input ${len} bytes from ${in} into the HMAC-SHA256 context ${ctx}.
 */
#ifdef _MSC_VER
static void
HMAC_SHA256_Update_internal(HMAC_SHA256_CTX * ctx, const void * in, size_t len,
    uint32_t tmp32[72])
#else
static void
HMAC_SHA256_Update_internal(HMAC_SHA256_CTX * ctx, const void * in, size_t len,
    uint32_t tmp32[static restrict 72])
#endif
{

	/* Feed data to the inner SHA256 operation. */
	SHA256_Update_internal(&ctx->ictx, in, len, tmp32);
}

/* Wrapper function for intermediate-values sanitization. */
void
HMAC_SHA256_Update(HMAC_SHA256_CTX * ctx, const void * in, size_t len)
{
	uint32_t tmp32[72];

	/* Call the real function. */
	HMAC_SHA256_Update_internal(ctx, in, len, tmp32);

	/* Clean the stack. */
	insecure_memzero(tmp32, sizeof(uint32_t) * 72);
}

/**
 * HMAC_SHA256_Final(digest, ctx):
 * Output the HMAC-SHA256 of the data input to the context ${ctx} into the
 * buffer ${digest}, and clear the context state.
 */
#ifdef _MSC_VER
static void
HMAC_SHA256_Final_internal(uint8_t digest[32], HMAC_SHA256_CTX * ctx,
    uint32_t tmp32[72], uint8_t ihash[32])
#else
static void
HMAC_SHA256_Final_internal(uint8_t digest[32], HMAC_SHA256_CTX * ctx,
    uint32_t tmp32[static restrict 72], uint8_t ihash[static restrict 32])
#endif
{

	/* Finish the inner SHA256 operation. */
	SHA256_Final_internal(ihash, &ctx->ictx, tmp32);

	/* Feed the inner hash to the outer SHA256 operation. */
	SHA256_Update_internal(&ctx->octx, ihash, 32, tmp32);

	/* Finish the outer SHA256 operation. */
	SHA256_Final_internal(digest, &ctx->octx, tmp32);
}

/* Wrapper function for intermediate-values sanitization. */
void
HMAC_SHA256_Final(uint8_t digest[32], HMAC_SHA256_CTX * ctx)
{
	uint32_t tmp32[72];
	uint8_t ihash[32];

	/* Call the real function. */
	HMAC_SHA256_Final_internal(digest, ctx, tmp32, ihash);

	/* Clear the context state. */
	insecure_memzero(ctx, sizeof(HMAC_SHA256_CTX));

	/* Clean the stack. */
	insecure_memzero(tmp32, sizeof(uint32_t) * 72);
	insecure_memzero(ihash, 32);
}

/**
 * HMAC_SHA256_Buf(K, Klen, in, len, digest):
 * Compute the HMAC-SHA256 of ${len} bytes from ${in} using the key ${K} of
 * length ${Klen}, and write the result to ${digest}.
 */
void
HMAC_SHA256_Buf(const void * K, size_t Klen, const void * in, size_t len,
    uint8_t digest[32])
{
	HMAC_SHA256_CTX ctx;
	uint32_t tmp32[72];
	uint8_t tmp8[96];

	HMAC_SHA256_Init_internal(&ctx, K, Klen, tmp32, &tmp8[0], &tmp8[64]);
	HMAC_SHA256_Update_internal(&ctx, in, len, tmp32);
	HMAC_SHA256_Final_internal(digest, &ctx, tmp32, &tmp8[0]);

	/* Clean the stack. */
	insecure_memzero(&ctx, sizeof(HMAC_SHA256_CTX));
	insecure_memzero(tmp32, sizeof(uint32_t) * 72);
	insecure_memzero(tmp8, 96);
}

/**
 * PBKDF2_SHA256(passwd, passwdlen, salt, saltlen, c, buf, dkLen):
 * Compute PBKDF2(passwd, salt, c, dkLen) using HMAC-SHA256 as the PRF, and
 * write the output to buf.  The value dkLen must be at most 32 * (2^32 - 1).
 */
void
PBKDF2_SHA256(const uint8_t * passwd, size_t passwdlen, const uint8_t * salt,
    size_t saltlen, uint64_t c, uint8_t * buf, size_t dkLen)
{
	HMAC_SHA256_CTX Phctx, PShctx, hctx;
	uint32_t tmp32[72];
	uint8_t tmp8[96];
	size_t i;
	uint8_t ivec[4];
	uint8_t U[32];
	uint8_t T[32];
	uint64_t j;
	int k;
	size_t clen;

#if SIZE_MAX >= (32 * UINT32_MAX)
	/* Sanity-check. */
	assert(dkLen <= 32 * (size_t)(UINT32_MAX));
#endif

	/* Compute HMAC state after processing P. */
	HMAC_SHA256_Init_internal(&Phctx, passwd, passwdlen,
	    tmp32, &tmp8[0], &tmp8[64]);

	/* Compute HMAC state after processing P and S. */
	memcpy(&PShctx, &Phctx, sizeof(HMAC_SHA256_CTX));
	HMAC_SHA256_Update_internal(&PShctx, salt, saltlen, tmp32);

	/* Iterate through the blocks. */
	for (i = 0; i * 32 < dkLen; i++) {
		/* Generate INT(i + 1). */
		be32enc(ivec, (uint32_t)(i + 1));

		/* Compute U_1 = PRF(P, S || INT(i)). */
		memcpy(&hctx, &PShctx, sizeof(HMAC_SHA256_CTX));
		HMAC_SHA256_Update_internal(&hctx, ivec, 4, tmp32);
		HMAC_SHA256_Final_internal(U, &hctx, tmp32, tmp8);

		/* T_i = U_1 ... */
		memcpy(T, U, 32);

		for (j = 2; j <= c; j++) {
			/* Compute U_j. */
			memcpy(&hctx, &Phctx, sizeof(HMAC_SHA256_CTX));
			HMAC_SHA256_Update_internal(&hctx, U, 32, tmp32);
			HMAC_SHA256_Final_internal(U, &hctx, tmp32, tmp8);

			/* ... xor U_j ... */
			for (k = 0; k < 32; k++)
				T[k] ^= U[k];
		}

		/* Copy as many bytes as necessary into buf. */
		clen = dkLen - i * 32;
		if (clen > 32)
			clen = 32;
		memcpy(&buf[i * 32], T, clen);
	}

	/* Clean the stack. */
	insecure_memzero(&Phctx, sizeof(HMAC_SHA256_CTX));
	insecure_memzero(&PShctx, sizeof(HMAC_SHA256_CTX));
	insecure_memzero(&hctx, sizeof(HMAC_SHA256_CTX));
	insecure_memzero(tmp32, sizeof(uint32_t) * 72);
	insecure_memzero(tmp8, 96);
	insecure_memzero(U, 32);
	insecure_memzero(T, 32);
}