1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
|
#include "cpusupport.h"
#ifdef CPUSUPPORT_X86_SSE2
/**
* CPUSUPPORT CFLAGS: X86_SSE2
*/
#include <assert.h>
#include <stdint.h>
#include <string.h>
#include <emmintrin.h>
#include "sha256_sse2.h"
/**
* mm_bswap_epi32(a):
* Byte-swap each 32-bit word.
*/
static inline __m128i
mm_bswap_epi32(__m128i a)
{
/* Swap bytes in each 16-bit word. */
a = _mm_or_si128(_mm_slli_epi16(a, 8), _mm_srli_epi16(a, 8));
/* Swap all 16-bit words. */
a = _mm_shufflelo_epi16(a, _MM_SHUFFLE(2, 3, 0, 1));
a = _mm_shufflehi_epi16(a, _MM_SHUFFLE(2, 3, 0, 1));
return (a);
}
/* SHA256 round constants. */
static const uint32_t Krnd[64] = {
0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5,
0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5,
0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3,
0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174,
0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc,
0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da,
0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7,
0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967,
0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13,
0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85,
0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3,
0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070,
0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5,
0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3,
0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208,
0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2
};
/* Elementary functions used by SHA256 */
#define Ch(x, y, z) ((x & (y ^ z)) ^ z)
#define Maj(x, y, z) ((x & (y | z)) | (y & z))
#define ROTR(x, n) ((x >> n) | (x << (32 - n)))
#define S0(x) (ROTR(x, 2) ^ ROTR(x, 13) ^ ROTR(x, 22))
#define S1(x) (ROTR(x, 6) ^ ROTR(x, 11) ^ ROTR(x, 25))
/* SHA256 round function */
#define RND(a, b, c, d, e, f, g, h, k) \
h += S1(e) + Ch(e, f, g) + k; \
d += h; \
h += S0(a) + Maj(a, b, c)
/* Adjusted round function for rotating state */
#define RNDr(S, W, i, ii) \
RND(S[(64 - i) % 8], S[(65 - i) % 8], \
S[(66 - i) % 8], S[(67 - i) % 8], \
S[(68 - i) % 8], S[(69 - i) % 8], \
S[(70 - i) % 8], S[(71 - i) % 8], \
W[i + ii] + Krnd[i + ii])
/* Message schedule computation */
#define SHR32(x, n) (_mm_srli_epi32(x, n))
#define ROTR32(x, n) (_mm_or_si128(SHR32(x, n), _mm_slli_epi32(x, (32-n))))
#define s0_128(x) _mm_xor_si128(_mm_xor_si128( \
ROTR32(x, 7), ROTR32(x, 18)), SHR32(x, 3))
static inline __m128i
s1_128_high(__m128i a)
{
__m128i b;
__m128i c;
/* ROTR, loading data as {B, B, A, A}; lanes 1 & 3 will be junk. */
b = _mm_shuffle_epi32(a, _MM_SHUFFLE(1, 1, 0, 0));
c = _mm_xor_si128(_mm_srli_epi64(b, 17), _mm_srli_epi64(b, 19));
/* Shift and XOR with rotated data; lanes 1 & 3 will be junk. */
c = _mm_xor_si128(c, _mm_srli_epi32(b, 10));
/* Shuffle good data back and zero unwanted lanes. */
c = _mm_shuffle_epi32(c, _MM_SHUFFLE(2, 0, 2, 0));
c = _mm_slli_si128(c, 8);
return (c);
}
static inline __m128i
s1_128_low(__m128i a)
{
__m128i b;
__m128i c;
/* ROTR, loading data as {B, B, A, A}; lanes 1 & 3 will be junk. */
b = _mm_shuffle_epi32(a, _MM_SHUFFLE(3, 3, 2, 2));
c = _mm_xor_si128(_mm_srli_epi64(b, 17), _mm_srli_epi64(b, 19));
/* Shift and XOR with rotated data; lanes 1 & 3 will be junk. */
c = _mm_xor_si128(c, _mm_srli_epi32(b, 10));
/* Shuffle good data back and zero unwanted lanes. */
c = _mm_shuffle_epi32(c, _MM_SHUFFLE(2, 0, 2, 0));
c = _mm_srli_si128(c, 8);
return (c);
}
/**
* SPAN_ONE_THREE(a, b):
* Combine the upper three words of ${a} with the lowest word of ${b}. This
* could also be thought of returning bits [159:32] of the 256-bit value
* consisting of (b[127:0] a[127:0]). In other words, set:
* dst[31:0] := a[63:32]
* dst[63:32] := a[95:64]
* dst[95:64] := a[127:96]
* dst[127:96] := b[31:0]
*/
#define SPAN_ONE_THREE(a, b) (_mm_shuffle_epi32(_mm_castps_si128( \
_mm_move_ss(_mm_castsi128_ps(a), _mm_castsi128_ps(b))), \
_MM_SHUFFLE(0, 3, 2, 1)))
/**
* MSG4(X0, X1, X2, X3):
* Calculate the next four values of the message schedule. If we define
* ${W[j]} as the first unknown value in the message schedule, then the input
* arguments are:
* X0 = W[j - 16] : W[j - 13]
* X1 = W[j - 12] : W[j - 9]
* X2 = W[j - 8] : W[j - 5]
* X3 = W[j - 4] : W[j - 1]
* This function therefore calculates:
* X4 = W[j + 0] : W[j + 3]
*/
static inline __m128i
MSG4(__m128i X0, __m128i X1, __m128i X2, __m128i X3)
{
__m128i X4;
__m128i Xj_minus_seven, Xj_minus_fifteen;
/* Set up variables which span X values. */
Xj_minus_seven = SPAN_ONE_THREE(X2, X3);
Xj_minus_fifteen = SPAN_ONE_THREE(X0, X1);
/* Begin computing X4. */
X4 = _mm_add_epi32(X0, Xj_minus_seven);
X4 = _mm_add_epi32(X4, s0_128(Xj_minus_fifteen));
/* First half of s1. */
X4 = _mm_add_epi32(X4, s1_128_low(X3));
/* Second half of s1; this depends on the above value of X4. */
X4 = _mm_add_epi32(X4, s1_128_high(X4));
return (X4);
}
/**
* SHA256_Transform_sse2(state, block, W, S):
* Compute the SHA256 block compression function, transforming ${state} using
* the data in ${block}. This implementation uses x86 SSE2 instructions, and
* should only be used if _SSE2 is defined and cpusupport_x86_sse2() returns
* nonzero. The arrays W and S may be filled with sensitive data, and should
* be cleared by the callee.
*/
#ifdef POSIXFAIL_ABSTRACT_DECLARATOR
void
SHA256_Transform_sse2(uint32_t state[8], const uint8_t block[64],
uint32_t W[64], uint32_t S[8])
#else
void
SHA256_Transform_sse2(uint32_t state[static restrict 8],
const uint8_t block[static restrict 64], uint32_t W[static restrict 64],
uint32_t S[static restrict 8])
#endif
{
__m128i Y[4];
int i;
/* 1. Prepare the first part of the message schedule W. */
Y[0] = mm_bswap_epi32(_mm_loadu_si128((const __m128i *)&block[0]));
_mm_storeu_si128((__m128i *)&W[0], Y[0]);
Y[1] = mm_bswap_epi32(_mm_loadu_si128((const __m128i *)&block[16]));
_mm_storeu_si128((__m128i *)&W[4], Y[1]);
Y[2] = mm_bswap_epi32(_mm_loadu_si128((const __m128i *)&block[32]));
_mm_storeu_si128((__m128i *)&W[8], Y[2]);
Y[3] = mm_bswap_epi32(_mm_loadu_si128((const __m128i *)&block[48]));
_mm_storeu_si128((__m128i *)&W[12], Y[3]);
/* 2. Initialize working variables. */
memcpy(S, state, 32);
/* 3. Mix. */
for (i = 0; i < 64; i += 16) {
RNDr(S, W, 0, i);
RNDr(S, W, 1, i);
RNDr(S, W, 2, i);
RNDr(S, W, 3, i);
RNDr(S, W, 4, i);
RNDr(S, W, 5, i);
RNDr(S, W, 6, i);
RNDr(S, W, 7, i);
RNDr(S, W, 8, i);
RNDr(S, W, 9, i);
RNDr(S, W, 10, i);
RNDr(S, W, 11, i);
RNDr(S, W, 12, i);
RNDr(S, W, 13, i);
RNDr(S, W, 14, i);
RNDr(S, W, 15, i);
if (i == 48)
break;
Y[0] = MSG4(Y[0], Y[1], Y[2], Y[3]);
_mm_storeu_si128((__m128i *)&W[16 + i + 0], Y[0]);
Y[1] = MSG4(Y[1], Y[2], Y[3], Y[0]);
_mm_storeu_si128((__m128i *)&W[16 + i + 4], Y[1]);
Y[2] = MSG4(Y[2], Y[3], Y[0], Y[1]);
_mm_storeu_si128((__m128i *)&W[16 + i + 8], Y[2]);
Y[3] = MSG4(Y[3], Y[0], Y[1], Y[2]);
_mm_storeu_si128((__m128i *)&W[16 + i + 12], Y[3]);
}
/* 4. Mix local working variables into global state. */
for (i = 0; i < 8; i++)
state[i] += S[i];
}
#endif /* CPUSUPPORT_X86_SSE2 */
|