1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531
|
from __future__ import print_function
from collections import defaultdict
import operator
import os
import os.path as op
import copy
from progressbar import ProgressBar
import math
import seqcluster.libs.logger as mylog
from seqcluster.libs import utils
from seqcluster.libs import parameters
from seqcluster.libs.classes import *
from seqcluster.libs.mystats import up_threshold
from seqcluster.libs.bayes import decide_by_bayes
logger = mylog.getLogger(__name__)
REMOVED = 0
CONFLICT = 0
def _get_seqs_from_cluster(seqs, seen):
"""
Returns the sequences that are already part of the cluster
:param seqs: list of sequences ids
:param clus_id: dict of sequences ids that are part of a cluster
:returns:
* :code:`already_in`list of cluster id that contained some of the sequences
* :code:`not_in`list of sequences that don't belong to any cluster yet
"""
already_in = set()
not_in = []
already_in = [e for e in map(seen.get, seqs)]
# if isinstance(already_in, list):
already_in = filter(None, already_in)
not_in = set(seqs) - set(seen.keys())
return list(set(already_in)), list(not_in)
def reduceloci(clus_obj, path):
"""reduce number of loci a cluster has
:param clus_obj: cluster object object
:param path: output path
"""
filtered = {}
n_cluster = 0
large = 0
current = clus_obj.clusid
logger.info("Number of loci: %s" % len(clus_obj.loci.keys()))
avg_loci_cluster = len(clus_obj.loci.keys())/len(clus_obj.seq)
if avg_loci_cluster > 0.5:
logger.warning("The avg number of loci by sequences is close to 0.5: %s",
avg_loci_cluster)
logger.warning("This could mean you have sequences over the genome, rare in "
"a typical small RNA data. This can cause errors during the execution "
"or long computing time.")
bar = ProgressBar(maxval=len(current)).start()
bar.update(0)
for itern, idmc in enumerate(current):
bar.update(itern)
logger.debug("_reduceloci: cluster %s" % idmc)
c = copy.deepcopy(list(current[idmc]))
n_loci = len(c)
if n_loci < 100:
filtered, n_cluster = _iter_loci(c, clus_obj.clus, (clus_obj.loci, clus_obj.seq), filtered, n_cluster)
else:
large += 1
n_cluster += 1
_write_cluster(c, clus_obj.clus, clus_obj.loci, n_cluster, path)
filtered[n_cluster] = _add_complete_cluster(n_cluster, c, clus_obj.clus)
clus_obj.clus = filtered
seqs = 0
for idc in filtered:
seqs += len(filtered[idc].idmembers)
logger.info("Seqs in clusters %s" % (seqs))
logger.info("Clusters too long to be analyzed: %s" % large)
logger.info("Number of clusters removed because low number of reads: %s" % REMOVED)
logger.info("Number of clusters with conflicts: %s" % CONFLICT)
return clus_obj
def _write_cluster(metacluster, cluster, loci, idx, path):
"""
For complex meta-clusters, write all the loci for further debug
"""
out_file = op.join(path, 'log', str(idx) + '.bed')
with utils.safe_run(out_file):
with open(out_file, 'w') as out_handle:
for idc in metacluster:
for idl in cluster[idc].loci2seq:
pos = [e for e in loci[idl].list()]
print("\t".join(pos[:4] + [str(len(cluster[idc].loci2seq[idl]))] + [pos[-1]]), file=out_handle, end="")
def _add_complete_cluster(idx, meta, clusters):
logger.debug("Not resolving cluster %s, too many loci" % (idx))
clus = {}
[clus.update(clusters[idc].locilen) for idc in meta]
locilen_sorted = sorted(iter(clus.items()), key=operator.itemgetter(1), reverse=True)
maxidl = locilen_sorted[0][0]
c = cluster(idx)
for idc in meta:
c.add_id_member(clusters[idc].idmembers.keys(), maxidl)
c.id = idx
c.toomany = len(meta)
return c
def _iter_loci(meta, clusters, s2p, filtered, n_cluster):
"""
Go through all locus and decide if they are part
of the same TU or not.
:param idx: int cluster id
:param s2p: dict with [loci].coverage[start] = # of sequences there
:param filtered: dict with clusters object
:param n_cluster: int cluster id
:return:
* filtered: dict of cluster objects
* n_cluster: int cluster id
"""
global CONFLICT
loci = dict(zip(meta, [clusters[idc] for idc in meta]))
n_loci = len(meta)
n_loci_prev = n_loci + 1
cicle = 0
internal_cluster = {}
if n_loci == 1:
n_cluster += 1
filtered[n_cluster] = clusters[meta[0]]
filtered[n_cluster].update(id=n_cluster)
filtered[n_cluster].set_freq(s2p[1])
while n_loci < n_loci_prev and n_loci != 1:
n_loci_prev = n_loci
cicle += 1
if (cicle % 1) == 0:
logger.debug("_iter_loci:number of cicle: %s with n_loci %s" % (cicle, n_loci))
loci_similarity = _calculate_similarity(loci)
internal_cluster = _merge_similar(loci, loci_similarity)
n_loci = len(internal_cluster)
loci = internal_cluster
logger.debug("_iter_loci: n_loci %s" % n_loci)
if n_loci > 1:
n_internal_cluster = sorted(internal_cluster.keys(), reverse=True)[0]
CONFLICT += 1
internal_cluster = _solve_conflict(internal_cluster, s2p, n_internal_cluster)
internal_cluster = _clean_cluster(internal_cluster)
for idc in internal_cluster:
n_cluster += 1
logger.debug("_iter_loci: add to filtered %s" % n_cluster)
filtered[n_cluster] = internal_cluster[idc]
filtered[n_cluster].id = n_cluster
filtered[n_cluster].update(id=n_cluster)
filtered[n_cluster].set_freq(s2p[1])
logger.debug("_iter_loci: filtered %s" % filtered.keys())
# for new_c in internal_cluster.values():
# [logger.note("%s %s %s %s" % (meta, new_c.id, idl, len(new_c.loci2seq[idl]))) for idl in new_c.loci2seq]
return filtered, n_cluster
# def _remove_loci(ci, idl):
# for (idl, lenl) in locilen_sorted:
# logger.debug("_remove_loci:remove locus %s with len %s:" % (idl, lenl))
# c.loci2seq.pop(idl, "None")
# c.locilen.pop(idl, "None")
def _convert_to_clusters(c):
"""Return 1 cluster per loci"""
new_dict = {}
n_cluster = 0
logger.debug("_convert_to_cluster: loci %s" % c.loci2seq.keys())
for idl in c.loci2seq:
n_cluster += 1
new_c = cluster(n_cluster)
#new_c.id_prev = c.id
new_c.loci2seq[idl] = c.loci2seq[idl]
new_dict[n_cluster] = new_c
logger.debug("_convert_to_cluster: new ids %s" % new_dict.keys())
return new_dict
def _calculate_similarity(c):
"""Get a similarity matrix of % of shared sequence
:param c: cluster object
:return ma: similarity matrix
"""
ma = {}
for idc in c:
set1 = _get_seqs(c[idc])
[ma.update({(idc, idc2): _common(set1, _get_seqs(c[idc2]), idc, idc2)}) for idc2 in c if idc != idc2 and (idc2, idc) not in ma]
# logger.debug("_calculate_similarity_ %s" % ma)
return ma
def _get_seqs(list_idl):
"""get all sequences in a cluster knowing loci"""
seqs = set()
for idl in list_idl.loci2seq:
# logger.debug("_get_seqs_: loci %s" % idl)
[seqs.add(s) for s in list_idl.loci2seq[idl]]
# logger.debug("_get_seqs_: %s" % len(seqs))
return seqs
def _common(s1, s2, i1, i2):
"""calculate the common % percentage of sequences"""
c = len(set(s1).intersection(s2))
t = min(len(s1), len(s2))
pct = 1.0 * c / t * t
is_gt = up_threshold(pct, t * 1.0, parameters.similar)
logger.debug("_common: pct %s of clusters:%s %s = %s" % (1.0 * c / t, i1, i2, is_gt))
if pct < parameters.similar and is_gt and pct > 0:
pct = parameters.similar
return pct / t
def _is_consistent(pairs, common, clus_seen, loci_similarity):
"""
Check if loci shared that match sequences with all
clusters seen until now.
"""
all_true1 = all([all([common and loci_similarity[(p, c)] > parameters.similar for p in pairs if (p, c) in loci_similarity]) for c in clus_seen])
all_true2 = all([all([common and loci_similarity[(c, p)] > parameters.similar for p in pairs if (c, p) in loci_similarity]) for c in clus_seen])
return all_true1 * all_true2
def _merge_similar(loci, loci_similarity):
"""
Internal function to reduce loci complexity
:param loci: class cluster
:param locilen_sorted: list of loci sorted by size
:return
c: updated class cluster
"""
n_cluster = 0
internal_cluster = {}
clus_seen = {}
loci_sorted = sorted(iter(loci_similarity.items()), key=operator.itemgetter(1), reverse=True)
for pairs, sim in loci_sorted:
common = sim > parameters.similar
n_cluster += 1
logger.debug("_merge_similar:try new cluster %s" % n_cluster)
new_c = cluster(n_cluster)
p_seen, p_unseen = [], []
size = min(len(_get_seqs(loci[pairs[0]])), len(_get_seqs(loci[pairs[1]])))
if common:
consistent = _is_consistent(pairs, common, clus_seen, loci_similarity)
logger.debug("_merge_similar: clusters seen: %s" % clus_seen)
logger.debug("_merge_similar: id %s common %s|%s total %s consistent %s" % (pairs, sim, common, size, consistent))
if not consistent:
continue
if pairs[0] in clus_seen:
p_seen.append(pairs[0])
p_unseen.append(pairs[1])
if pairs[1] in clus_seen:
p_seen.append(pairs[1])
p_unseen.append(pairs[0])
if len(p_seen) == 0:
new_c = _merge_cluster(loci[pairs[0]], new_c)
new_c = _merge_cluster(loci[pairs[1]], new_c)
[clus_seen.update({p: n_cluster}) for p in pairs]
internal_cluster[n_cluster] = new_c
if len(p_seen) == 1:
idc_seen = clus_seen[p_seen[0]]
internal_cluster[idc_seen] = _merge_cluster(loci[p_unseen[0]], internal_cluster[idc_seen])
clus_seen[p_unseen[0]] = idc_seen
else:
logger.debug("_merge_similar: id %s %s are different" % pairs)
continue
internal_cluster.update(_add_unseen(loci, clus_seen, n_cluster))
logger.debug("_merge_similar: total clus %s" %
len(internal_cluster.keys()))
return internal_cluster
def _merge_cluster(old, new):
"""merge one cluster to another"""
logger.debug("_merge_cluster: %s to %s" % (old.id, new.id))
logger.debug("_merge_cluster: add idls %s" % old.loci2seq.keys())
for idl in old.loci2seq:
# if idl in new.loci2seq:
# new.loci2seq[idl] = list(set(new.loci2seq[idl] + old.loci2seq[idl]))
# new.loci2seq[idl] = old.loci2seq[idl]
new.add_id_member(old.loci2seq[idl], idl)
return new
def _solve_conflict(list_c, s2p, n_cluster):
"""
Make sure sequences are counts once.
Resolve by most-vote or exclussion
:params list_c: dict of objects cluster
:param s2p: dict of [loci].coverage = # num of seqs
:param n_cluster: number of clusters
return dict: new set of clusters
"""
logger.debug("_solve_conflict: count once")
if parameters.decision_cluster == "bayes":
return decide_by_bayes(list_c, s2p)
loci_similarity = _calculate_similarity(list_c)
loci_similarity = sorted(iter(loci_similarity.items()), key=operator.itemgetter(1), reverse=True)
common = sum([score for p, score in loci_similarity])
while common > 0:
n_cluster += 1
logger.debug("_solve_conflict: ma %s" % loci_similarity)
pairs = loci_similarity[0][0]
score = loci_similarity[0][1]
logger.debug("_solve_conflict: common %s, new %s" % (score, n_cluster))
if parameters.decision_cluster.startswith("most-voted"):
list_c = _split_cluster_by_most_vote(list_c, pairs)
else:
list_c = _split_cluster(list_c, pairs, n_cluster)
list_c = {k: v for k, v in iter(list_c.items()) if len(v.loci2seq) > 0}
loci_similarity = _calculate_similarity(list_c)
loci_similarity = sorted(iter(loci_similarity.items()), key=operator.itemgetter(1), reverse=True)
#logger.note("%s %s" % (pairs, loci_similarity[0][1]))
common = sum([score for p, score in loci_similarity])
logger.debug("_solve_conflict: solved clusters %s" % len(list_c.keys()))
return list_c
def _split_cluster(c, pairs, n):
"""split cluster by exclussion"""
old = c[p[0]]
new = c[p[1]]
new_c = cluster(n)
common = set(_get_seqs(old)).intersection(_get_seqs(new))
for idl in old.loci2seq:
in_common = list(set(common).intersection(old.loci2seq[idl]))
if len(in_common) > 0:
logger.debug("_split_cluster: in_common %s with pair 1" % (len(in_common)))
new_c.add_id_member(in_common, idl)
old.loci2seq[idl] = list(set(old.loci2seq[idl]) - set(common))
logger.debug("_split_cluster: len old %s with pair 1" % (len(old.loci2seq)))
for idl in new.loci2seq:
in_common = list(set(common).intersection(new.loci2seq[idl]))
if len(in_common) > 0:
logger.debug("_split_cluster: in_common %s with pair 2" % (len(in_common)))
new_c.add_id_member(in_common, idl)
new.loci2seq[idl] = list(set(new.loci2seq[idl]) - set(common))
logger.debug("_split_cluster: len old %s with pair 2" % (len(new.loci2seq)))
old.update()
new.update()
old.loci2seq = {k: v for k, v in iter(old.loci2seq.items()) if len(v) > 0}
new.loci2seq = {k: v for k, v in iter(new.loci2seq.items()) if len(v) > 0}
c[n] = new
c[p[0]] = old
c[p[1]] = new
return c
def _split_cluster_by_most_vote(c, p):
"""split cluster by most-vote strategy"""
old, new = c[p[0]], c[p[1]]
old_size = _get_seqs(old)
new_size = _get_seqs(new)
logger.debug("_most_vote: size of %s with %s - %s with %s" % (old.id, len(old_size), new.id, len(new_size)))
if len(old_size) > len(new_size):
keep, remove = old, new
else:
keep, remove = new, old
common = list(set(old_size).intersection(new_size))
logger.debug("_most_vote: keep %s remove %s with common %s" % (keep.id, remove.id, len(common)))
for idl in remove.loci2seq:
if len(common) > 0:
remove.loci2seq[idl] = list(set(remove.loci2seq[idl]) - set(common))
keep.loci2seq = {k: v for k, v in iter(keep.loci2seq.items()) if len(v) > 0}
remove.loci2seq = {k: v for k, v in iter(remove.loci2seq.items()) if len(v) > 0}
keep.update()
remove.update()
c[keep.id] = keep
c[remove.id] = remove
return c
def _add_unseen(loci, clus_seen, n_cluster):
unseen = {}
for idc in loci:
if idc not in clus_seen:
n_cluster += 1
loci[idc].id = n_cluster
unseen[n_cluster] = loci[idc]
logger.debug("_add_unseen: add %s as new %s" %
(idc, n_cluster))
return unseen
def _clean_cluster(list_c):
"""
Remove cluster with less than 10 sequences and
loci with size smaller than 60%
"""
global REMOVED
init = len(list_c)
list_c = {k: v for k, v in iter(list_c.items()) if len(_get_seqs(v)) > parameters.min_seqs}
logger.debug("_clean_cluster: number of clusters %s " % len(list_c.keys()))
list_c = {k: _select_loci(v) for k, v in iter(list_c.items())}
end = len(list_c)
REMOVED += init - end
return list_c
def _select_loci(c):
"""Select only loci with most abundant sequences"""
loci_len = {k: len(v) for k, v in iter(c.loci2seq.items())}
logger.debug("_select_loci: number of loci %s" % len(c.loci2seq.keys()))
loci_len_sort = sorted(iter(loci_len.items()), key=operator.itemgetter(1), reverse=True)
max_size = loci_len_sort[0][1]
logger.debug("_select_loci: max size %s" % max_size)
loci_clean = {locus: c.loci2seq[locus] for locus, size in loci_len_sort if size > 0.8 * max_size}
c.loci2seq = loci_clean
removed = list(set(c.idmembers.keys()) - set(_get_seqs(c)))
c.add_id_member(removed, loci_len_sort[0][0])
logger.debug("_select_loci: number of loci %s after cleaning" % len(c.loci2seq.keys()))
return c
def _calculate_size_enrichment(c):
"""calculate whether there is a size
enrichment in the cluster
:param c: cluster object
"""
seqs = _get_sequences(c)
return True
def _solve_loci_deprecated(c, locilen_sorted, seen_seqs, filtered, maxseq, n_cluster):
"""internal function to reduce loci complexity
The function will read the all loci in a cluster of
sequences and will determine if all loci are part
of the same transcriptional unit(TU) by most-vote locus
or by exclusion of common sequence that are the
minority of two loci.
:param c: class cluster
:param locilen_sorted: list of loci sorted by size
:param seem_seqs: list of seen sequences
:param filtered: final TU list
:param maxseq: bigger locus
"param n_cluster: integer with index of different TU"
:return
c: updated class cluster
seen_seqs: updated list of sequences
filtered: updated dict of TUs
n_cluster: updated int with current index of TUs
"""
first_run = 0
seen_seqs = list()
n_cluster += 1
logger.debug("_solve_loci:new cluster %s" % n_cluster)
new_c = cluster(n_cluster)
for idl, lenl in locilen_sorted:
locus_seqs = c.loci2seq[idl]
if first_run == 0:
seen_seqs = locus_seqs
first_run = 1
first_idl = idl
intersect = list(set(seen_seqs).intersection(locus_seqs))
common = 0
if intersect:
common = len(intersect)*1.0/min(len(seen_seqs), len(locus_seqs))
logger.debug("_sole_loci:id %s idl %s len %s max %s seen %s inter %s common %s " % (c.id, idl, lenl, maxseq, len(seen_seqs), len(intersect), common))
if common*1.0 >= 0.6:
if lenl*1.0 >= 0.6*maxseq:
c, new_c, seen_seqs = _merge_loci_in_cluster(c, new_c, idl, seen_seqs)
else:
c, new_c, seen_seqs = _merge_with_first_loci(c, new_c, first_idl, idl, seen_seqs)
else:
c = _remove_seqs_from_loci(c, idl, seen_seqs)
filtered[n_cluster] = new_c
return c, seen_seqs, filtered, n_cluster
def _merge_loci_in_cluster(c, new_c, idl, current_seqs):
logger.debug("_merge_loci_in_cluster:join")
locus_seqs = c.loci2seq[idl]
common = len(set(locus_seqs).intersection(current_seqs))
seen = list(set(locus_seqs).union(current_seqs))
new_c.add_id_member(list(locus_seqs), idl)
c.loci2seq.pop(idl, "None")
c.locilen.pop(idl, "None")
return c, new_c, seen
def _merge_with_first_loci(c, new_c, first_idl, idl, current_seqs):
logger.debug("_merge_with_first_loci:join first")
locus_seqs = c.loci2seq[idl]
seen = list(set(locus_seqs).union(current_seqs))
new_c.add_id_member(list(locus_seqs), first_idl)
c.loci2seq.pop(idl, "None")
c.locilen.pop(idl, "None")
return c, new_c, seen
def _remove_seqs_from_loci(c, idl, current_seqs):
current = c.loci2seq[idl]
seen = list(set(current).intersection(current_seqs))
unseen = list(set(sorted(current)).difference(sorted(seen)))
logger.debug("_remove_seqs_from_loci:seen %s unseen %s" % (len(seen), len(unseen)))
c.locilen[idl] = len(unseen)
c.loci2seq[idl] = unseen
logger.debug("_remove_seqs_from_loci:remove; new len %s" % len(unseen))
if c.locilen[idl] == 0:
c.loci2seq.pop(idl, "None")
c.locilen.pop(idl, "None")
return c
|