1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
|
"""functions for explore tool"""
from __future__ import print_function
from collections import defaultdict
import json, itertools
import tempfile, os, contextlib, shutil
import operator
from seqcluster.libs.sam2bed import makeBED
import logging
from seqcluster.libs.do import find_cmd, run
import pysam
import pybedtools
from Bio import pairwise2
from Bio.Seq import Seq
logger = logging.getLogger('read')
@contextlib.contextmanager
def make_temp_directory(remove=True):
temp_dir = tempfile.mkdtemp()
yield temp_dir
shutil.rmtree(temp_dir)
def load_data(in_file):
"""load json file from seqcluster cluster"""
with open(in_file) as in_handle:
return json.load(in_handle)
def write_data(data, out_file):
"""write json file from seqcluster cluster"""
with open(out_file, 'w') as handle_out:
handle_out.write(json.dumps([data], skipkeys=True, indent=2))
def get_sequences_from_cluster(c1, c2, data):
"""get all sequences from on cluster"""
seqs1 = data[c1]['seqs']
seqs2 = data[c2]['seqs']
seqs = list(set(seqs1 + seqs2))
names = []
for s in seqs:
if s in seqs1 and s in seqs2:
names.append("both")
elif s in seqs1:
names.append(c1)
else:
names.append(c2)
return seqs, names
def get_precursors_from_cluster(c1, c2, data):
loci1 = data[c1]['loci']
loci2 = data[c2]['loci']
return {c1:loci1, c2:loci2}
def map_to_precursors(seqs, names, loci, out_file, args):
"""map sequences to precursors with razers3"""
with make_temp_directory() as temp:
pre_fasta = os.path.join(temp, "pre.fa")
seqs_fasta = os.path.join(temp, "seqs.fa")
out_sam = os.path.join(temp, "out.sam")
pre_fasta = get_loci_fasta(loci, pre_fasta, args.ref)
out_precursor_file = out_file.replace("tsv", "fa")
seqs_fasta = get_seqs_fasta(seqs, names, seqs_fasta)
# print(open(pre_fasta).read().split("\n")[1])
if find_cmd("razers3"):
cmd = "razers3 -dr 2 -i 80 -rr 90 -f -o {out_sam} {temp}/pre.fa {seqs_fasta}"
run(cmd.format(**locals()))
out_file = read_alignment(out_sam, loci, seqs, out_file)
shutil.copy(pre_fasta, out_precursor_file)
return out_file
def precursor_sequence(loci, reference):
"""Get sequence from genome"""
region = "%s\t%s\t%s\t.\t.\t%s" % (loci[1], loci[2], loci[3], loci[4])
precursor = pybedtools.BedTool(str(region), from_string=True).sequence(fi=reference, s=True)
return open(precursor.seqfn).read().split("\n")[1]
def map_to_precursors_on_fly(seqs, names, loci, args):
"""map sequences to precursors with franpr algorithm to avoid writting on disk"""
precursor = precursor_sequence(loci, args.ref).upper()
dat = dict()
for s, n in itertools.izip(seqs, names):
res = pyMatch.Match(precursor, str(s), 1, 3)
if res > -1:
dat[n] = [res, res + len(s)]
logger.debug("mapped in %s: %s out of %s" % (loci, len(dat), len(seqs)))
return dat
def _align(x, y, local = False):
"""
https://medium.com/towards-data-science/pairwise-sequence-alignment-using-biopython-d1a9d0ba861f
"""
if local:
aligned_x = pairwise2.align.localxx(x, y)
else:
aligned_x = pairwise2.align.globalms(x, y, 1, -1, -1, -0.5)
if aligned_x:
sorted_alignments = sorted(aligned_x, key=operator.itemgetter(2))
e = enumerate(sorted_alignments[0][0])
nts = [i for i,c in e if c != "-"]
return [min(nts), max(nts)]
def map_to_precursor_biopython(seqs, names, loci, args):
"""map the sequences using biopython package"""
precursor = precursor_sequence(loci, args.ref).upper()
dat = dict()
for s, n in zip(seqs, names):
res = _align(str(s), precursor)
if res:
dat[n] = res
logger.debug("mapped in %s: %s out of %s" % (loci, len(dat), len(seqs)))
return dat
def deprecated_map_to_precursors(seqs, names, loci, out_file, args):
"""map sequences to precursors with bowtie"""
with make_temp_directory() as temp:
pre_fasta = os.path.join(temp, "pre.fa")
seqs_fasta = os.path.join(temp, "seqs.fa")
out_sam = os.path.join(temp, "out.sam")
pre_fasta = get_loci_fasta(loci, pre_fasta, args.ref)
out_precursor_file = out_file.replace("tsv", "fa")
seqs_fasta = get_seqs_fasta(seqs, names, seqs_fasta)
if find_cmd("bowtie2-build"):
cmd = "bowtie2-build -f {pre_fasta} {temp}/pre"
run(cmd.format(**locals()))
cmd = "bowtie2 -a --rdg 7,3 --mp 4 --end-to-end -D 20 -R 3 -N 0 -i S,1,0.8 -L 3 -f -x {temp}/pre -U {seqs_fasta} -S {out_sam}"
run(cmd.format(**locals()))
out_file = read_alignment(out_sam, loci, seqs, out_file)
shutil.copy(pre_fasta, out_precursor_file)
return out_file
def get_seqs_fasta(seqs, names, out_fa):
"""get fasta from sequences"""
with open(out_fa, 'w') as fa_handle:
for s, n in itertools.izip(seqs, names):
print(">cx{1}-{0}\n{0}".format(s, n), file=fa_handle)
return out_fa
def get_fasta(bed_file, ref, out_fa):
"""Run bedtools to get fasta from bed file"""
cmd = "bedtools getfasta -s -fi {ref} -bed {bed_file} -fo {out_fa}"
run(cmd.format(**locals()))
def get_loci_fasta(loci, out_fa, ref):
"""get fasta from precursor"""
if not find_cmd("bedtools"):
raise ValueError("Not bedtools installed")
with make_temp_directory() as temp:
bed_file = os.path.join(temp, "file.bed")
for nc, loci in loci.iteritems():
for l in loci:
with open(bed_file, 'w') as bed_handle:
logger.debug("get_fasta: loci %s" % l)
nc, c, s, e, st = l
print("{0}\t{1}\t{2}\t{3}\t{3}\t{4}".format(c, s, e, nc, st), file=bed_handle)
get_fasta(bed_file, ref, out_fa)
return out_fa
def read_alignment(out_sam, loci, seqs, out_file):
"""read which seqs map to which loci and
return a tab separated file"""
hits = defaultdict(list)
with open(out_file, "w") as out_handle:
samfile = pysam.Samfile(out_sam, "r")
for a in samfile.fetch():
if not a.is_unmapped:
nm = int([t[1] for t in a.tags if t[0] == "NM"][0])
a = makeBED(a)
if not a:
continue
ref, locus = get_loci(samfile.getrname(int(a.chr)), loci)
hits[a.name].append((nm, "%s %s %s %s %s %s" % (a.name, a.name.split("-")[0], locus, ref, a.start, a.end)))
for hit in hits.values():
nm = hit[0][0]
for l in hit:
if nm == l[0]:
print(l[1], file=out_handle)
return out_file
def get_loci(name, loci):
for nc in loci:
for l in loci[nc]:
lname = "{0}:{1}-{2}({3})".format(l[1], l[2], l[3], l[4])
if name == lname:
return nc, l[0]
def plot_positions():
return True
|