File: classes.py

package info (click to toggle)
python-seqcluster 1.2.7%2Bds-1
  • links: PTS, VCS
  • area: contrib
  • in suites: bullseye
  • size: 113,592 kB
  • sloc: python: 5,327; makefile: 184; sh: 122; javascript: 55
file content (268 lines) | stat: -rw-r--r-- 7,036 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
"""
Main classes used in seqcluster
"""

import copy
import numpy as np
from operator import add
from collections import Counter, defaultdict

try:
    unichr
except NameError:
    unichr = chr

class sequence_unique:
    """
    Object to store the sequence information like: **counts**, **sequence**, **id**
    """
    def __init__(self, idx, seq):
        self.idx = idx
        self.seq = seq
        self.group = {}
        self.quality = ""
        self.total = 0
    def add_exp(self,gr,exp):
        """Function to add the counts for each sample

        :param gr: name of the sample
        :param exp: counts of sample **gr**

        :returns: dict with key,values equally to name,counts.
        """
        self.group[gr] = exp
        self.total = sum(self.group.values())


class umi:

    def __init__(self, seq):
        self.seq = defaultdict(list)
        self.times = 0
        self.update(seq)

    def update(self, seq, counts = 1):
        for pos, nt in enumerate(seq):
            self.seq[pos].append(nt)
        self.times += counts

    def get(self):
        seq = ""
        for pos in sorted(self.seq.keys()):
            lst = self.seq[pos]
            seq += max(lst, key=lst.count)
        return seq


class quality:

    def __init__(self, q):
        self.qual = [ord(value) for value in q]
        self.times = 1

    def update(self, q, counts = 1):
        now = self.qual
        q = [ord(value) for value in q]
        self.qual = [x + y for x, y in zip(now, q)]
        self.times += counts

    def get(self):
        average = np.array(self.qual)/self.times
        return [str(unichr(int(char))) for char in average]



class cluster_info_obj:
    """
    Object containing information about clusters(:code:`clus_obj`),
    positions(:code:`positions`) and sequences(:code:`sequences`)
    """
    def __init__(self, clus_obj, clus_id, loci_obj, seq_obj):
        self.clus = clus_obj
        self.clusid = clus_id
        self.loci = loci_obj
        self.seq = seq_obj


class sequence:
    """
    Object with information about sequences, counts, size, position, id and score
    """
    def __init__(self, seq_id, seq=None, freq=None):
        # self.seq = seq
        # self.freq = copy.deepcopy(freq)
        # self.norm_freq = copy.deepcopy(freq)
        self.pos = {}
        self.id = seq_id
        self.align = 0
        self.score = 0
        self.factor = {}

    def set_seq(self, seq):
        self.seq = seq
        self.len = len(seq)

    def set_freq(self, freq):
        self.freq = copy.deepcopy(freq)
        self.norm_freq = copy.deepcopy(freq)

    def add_pos(self, pos_id, pos):
        self.pos[pos_id] = pos

    def total(self):
        return sum(self.freq.values())


class position:
    """
    Object with information about position: chr,start,end,strand
    as well, with annotation information throuhg :code:`dbannotation` object
    """
    def __init__(self, idl, chr, start, end, strand):
        self.idl = idl
        self.chr = chr
        self.start = int(start)
        self.end = int(end)
        self.strand = strand
        self.coverage = Counter()
        self.counts = Counter()
        self.db_ann = {}

    def list(self):
        return [e for e in map(str, [self.chr, self. start, self.end, self.idl, self.strand])]

    def add_db(self, db, ndb):
        self.db_ann[db] = ndb


class annotation:
    """
    Object with information about annotation: database, name of the feature, strand,
    distance to 5' end, distance to 3' end
    """
    def __init__(self,db,name,strand,to5,to3):
        self.db = db
        self.name = name
        self.strand = strand
        self.to5 = to5
        self.to3 = to3


class dbannotation:
    """
    Object with information about annotation: containg one dict that
    store all features for each database type
    """
    def __init__(self,na):
        self.ann = {}
    def add_db_ann(self,ida,ndba):
        self.ann[ida] = ndba


class cluster:
    """
    Object with cluster information. This is the main object.
    """
    def __init__(self, id):
        self.id = id
        self.idmembers = defaultdict(int)
        self.locimax = 0
        self.locimaxid = None
        self.locilen = {}
        self.loci2seq = {}
        self.ref = 0
        self.score = 0
        self.peaks = []
        self.showseq = ""
        self.showseq_plain = ""
        self.toomany = 0
        self.predictions = {}
        self.errors = []
        self.freq = []

    def normalize(self, seq, factor):
        return dict(zip(seq.freq.keys(), list(np.array(list(seq.freq.values())) * factor)))

    def set_freq(self, seqL):
        total = Counter()
        [total.update(self.normalize(seqL[s], f)) for (s, f) in self.idmembers.items()]
        self.freq = total
        return total

    def get_freq(self, seqL, force=False):
        self.update()
        if self.freq and not force:
            return self.freq
        else:
            return self.set_freq(seqL)

    def set_ref(self, r):
        self.ref = r

    def update(self, id=None):
        if id:
            self.id = id
        # self.idmembers = defaultdict(int)
        seen = set()
        self.locimax = 0
        for idl in self.loci2seq:
            l = len(list(self.loci2seq[idl]))
            # self.idmembers.update(dict(zip(self.loci2seq[idl], [1] * l)))
            seen = seen.union(set(self.loci2seq[idl]))
            if l > self.locimax:
                self.locimax = l
                self.locimaxid = idl
        remove = set(self.idmembers.keys()) - seen
        add = seen - set(self.idmembers.keys())
        self.idmembers.update(dict(zip(add, [1] * len(add))))
        map(self.idmembers.__delitem__, remove)

    def add_id_member(self, ids, idl):
        for s in ids:
            self.idmembers[s] = 1
            if idl not in self.loci2seq:
                self.loci2seq[idl] = []
            self.loci2seq[idl].append(s)
        self.loci2seq[idl] = list(set(self.loci2seq[idl]))
        lenid = len(list(self.loci2seq[idl]))
        self.locilen[idl] = lenid
        if lenid > self.locimax:
            self.locimax = lenid
            self.locimaxid = idl


class bcolors:
    HEADER  =  '\033[95m'
    OKBLUE  =  '\033[94m'
    OKGREEN  =  '\033[92m'
    WARNING  =  '\033[93m'
    FAIL  =  '\033[91m'
    ENDC  =  '\033[0m'


class bedaligned:
    """
    Object that has the bed format attributes
    """
    def __init__(self,l):
        l = l.strip()
        cols = l.split("\t")
        self.chr = cols[0]
        self.start = cols[1]
        self.end = cols[2]
        self.name = cols[3]
        self.att = cols[4]
        self.strand = cols[5]


class mergealigned:
    """
    Object that has bed format after merge sequence positions
    """
    def __init__(self,l):
            self.chr = l[0]
            self.strand = l.strand
            self.start = l.start
            self.end = l.end
            self.names = list(l.name.split(","))
            self.loci = l.score.split(",")