File: README.rst

package info (click to toggle)
python-securesystemslib 0.20.0-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye, sid
  • size: 1,008 kB
  • sloc: python: 6,362; makefile: 4
file content (390 lines) | stat: -rw-r--r-- 12,295 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
Secure Systems Library
----------------------

.. image:: https://github.com/secure-systems-lab/securesystemslib/workflows/Run%20Securesystemslib%20tests/badge.svg
   :target: https://github.com/secure-systems-lab/securesystemslib/actions?query=workflow%3A%22Run+Securesystemslib+tests%22+branch%3Amaster

.. image:: https://api.dependabot.com/badges/status?host=github&repo=secure-systems-lab/securesystemslib
   :target: https://api.dependabot.com/badges/status?host=github&repo=secure-systems-lab/securesystemslib


A library that provides cryptographic and general-purpose functions for Secure
Systems Lab projects at NYU.  The routines are general enough to be usable by
other projects.

Overview
++++++++

securesystemslib supports public-key and general-purpose cryptography, such as
`ECDSA
<https://en.wikipedia.org/wiki/Elliptic_Curve_Digital_Signature_Algorithm>`_,
`Ed25519 <http://ed25519.cr.yp.to/>`_, `RSA
<https://en.wikipedia.org/wiki/RSA_%28cryptosystem%29>`_, SHA256, SHA512, etc.
Most of the cryptographic operations are performed by the `cryptography
<https://cryptography.io/en/latest/>`_ and `PyNaCl
<https://github.com/pyca/pynacl>`_ libraries, but verification of Ed25519
signatures can be done in pure Python.

The `cryptography` library is used to generate keys and signatures with the
ECDSA and RSA algorithms, and perform general-purpose cryptography such as
encrypting keys.  The PyNaCl library is used to generate Ed25519 keys and
signatures.  PyNaCl is a Python binding to the Networking and Cryptography
Library.  For key storage, RSA keys may be stored in PEM or JSON format, and
Ed25519 keys in JSON format.  Generating, importing, and loading cryptographic
key files can be done with functions available in securesystemslib.

securesystemslib also provides an interface to the `GNU Privacy Guard (GPG)
<https://gnupg.org/>`_ command line tool, with functions to create RSA and DSA
signatures using private keys in a local gpg keychain; to export the
corresponding public keys in a *pythonic* format; and to verify the created
signatures using the exported keys. The latter does not require the gpg command
line tool to be installed, instead the `cryptography` library is used.

Installation
++++++++++++

::

    $ pip install securesystemslib


The default installation only supports Ed25519 keys and signatures (in pure
Python).  Support for RSA, ECDSA, and E25519 via the `cryptography` and
`PyNaCl` libraries is available by installing the `crypto` and `pynacl` extras:

::

    $ pip install securesystemslib[crypto]
    $ pip install securesystemslib[pynacl]

Usage
++++++++++++

Create RSA Keys
~~~~~~~~~~~~~~~

Note:  In the instructions below, lines that start with *>>>* denote commands
that should be entered by the reader, *#* begins the start of a comment, and
text without prepended symbols is the output of a command.

::

    >>> from securesystemslib.interface import *

    # The following function creates an RSA key pair, where the private key is
    # saved to "rsa_key1" and the public key to "rsa_key1.pub" (both saved to
    # the current working directory).  A full directory path may be specified
    # instead of saving keys to the current working directory.  If specified
    # directories do not exist, they will be created.
    >>> generate_and_write_rsa_keypair(
            password="password", filepath="rsa_key1", bits=2048)

    # If the key length is unspecified, it defaults to 3072 bits. A length of
    # less than 2048 bits raises an exception. A similar function is available
    # to supply a password on the prompt. If an empty password is entered, the
    # private key is saved unencrypted.
    >>> generate_and_write_rsa_keypair_with_prompt("rsa_key2")
    enter password to encrypt private key file '/path/to/rsa_key2'
    (leave empty if key should not be encrypted):
    Confirm:


The following four key files should now exist:

1.  rsa_key1
2.  rsa_key1.pub
3.  rsa_key2
4.  rsa_key2.pub

Import RSA Keys
~~~~~~~~~~~~~~~

::

    # Continuing from the previous section . . .

    # Import an existing public key.
    >>> public_rsa_key1 = import_rsa_publickey_from_file("rsa_key1.pub")

    # Import an existing private key.  If your private key is encrypted,
    # which it should be, you either have to pass a 'password' or enter one
    # on the prompt.
    >>> private_rsa_key1 = import_rsa_privatekey_from_file("rsa_key1", password="some passphrase")
    # OR:
    >>> private_rsa_key1 = import_rsa_privatekey_from_file("rsa_key1", prompt=True)
    enter password to decrypt private key file '/path/to/rsa_key1'
    (leave empty if key not encrypted):

**import_rsa_privatekey_from_file()** raises a
*securesystemslib.exceptions.CryptoError* exception if the key / password is
invalid:

::

    securesystemslib.exceptions.CryptoError: RSA (public, private) tuple cannot
    be generated from the encrypted PEM string: Bad decrypt. Incorrect password?

Note: The specific message provided by the exception might differ depending on
which cryptography library is used.

Create and Import Ed25519 Keys
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

::

    # Continuing from the previous section . . .

    # The same generation and import functions as for rsa keys exist for ed25519
    >>> generate_and_write_ed25519_keypair_with_prompt('ed25519_key')
    enter password to encrypt private key file '/path/to/ed25519_key'
    (leave empty if key should not be encrypted):
    Confirm:

    # Import the Ed25519 public key just created . . .
    >>> public_ed25519_key = import_ed25519_publickey_from_file('ed25519_key.pub')

    # and its corresponding private key.
    >>> private_ed25519_key = import_ed25519_privatekey_from_file('ed25519_key', prompt=True)
    enter password to decrypt private key file '/path/to/ed25519_key'
    (leave empty if key should not be encrypted):

Create and Import ECDSA Keys
~~~~~~~~~~~~~~~~~~~~~~~~~~~~

::

    # The same generation and import functions as for rsa and ed25519 keys
    # exist for ecdsa
    >>> generate_and_write_ecdsa_keypair_with_prompt('ecdsa_key')
    enter password to decrypt private key file '/path/to/ecdsa_key'
    (leave empty if key should not be encrypted):

    >>> public_ecdsa_key = import_ecdsa_publickey_from_file('ecdsa_key.pub')
    >>> private_ecdsa_key = import_ecdsa_privatekey_from_file('ecdsa_key', prompt=True)
    enter password to decrypt private key file '/path/to/ecdsa_key'
    (leave empty if key should not be encrypted):

Generate ECDSA, Ed25519, and RSA Signatures
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Note: Users may also access the crypto functions directly to perform
cryptographic operations.

::

    >>> from securesystemslib.keys import *

    >>> data = b'The quick brown fox jumps over the lazy dog'
    >>> ed25519_key = generate_ed25519_key()
    >>> signature = create_signature(ed25519_key, data)
    >>> rsa_key = generate_rsa_key(2048)
    >>> signature = create_signature(rsa_key, data)
    >>> ecdsa_key = generate_ecdsa_key()
    >>> signature = create_signature(ecdsa_key, data)


Verify ECDSA, Ed25519, and RSA Signatures
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

::

    # Continuing from the previous sections . . .

    >>> data = b'The quick brown fox jumps over the lazy dog'
    >>> ed25519_key = generate_ed25519_key()
    >>> signature = create_signature(ed25519_key, data)
    >>> verify_signature(ed25519_key, signature, data)
    True
    >>> verify_signature(ed25519_key, signature, 'bad_data')
    False
    >>> rsa_key = generate_rsa_key()
    >>> signature = create_signature(rsa_key, data)
    >>> verify_signature(rsa_key, signature, data)
    True
    >>> ecdsa_key = generate_ecdsa_key()
    >>> signature = create_signature(ecdsa_key, data)
    >>> verify_signature(ecdsa_key, signature, data)
    True


Miscellaneous functions
~~~~~~~~~~~~~~~~~~~~~~~

**create_rsa_encrypted_pem()**

::

    # Continuing from the previous sections . . .

    >>> rsa_key = generate_rsa_key()
    >>> private = rsa_key['keyval']['private']
    >>> passphrase = 'secret'
    >>> encrypted_pem = create_rsa_encrypted_pem(private, passphrase)

**import_rsakey_from_public_pem()**

::

    >>> rsa_key = generate_rsa_key()
    >>> public = rsa_key['keyval']['public']
    >>> rsa_key2 = import_rsakey_from_public_pem(public)


**import_rsakey_from_pem()**

::

    >>> rsa_key = generate_rsa_key()
    >>> public = rsa_key['keyval']['public']
    >>> private = rsa_key['keyval']['private']
    >>> rsa_key2 = import_rsakey_from_pem(public)
    >>> rsa_key3 = import_rsakey_from_pem(private)


**extract_pem()**

::

    >>> rsa_key = generate_rsa_key()
    >>> private_pem = extract_pem(rsakey['keyval']['private'], private_pem=True)
    >>> public_pem = extract_pem(rsakey['keyval']['public'], private_pem=False)


**encrypt_key()**

::

    >>> ed25519_key = generate_ed25519_key()
    >>> password = 'secret'
    >>> encrypted_key = encrypt_key(ed25519_key, password)


**decrypt_key()**

::

    >>> ed25519_key = generate_ed25519_key()
    >>> password = 'secret'
    >>> encrypted_key = encrypt_key(ed25519_key, password)
    >>> decrypted_key = decrypt_key(encrypted_key.encode('utf-8'), password)
    >>> decrypted_key == ed25519_key
    True


**create_rsa_encrypted_pem()**

::

  >>> rsa_key = generate_rsa_key()
  >>> private = rsa_key['keyval']['private']
  >>> passphrase = 'secret'
  >>> encrypted_pem = create_rsa_encrypted_pem(private, passphrase)


**is_pem_public()**

::

    >>> rsa_key = generate_rsa_key()
    >>> public = rsa_key['keyval']['public']
    >>> private = rsa_key['keyval']['private']
    >>> is_pem_public(public)
    True
    >>> is_pem_public(private)
    False


**is_pem_private()**

::

    >>> rsa_key = generate_rsa_key()
    >>> private = rsa_key['keyval']['private']
    >>> public = rsa_key['keyval']['public']
    >>> is_pem_private(private)
    True
    >>> is_pem_private(public)
    False


**import_ecdsakey_from_private_pem()**

::

    >>> ecdsa_key = generate_ecdsa_key()
    >>> private_pem = ecdsa_key['keyval']['private']
    >>> ecdsa_key2 = import_ecdsakey_from_private_pem(private_pem)


**import_ecdsakey_from_public_pem()**

::

    >>> ecdsa_key = generate_ecdsa_key()
    >>> public = ecdsa_key['keyval']['public']
    >>> ecdsa_key2 = import_ecdsakey_from_public_pem(public)


**import_ecdsakey_from_pem()**

::

    >>> ecdsa_key = generate_ecdsa_key()
    >>> private_pem = ecdsa_key['keyval']['private']
    >>> ecdsa_key2 = import_ecdsakey_from_pem(private_pem)
    >>> public_pem = ecdsa_key['keyval']['public']
    >>> ecdsa_key2 = import_ecdsakey_from_pem(public_pem)




GnuPG interface
~~~~~~~~~~~~~~~

Signature creation and public key export requires installation of the `gpg` or
`gpg2` command line tool, which may be downloaded from
`https://gnupg.org/download <https://gnupg.org/>`_.
It is also needed to generate the supported RSA or DSA signing keys (see `gpg` man
pages for detailed instructions). Sample keys are available in a test keyring
at `tests/gpg_keyrings/rsa`, which may be passed to the signing and export
functions using the `homedir` argument (if not passed the default keyring is
used). The GPG client to use can be also specified with the help of environment
variable `GNUPG`.

::

    >>> import securesystemslib.gpg.functions as gpg

    >>> data = b"The quick brown fox jumps over the lazy dog"

    >>> signing_key_id = "8465A1E2E0FB2B40ADB2478E18FB3F537E0C8A17"
    >>> keyring = "tests/gpg_keyrings/rsa"

    >>> signature = gpg.create_signature(data, signing_key_id, homedir=keyring)
    >>> public_key = gpg.export_pubkey(non_default_signing_key, homedir=keyring)

    >>> gpg.verify_signature(signature, public_key, data)
    True

Testing
++++++++++++

Testing is done with `tox <https://testrun.org/tox/>`_, which can be installed with pip:
::

    $ pip install tox


Secure Systems Library supports multiple versions of Python.
For that reason, the project is tested against multiple virtual environments with different Python versions.
If you run
::

$ tox

this will run all tests creating virtual environments for all python versions described in the *tox.ini* file.

If you want to run the tests against specific python version, for example Python 3.7, you will use:
::

$ tox -e py37