File: thinkbayes.py

package info (click to toggle)
python-seqcluster 1.2.7%2Bds-1
  • links: PTS, VCS
  • area: contrib
  • in suites: bullseye
  • size: 113,592 kB
  • sloc: python: 5,327; makefile: 184; sh: 122; javascript: 55
file content (1840 lines) | stat: -rw-r--r-- 44,449 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
from __future__ import print_function

"""This file contains code for use with "Think Bayes",
by Allen B. Downey, available from greenteapress.com

Copyright 2012 Allen B. Downey
License: GNU GPLv3 http://www.gnu.org/licenses/gpl.html
"""

"""This file contains class definitions for:

Hist: represents a histogram (map from values to integer frequencies).

Pmf: represents a probability mass function (map from values to probs).

_DictWrapper: private parent class for Hist and Pmf.

Cdf: represents a discrete cumulative distribution function

Pdf: represents a continuous probability density function

"""

import bisect
import copy
import logging
import math
import numpy
import random

try:
    import scipy.stats
    from scipy.special import erf, erfinv
except:
    pass

ROOT2 = math.sqrt(2)

def RandomSeed(x):
    """Initialize the random and numpy.random generators.

    x: int seed
    """
    random.seed(x)
    numpy.random.seed(x)
    

def Odds(p):
    """Computes odds for a given probability.

    Example: p=0.75 means 75 for and 25 against, or 3:1 odds in favor.

    Note: when p=1, the formula for odds divides by zero, which is
    normally undefined.  But I think it is reasonable to define Odds(1)
    to be infinity, so that's what this function does.

    p: float 0-1

    Returns: float odds
    """
    if p == 1:
        return float('inf')
    return p / (1 - p)


def Probability(o):
    """Computes the probability corresponding to given odds.

    Example: o=2 means 2:1 odds in favor, or 2/3 probability

    o: float odds, strictly positive

    Returns: float probability
    """
    return o / (o + 1)


def Probability2(yes, no):
    """Computes the probability corresponding to given odds.

    Example: yes=2, no=1 means 2:1 odds in favor, or 2/3 probability.
    
    yes, no: int or float odds in favor
    """
    return float(yes) / (yes + no)


class Interpolator(object):
    """Represents a mapping between sorted sequences; performs linear interp.

    Attributes:
        xs: sorted list
        ys: sorted list
    """

    def __init__(self, xs, ys):
        self.xs = xs
        self.ys = ys

    def Lookup(self, x):
        """Looks up x and returns the corresponding value of y."""
        return self._Bisect(x, self.xs, self.ys)

    def Reverse(self, y):
        """Looks up y and returns the corresponding value of x."""
        return self._Bisect(y, self.ys, self.xs)

    def _Bisect(self, x, xs, ys):
        """Helper function."""
        if x <= xs[0]:
            return ys[0]
        if x >= xs[-1]:
            return ys[-1]
        i = bisect.bisect(xs, x)
        frac = 1.0 * (x - xs[i - 1]) / (xs[i] - xs[i - 1])
        y = ys[i - 1] + frac * 1.0 * (ys[i] - ys[i - 1])
        return y


class _DictWrapper(object):
    """An object that contains a dictionary."""

    def __init__(self, values=None, name=''):
        """Initializes the distribution.

        hypos: sequence of hypotheses
        """
        self.name = name
        self.d = {}

        # flag whether the distribution is under a log transform
        self.log = False

        if values is None:
            return

        init_methods = [
            self.InitPmf,
            self.InitMapping,
            self.InitSequence,
            self.InitFailure,
            ]

        for method in init_methods:
            try:
                method(values)
                break
            except AttributeError:
                continue

        if len(self) > 0:
            self.Normalize()

    def InitSequence(self, values):
        """Initializes with a sequence of equally-likely values.

        values: sequence of values
        """
        for value in values:
            self.Set(value, 1)

    def InitMapping(self, values):
        """Initializes with a map from value to probability.

        values: map from value to probability
        """
        for value, prob in values.iteritems():
            self.Set(value, prob)

    def InitPmf(self, values):
        """Initializes with a Pmf.

        values: Pmf object
        """
        for value, prob in values.Items():
            self.Set(value, prob)

    def InitFailure(self, values):
        """Raises an error."""
        raise ValueError('None of the initialization methods worked.')

    def __len__(self):
        return len(self.d)

    def __iter__(self):
        return iter(self.d)

    def iterkeys(self):
        return iter(self.d)

    def __contains__(self, value):
        return value in self.d

    def Copy(self, name=None):
        """Returns a copy.

        Make a shallow copy of d.  If you want a deep copy of d,
        use copy.deepcopy on the whole object.

        Args:
            name: string name for the new Hist
        """
        new = copy.copy(self)
        new.d = copy.copy(self.d)
        new.name = name if name is not None else self.name
        return new

    def Scale(self, factor):
        """Multiplies the values by a factor.

        factor: what to multiply by

        Returns: new object
        """
        new = self.Copy()
        new.d.clear()

        for val, prob in self.Items():
            new.Set(val * factor, prob)
        return new

    def Log(self, m=None):
        """Log transforms the probabilities.
        
        Removes values with probability 0.

        Normalizes so that the largest logprob is 0.
        """
        if self.log:
            raise ValueError("Pmf/Hist already under a log transform")
        self.log = True

        if m is None:
            m = self.MaxLike()

        for x, p in self.d.iteritems():
            if p:
                self.Set(x, math.log(p / m))
            else:
                self.Remove(x)

    def Exp(self, m=None):
        """Exponentiates the probabilities.

        m: how much to shift the ps before exponentiating

        If m is None, normalizes so that the largest prob is 1.
        """
        if not self.log:
            raise ValueError("Pmf/Hist not under a log transform")
        self.log = False

        if m is None:
            m = self.MaxLike()

        for x, p in self.d.iteritems():
            self.Set(x, math.exp(p - m))

    def GetDict(self):
        """Gets the dictionary."""
        return self.d

    def SetDict(self, d):
        """Sets the dictionary."""
        self.d = d

    def Values(self):
        """Gets an unsorted sequence of values.

        Note: one source of confusion is that the keys of this
        dictionary are the values of the Hist/Pmf, and the
        values of the dictionary are frequencies/probabilities.
        """
        return self.d.keys()

    def Items(self):
        """Gets an unsorted sequence of (value, freq/prob) pairs."""
        return self.d.items()

    def Render(self):
        """Generates a sequence of points suitable for plotting.

        Returns:
            tuple of (sorted value sequence, freq/prob sequence)
        """
        return zip(*sorted(self.Items()))

    def Print(self):
        """Prints the values and freqs/probs in ascending order."""
        for val, prob in sorted(self.d.iteritems()):
            print(val, prob)

    def Set(self, x, y=0):
        """Sets the freq/prob associated with the value x.

        Args:
            x: number value
            y: number freq or prob
        """
        self.d[x] = y

    def Incr(self, x, term=1):
        """Increments the freq/prob associated with the value x.

        Args:
            x: number value
            term: how much to increment by
        """
        self.d[x] = self.d.get(x, 0) + term

    def Mult(self, x, factor):
        """Scales the freq/prob associated with the value x.

        Args:
            x: number value
            factor: how much to multiply by
        """
        self.d[x] = self.d.get(x, 0) * factor

    def Remove(self, x):
        """Removes a value.

        Throws an exception if the value is not there.

        Args:
            x: value to remove
        """
        del self.d[x]

    def Total(self):
        """Returns the total of the frequencies/probabilities in the map."""
        total = sum(self.d.itervalues())
        return total

    def MaxLike(self):
        """Returns the largest frequency/probability in the map."""
        return max(self.d.itervalues())


class Hist(_DictWrapper):
    """Represents a histogram, which is a map from values to frequencies.

    Values can be any hashable type; frequencies are integer counters.
    """

    def Freq(self, x):
        """Gets the frequency associated with the value x.

        Args:
            x: number value

        Returns:
            int frequency
        """
        return self.d.get(x, 0)

    def Freqs(self, xs):
        """Gets frequencies for a sequence of values."""
        return [self.Freq(x) for x in xs]

    def IsSubset(self, other):
        """Checks whether the values in this histogram are a subset of
        the values in the given histogram."""
        for val, freq in self.Items():
            if freq > other.Freq(val):
                return False
        return True

    def Subtract(self, other):
        """Subtracts the values in the given histogram from this histogram."""
        for val, freq in other.Items():
            self.Incr(val, -freq)


class Pmf(_DictWrapper):
    """Represents a probability mass function.
    
    Values can be any hashable type; probabilities are floating-point.
    Pmfs are not necessarily normalized.
    """

    def Prob(self, x, default=0):
        """Gets the probability associated with the value x.

        Args:
            x: number value
            default: value to return if the key is not there

        Returns:
            float probability
        """
        return self.d.get(x, default)

    def Probs(self, xs):
        """Gets probabilities for a sequence of values."""
        return [self.Prob(x) for x in xs]

    def MakeCdf(self, name=None):
        """Makes a Cdf."""
        return MakeCdfFromPmf(self, name=name)

    def ProbGreater(self, x):
        """Probability that a sample from this Pmf exceeds x.

        x: number

        returns: float probability
        """
        t = [prob for (val, prob) in self.d.iteritems() if val > x]
        return sum(t)

    def ProbLess(self, x):
        """Probability that a sample from this Pmf is less than x.

        x: number

        returns: float probability
        """
        t = [prob for (val, prob) in self.d.iteritems() if val < x]
        return sum(t)

    def __lt__(self, obj):
        """Less than.

        obj: number or _DictWrapper

        returns: float probability
        """
        if isinstance(obj, _DictWrapper):
            return PmfProbLess(self, obj)
        else:
            return self.ProbLess(obj)

    def __gt__(self, obj):
        """Greater than.

        obj: number or _DictWrapper

        returns: float probability
        """
        if isinstance(obj, _DictWrapper):
            return PmfProbGreater(self, obj)
        else:
            return self.ProbGreater(obj)

    def __ge__(self, obj):
        """Greater than or equal.

        obj: number or _DictWrapper

        returns: float probability
        """
        return 1 - (self < obj)

    def __le__(self, obj):
        """Less than or equal.

        obj: number or _DictWrapper

        returns: float probability
        """
        return 1 - (self > obj)

    def __eq__(self, obj):
        """Less than.

        obj: number or _DictWrapper

        returns: float probability
        """
        if isinstance(obj, _DictWrapper):
            return PmfProbEqual(self, obj)
        else:
            return self.Prob(obj)

    def __ne__(self, obj):
        """Less than.

        obj: number or _DictWrapper

        returns: float probability
        """
        return 1 - (self == obj)

    def Normalize(self, fraction=1.0):
        """Normalizes this PMF so the sum of all probs is fraction.

        Args:
            fraction: what the total should be after normalization

        Returns: the total probability before normalizing
        """
        if self.log:
            raise ValueError("Pmf is under a log transform")

        total = self.Total()
        if total == 0.0:
            raise ValueError('total probability is zero.')
            logging.warning('Normalize: total probability is zero.')
            return total

        factor = float(fraction) / total
        for x in self.d:
            self.d[x] *= factor

        return total

    def Random(self):
        """Chooses a random element from this PMF.

        Returns:
            float value from the Pmf
        """
        if len(self.d) == 0:
            raise ValueError('Pmf contains no values.')

        target = random.random()
        total = 0.0
        for x, p in self.d.iteritems():
            total += p
            if total >= target:
                return x

        # we shouldn't get here
        assert False

    def Mean(self):
        """Computes the mean of a PMF.

        Returns:
            float mean
        """
        mu = 0.0
        for x, p in self.d.iteritems():
            mu += p * x
        return mu

    def Var(self, mu=None):
        """Computes the variance of a PMF.

        Args:
            mu: the point around which the variance is computed;
                if omitted, computes the mean

        Returns:
            float variance
        """
        if mu is None:
            mu = self.Mean()

        var = 0.0
        for x, p in self.d.iteritems():
            var += p * (x - mu) ** 2
        return var

    def MaximumLikelihood(self):
        """Returns the value with the highest probability.

        Returns: float probability
        """
        prob, val = max((prob, val) for val, prob in self.Items())
        return val

    def CredibleInterval(self, percentage=90):
        """Computes the central credible interval.

        If percentage=90, computes the 90% CI.

        Args:
            percentage: float between 0 and 100

        Returns:
            sequence of two floats, low and high
        """
        cdf = self.MakeCdf()
        return cdf.CredibleInterval(percentage)

    def __add__(self, other):
        """Computes the Pmf of the sum of values drawn from self and other.

        other: another Pmf

        returns: new Pmf
        """
        try:
            return self.AddPmf(other)
        except AttributeError:
            return self.AddConstant(other)

    def AddPmf(self, other):
        """Computes the Pmf of the sum of values drawn from self and other.

        other: another Pmf

        returns: new Pmf
        """
        pmf = Pmf()
        for v1, p1 in self.Items():
            for v2, p2 in other.Items():
                pmf.Incr(v1 + v2, p1 * p2)
        return pmf

    def AddConstant(self, other):
        """Computes the Pmf of the sum a constant and  values from self.

        other: a number

        returns: new Pmf
        """
        pmf = Pmf()
        for v1, p1 in self.Items():
            pmf.Set(v1 + other, p1)
        return pmf

    def __sub__(self, other):
        """Computes the Pmf of the diff of values drawn from self and other.

        other: another Pmf

        returns: new Pmf
        """
        pmf = Pmf()
        for v1, p1 in self.Items():
            for v2, p2 in other.Items():
                pmf.Incr(v1 - v2, p1 * p2)
        return pmf

    def Max(self, k):
        """Computes the CDF of the maximum of k selections from this dist.

        k: int

        returns: new Cdf
        """
        cdf = self.MakeCdf()
        cdf.ps = [p ** k for p in cdf.ps]
        return cdf


class Joint(Pmf):
    """Represents a joint distribution.

    The values are sequences (usually tuples)
    """

    def Marginal(self, i, name=''):
        """Gets the marginal distribution of the indicated variable.

        i: index of the variable we want

        Returns: Pmf
        """
        pmf = Pmf(name=name)
        for vs, prob in self.Items():
            pmf.Incr(vs[i], prob)
        return pmf

    def Conditional(self, i, j, val, name=''):
        """Gets the conditional distribution of the indicated variable.

        Distribution of vs[i], conditioned on vs[j] = val.

        i: index of the variable we want
        j: which variable is conditioned on
        val: the value the jth variable has to have

        Returns: Pmf
        """
        pmf = Pmf(name=name)
        for vs, prob in self.Items():
            if vs[j] != val: continue
            pmf.Incr(vs[i], prob)

        pmf.Normalize()
        return pmf

    def MaxLikeInterval(self, percentage=90):
        """Returns the maximum-likelihood credible interval.

        If percentage=90, computes a 90% CI containing the values
        with the highest likelihoods.

        percentage: float between 0 and 100

        Returns: list of values from the suite
        """
        interval = []
        total = 0

        t = [(prob, val) for val, prob in self.Items()]
        t.sort(reverse=True)

        for prob, val in t:
            interval.append(val)
            total += prob
            if total >= percentage / 100.0:
                break

        return interval


def MakeJoint(pmf1, pmf2):
    """Joint distribution of values from pmf1 and pmf2.

    Args:
        pmf1: Pmf object
        pmf2: Pmf object

    Returns:
        Joint pmf of value pairs
    """
    joint = Joint()
    for v1, p1 in pmf1.Items():
        for v2, p2 in pmf2.Items():
            joint.Set((v1, v2), p1 * p2)
    return joint


def MakeHistFromList(t, name=''):
    """Makes a histogram from an unsorted sequence of values.

    Args:
        t: sequence of numbers
        name: string name for this histogram

    Returns:
        Hist object
    """
    hist = Hist(name=name)
    [hist.Incr(x) for x in t]
    return hist


def MakeHistFromDict(d, name=''):
    """Makes a histogram from a map from values to frequencies.

    Args:
        d: dictionary that maps values to frequencies
        name: string name for this histogram

    Returns:
        Hist object
    """
    return Hist(d, name)


def MakePmfFromList(t, name=''):
    """Makes a PMF from an unsorted sequence of values.

    Args:
        t: sequence of numbers
        name: string name for this PMF

    Returns:
        Pmf object
    """
    hist = MakeHistFromList(t)
    d = hist.GetDict()
    pmf = Pmf(d, name)
    pmf.Normalize()
    return pmf


def MakePmfFromDict(d, name=''):
    """Makes a PMF from a map from values to probabilities.

    Args:
        d: dictionary that maps values to probabilities
        name: string name for this PMF

    Returns:
        Pmf object
    """
    pmf = Pmf(d, name)
    pmf.Normalize()
    return pmf


def MakePmfFromItems(t, name=''):
    """Makes a PMF from a sequence of value-probability pairs

    Args:
        t: sequence of value-probability pairs
        name: string name for this PMF

    Returns:
        Pmf object
    """
    pmf = Pmf(dict(t), name)
    pmf.Normalize()
    return pmf


def MakePmfFromHist(hist, name=None):
    """Makes a normalized PMF from a Hist object.

    Args:
        hist: Hist object
        name: string name

    Returns:
        Pmf object
    """
    if name is None:
        name = hist.name

    # make a copy of the dictionary
    d = dict(hist.GetDict())
    pmf = Pmf(d, name)
    pmf.Normalize()
    return pmf


def MakePmfFromCdf(cdf, name=None):
    """Makes a normalized Pmf from a Cdf object.

    Args:
        cdf: Cdf object
        name: string name for the new Pmf

    Returns:
        Pmf object
    """
    if name is None:
        name = cdf.name

    pmf = Pmf(name=name)

    prev = 0.0
    for val, prob in cdf.Items():
        pmf.Incr(val, prob - prev)
        prev = prob

    return pmf


def MakeMixture(metapmf, name='mix'):
    """Make a mixture distribution.

    Args:
      metapmf: Pmf that maps from Pmfs to probs.
      name: string name for the new Pmf.

    Returns: Pmf object.
    """
    mix = Pmf(name=name)
    for pmf, p1 in metapmf.Items():
        for x, p2 in pmf.Items():
            mix.Incr(x, p1 * p2)
    return mix


def MakeUniformPmf(low, high, n):
    """Make a uniform Pmf.

    low: lowest value (inclusive)
    high: highest value (inclusize)
    n: number of values
    """
    pmf = Pmf()
    for x in numpy.linspace(low, high, n):
        pmf.Set(x, 1)
    pmf.Normalize()
    return pmf


class Cdf(object):
    """Represents a cumulative distribution function.

    Attributes:
        xs: sequence of values
        ps: sequence of probabilities
        name: string used as a graph label.
    """

    def __init__(self, xs=None, ps=None, name=''):
        self.xs = [] if xs is None else xs
        self.ps = [] if ps is None else ps
        self.name = name

    def Copy(self, name=None):
        """Returns a copy of this Cdf.

        Args:
            name: string name for the new Cdf
        """
        if name is None:
            name = self.name
        return Cdf(list(self.xs), list(self.ps), name)

    def MakePmf(self, name=None):
        """Makes a Pmf."""
        return MakePmfFromCdf(self, name=name)

    def Values(self):
        """Returns a sorted list of values.
        """
        return self.xs

    def Items(self):
        """Returns a sorted sequence of (value, probability) pairs.

        Note: in Python3, returns an iterator.
        """
        return zip(self.xs, self.ps)

    def Append(self, x, p):
        """Add an (x, p) pair to the end of this CDF.

        Note: this us normally used to build a CDF from scratch, not
        to modify existing CDFs.  It is up to the caller to make sure
        that the result is a legal CDF.
        """
        self.xs.append(x)
        self.ps.append(p)

    def Shift(self, term):
        """Adds a term to the xs.

        term: how much to add
        """
        new = self.Copy()
        new.xs = [x + term for x in self.xs]
        return new

    def Scale(self, factor):
        """Multiplies the xs by a factor.

        factor: what to multiply by
        """
        new = self.Copy()
        new.xs = [x * factor for x in self.xs]
        return new

    def Prob(self, x):
        """Returns CDF(x), the probability that corresponds to value x.

        Args:
            x: number

        Returns:
            float probability
        """
        if x < self.xs[0]: return 0.0
        index = bisect.bisect(self.xs, x)
        p = self.ps[index - 1]
        return p

    def Value(self, p):
        """Returns InverseCDF(p), the value that corresponds to probability p.

        Args:
            p: number in the range [0, 1]

        Returns:
            number value
        """
        if p < 0 or p > 1:
            raise ValueError('Probability p must be in range [0, 1]')

        if p == 0: return self.xs[0]
        if p == 1: return self.xs[-1]
        index = bisect.bisect(self.ps, p)
        if p == self.ps[index - 1]:
            return self.xs[index - 1]
        else:
            return self.xs[index]

    def Percentile(self, p):
        """Returns the value that corresponds to percentile p.

        Args:
            p: number in the range [0, 100]

        Returns:
            number value
        """
        return self.Value(p / 100.0)

    def Random(self):
        """Chooses a random value from this distribution."""
        return self.Value(random.random())

    def Sample(self, n):
        """Generates a random sample from this distribution.
        
        Args:
            n: int length of the sample
        """
        return [self.Random() for i in range(n)]

    def Mean(self):
        """Computes the mean of a CDF.

        Returns:
            float mean
        """
        old_p = 0
        total = 0.0
        for x, new_p in zip(self.xs, self.ps):
            p = new_p - old_p
            total += p * x
            old_p = new_p
        return total

    def CredibleInterval(self, percentage=90):
        """Computes the central credible interval.

        If percentage=90, computes the 90% CI.

        Args:
            percentage: float between 0 and 100

        Returns:
            sequence of two floats, low and high
        """
        prob = (1 - percentage / 100.0) / 2
        interval = self.Value(prob), self.Value(1 - prob)
        return interval

    def _Round(self, multiplier=1000.0):
        """
        An entry is added to the cdf only if the percentile differs
        from the previous value in a significant digit, where the number
        of significant digits is determined by multiplier.  The
        default is 1000, which keeps log10(1000) = 3 significant digits.
        """
        # TODO(write this method)
        raise UnimplementedMethodException()

    def Render(self):
        """Generates a sequence of points suitable for plotting.

        An empirical CDF is a step function; linear interpolation
        can be misleading.

        Returns:
            tuple of (xs, ps)
        """
        xs = [self.xs[0]]
        ps = [0.0]
        for i, p in enumerate(self.ps):
            xs.append(self.xs[i])
            ps.append(p)

            try:
                xs.append(self.xs[i + 1])
                ps.append(p)
            except IndexError:
                pass
        return xs, ps

    def Max(self, k):
        """Computes the CDF of the maximum of k selections from this dist.

        k: int

        returns: new Cdf
        """
        cdf = self.Copy()
        cdf.ps = [p ** k for p in cdf.ps]
        return cdf


def MakeCdfFromItems(items, name=''):
    """Makes a cdf from an unsorted sequence of (value, frequency) pairs.

    Args:
        items: unsorted sequence of (value, frequency) pairs
        name: string name for this CDF

    Returns:
        cdf: list of (value, fraction) pairs
    """
    runsum = 0
    xs = []
    cs = []

    for value, count in sorted(items):
        runsum += count
        xs.append(value)
        cs.append(runsum)

    total = float(runsum)
    ps = [c / total for c in cs]

    cdf = Cdf(xs, ps, name)
    return cdf


def MakeCdfFromDict(d, name=''):
    """Makes a CDF from a dictionary that maps values to frequencies.

    Args:
       d: dictionary that maps values to frequencies.
       name: string name for the data.

    Returns:
        Cdf object
    """
    return MakeCdfFromItems(d.iteritems(), name)


def MakeCdfFromHist(hist, name=''):
    """Makes a CDF from a Hist object.

    Args:
       hist: Pmf.Hist object
       name: string name for the data.

    Returns:
        Cdf object
    """
    return MakeCdfFromItems(hist.Items(), name)


def MakeCdfFromPmf(pmf, name=None):
    """Makes a CDF from a Pmf object.

    Args:
       pmf: Pmf.Pmf object
       name: string name for the data.

    Returns:
        Cdf object
    """
    if name == None:
        name = pmf.name
    return MakeCdfFromItems(pmf.Items(), name)


def MakeCdfFromList(seq, name=''):
    """Creates a CDF from an unsorted sequence.

    Args:
        seq: unsorted sequence of sortable values
        name: string name for the cdf

    Returns:
       Cdf object
    """
    hist = MakeHistFromList(seq)
    return MakeCdfFromHist(hist, name)


class UnimplementedMethodException(Exception):
    """Exception if someone calls a method that should be overridden."""


class Suite(Pmf):
    """Represents a suite of hypotheses and their probabilities."""

    def Update(self, data):
        """Updates each hypothesis based on the data.

        data: any representation of the data

        returns: the normalizing constant
        """
        for hypo in self.Values():
            like = self.Likelihood(data, hypo)
            self.Mult(hypo, like)
        return self.Normalize()

    def LogUpdate(self, data):
        """Updates a suite of hypotheses based on new data.

        Modifies the suite directly; if you want to keep the original, make
        a copy.

        Note: unlike Update, LogUpdate does not normalize.

        Args:
            data: any representation of the data
        """
        for hypo in self.Values():
            like = self.LogLikelihood(data, hypo)
            self.Incr(hypo, like)

    def UpdateSet(self, dataset):
        """Updates each hypothesis based on the dataset.

        This is more efficient than calling Update repeatedly because
        it waits until the end to Normalize.

        Modifies the suite directly; if you want to keep the original, make
        a copy.

        dataset: a sequence of data

        returns: the normalizing constant
        """
        for data in dataset:
            for hypo in self.Values():
                like = self.Likelihood(data, hypo)
                self.Mult(hypo, like)
        return self.Normalize()

    def LogUpdateSet(self, dataset):
        """Updates each hypothesis based on the dataset.

        Modifies the suite directly; if you want to keep the original, make
        a copy.

        dataset: a sequence of data

        returns: None
        """
        for data in dataset:
            self.LogUpdate(data)

    def Likelihood(self, data, hypo):
        """Computes the likelihood of the data under the hypothesis.

        hypo: some representation of the hypothesis
        data: some representation of the data
        """
        raise UnimplementedMethodException()

    def LogLikelihood(self, data, hypo):
        """Computes the log likelihood of the data under the hypothesis.

        hypo: some representation of the hypothesis
        data: some representation of the data
        """
        raise UnimplementedMethodException()

    def Print(self):
        """Prints the hypotheses and their probabilities."""
        for hypo, prob in sorted(self.Items()):
            print(hypo, prob)

    def MakeOdds(self):
        """Transforms from probabilities to odds.

        Values with prob=0 are removed.
        """
        for hypo, prob in self.Items():
            if prob:
                self.Set(hypo, Odds(prob))
            else:
                self.Remove(hypo)

    def MakeProbs(self):
        """Transforms from odds to probabilities."""
        for hypo, odds in self.Items():
            self.Set(hypo, Probability(odds))


def MakeSuiteFromList(t, name=''):
    """Makes a suite from an unsorted sequence of values.

    Args:
        t: sequence of numbers
        name: string name for this suite

    Returns:
        Suite object
    """
    hist = MakeHistFromList(t)
    d = hist.GetDict()
    return MakeSuiteFromDict(d)


def MakeSuiteFromHist(hist, name=None):
    """Makes a normalized suite from a Hist object.

    Args:
        hist: Hist object
        name: string name

    Returns:
        Suite object
    """
    if name is None:
        name = hist.name

    # make a copy of the dictionary
    d = dict(hist.GetDict())
    return MakeSuiteFromDict(d, name)


def MakeSuiteFromDict(d, name=''):
    """Makes a suite from a map from values to probabilities.

    Args:
        d: dictionary that maps values to probabilities
        name: string name for this suite

    Returns:
        Suite object
    """
    suite = Suite(name=name)
    suite.SetDict(d)
    suite.Normalize()
    return suite


def MakeSuiteFromCdf(cdf, name=None):
    """Makes a normalized Suite from a Cdf object.

    Args:
        cdf: Cdf object
        name: string name for the new Suite

    Returns:
        Suite object
    """
    if name is None:
        name = cdf.name

    suite = Suite(name=name)

    prev = 0.0
    for val, prob in cdf.Items():
        suite.Incr(val, prob - prev)
        prev = prob

    return suite


class Pdf(object):
    """Represents a probability density function (PDF)."""

    def Density(self, x):
        """Evaluates this Pdf at x.

        Returns: float probability density
        """
        raise UnimplementedMethodException()

    def MakePmf(self, xs, name=''):
        """Makes a discrete version of this Pdf, evaluated at xs.

        xs: equally-spaced sequence of values

        Returns: new Pmf
        """
        pmf = Pmf(name=name)
        for x in xs:
            pmf.Set(x, self.Density(x))
        pmf.Normalize()
        return pmf


class GaussianPdf(Pdf):
    """Represents the PDF of a Gaussian distribution."""

    def __init__(self, mu, sigma):
        """Constructs a Gaussian Pdf with given mu and sigma.

        mu: mean
        sigma: standard deviation
        """
        self.mu = mu
        self.sigma = sigma

    def Density(self, x):
        """Evaluates this Pdf at x.

        Returns: float probability density
        """
        return EvalGaussianPdf(x, self.mu, self.sigma)


class EstimatedPdf(Pdf):
    """Represents a PDF estimated by KDE."""

    def __init__(self, sample):
        """Estimates the density function based on a sample.

        sample: sequence of data
        """
        self.kde = scipy.stats.gaussian_kde(sample)

    def Density(self, x):
        """Evaluates this Pdf at x.

        Returns: float probability density
        """
        return self.kde.evaluate(x)

    def MakePmf(self, xs, name=''):
        ps = self.kde.evaluate(xs)
        pmf = MakePmfFromItems(zip(xs, ps), name=name)
        return pmf


def Percentile(pmf, percentage):
    """Computes a percentile of a given Pmf.

    percentage: float 0-100
    """
    p = percentage / 100.0
    total = 0
    for val, prob in pmf.Items():
        total += prob
        if total >= p:
            return val


def CredibleInterval(pmf, percentage=90):
    """Computes a credible interval for a given distribution.

    If percentage=90, computes the 90% CI.

    Args:
        pmf: Pmf object representing a posterior distribution
        percentage: float between 0 and 100

    Returns:
        sequence of two floats, low and high
    """
    cdf = pmf.MakeCdf()
    prob = (1 - percentage / 100.0) / 2
    interval = cdf.Value(prob), cdf.Value(1 - prob)
    return interval


def PmfProbLess(pmf1, pmf2):
    """Probability that a value from pmf1 is less than a value from pmf2.

    Args:
        pmf1: Pmf object
        pmf2: Pmf object

    Returns:
        float probability
    """
    total = 0.0
    for v1, p1 in pmf1.Items():
        for v2, p2 in pmf2.Items():
            if v1 < v2:
                total += p1 * p2
    return total


def PmfProbGreater(pmf1, pmf2):
    """Probability that a value from pmf1 is less than a value from pmf2.

    Args:
        pmf1: Pmf object
        pmf2: Pmf object

    Returns:
        float probability
    """
    total = 0.0
    for v1, p1 in pmf1.Items():
        for v2, p2 in pmf2.Items():
            if v1 > v2:
                total += p1 * p2
    return total


def PmfProbEqual(pmf1, pmf2):
    """Probability that a value from pmf1 equals a value from pmf2.

    Args:
        pmf1: Pmf object
        pmf2: Pmf object

    Returns:
        float probability
    """
    total = 0.0
    for v1, p1 in pmf1.Items():
        for v2, p2 in pmf2.Items():
            if v1 == v2:
                total += p1 * p2
    return total


def RandomSum(dists):
    """Chooses a random value from each dist and returns the sum.

    dists: sequence of Pmf or Cdf objects

    returns: numerical sum
    """
    total = sum(dist.Random() for dist in dists)
    return total


def SampleSum(dists, n):
    """Draws a sample of sums from a list of distributions.

    dists: sequence of Pmf or Cdf objects
    n: sample size

    returns: new Pmf of sums
    """
    pmf = MakePmfFromList(RandomSum(dists) for i in xrange(n))
    return pmf


def EvalGaussianPdf(x, mu, sigma):
    """Computes the unnormalized PDF of the normal distribution.

    x: value
    mu: mean
    sigma: standard deviation
    
    returns: float probability density
    """
    return scipy.stats.norm.pdf(x, mu, sigma)


def MakeGaussianPmf(mu, sigma, num_sigmas, n=201):
    """Makes a PMF discrete approx to a Gaussian distribution.
    
    mu: float mean
    sigma: float standard deviation
    num_sigmas: how many sigmas to extend in each direction
    n: number of values in the Pmf

    returns: normalized Pmf
    """
    pmf = Pmf()
    low = mu - num_sigmas * sigma
    high = mu + num_sigmas * sigma

    for x in numpy.linspace(low, high, n):
        p = EvalGaussianPdf(x, mu, sigma)
        pmf.Set(x, p)
    pmf.Normalize()
    return pmf


def EvalBinomialPmf(k, n, p):
    """Evaluates the binomial pmf.

    Returns the probabily of k successes in n trials with probability p.
    """
    return scipy.stats.binom.pmf(k, n, p)
    

def EvalPoissonPmf(k, lam):
    """Computes the Poisson PMF.

    k: number of events
    lam: parameter lambda in events per unit time

    returns: float probability
    """
    # don't use the scipy function (yet).  for lam=0 it returns NaN;
    # should be 0.0
    # return scipy.stats.poisson.pmf(k, lam)

    return lam ** k * math.exp(-lam) / math.factorial(k)


def MakePoissonPmf(lam, high, step=1):
    """Makes a PMF discrete approx to a Poisson distribution.

    lam: parameter lambda in events per unit time
    high: upper bound of the Pmf

    returns: normalized Pmf
    """
    pmf = Pmf()
    for k in xrange(0, high + 1, step):
        p = EvalPoissonPmf(k, lam)
        pmf.Set(k, p)
    pmf.Normalize()
    return pmf


def EvalExponentialPdf(x, lam):
    """Computes the exponential PDF.

    x: value
    lam: parameter lambda in events per unit time

    returns: float probability density
    """
    return lam * math.exp(-lam * x)


def EvalExponentialCdf(x, lam):
    """Evaluates CDF of the exponential distribution with parameter lam."""
    return 1 - math.exp(-lam * x)


def MakeExponentialPmf(lam, high, n=200):
    """Makes a PMF discrete approx to an exponential distribution.

    lam: parameter lambda in events per unit time
    high: upper bound
    n: number of values in the Pmf

    returns: normalized Pmf
    """
    pmf = Pmf()
    for x in numpy.linspace(0, high, n):
        p = EvalExponentialPdf(x, lam)
        pmf.Set(x, p)
    pmf.Normalize()
    return pmf


def StandardGaussianCdf(x):
    """Evaluates the CDF of the standard Gaussian distribution.
    
    See http://en.wikipedia.org/wiki/Normal_distribution
    #Cumulative_distribution_function

    Args:
        x: float
                
    Returns:
        float
    """
    return (erf(x / ROOT2) + 1) / 2


def GaussianCdf(x, mu=0, sigma=1):
    """Evaluates the CDF of the gaussian distribution.
    
    Args:
        x: float

        mu: mean parameter
        
        sigma: standard deviation parameter
                
    Returns:
        float
    """
    return StandardGaussianCdf(float(x - mu) / sigma)


def GaussianCdfInverse(p, mu=0, sigma=1):
    """Evaluates the inverse CDF of the gaussian distribution.

    See http://en.wikipedia.org/wiki/Normal_distribution#Quantile_function  

    Args:
        p: float

        mu: mean parameter
        
        sigma: standard deviation parameter
                
    Returns:
        float
    """
    x = ROOT2 * erfinv(2 * p - 1)
    return mu + x * sigma


class Beta(object):
    """Represents a Beta distribution.

    See http://en.wikipedia.org/wiki/Beta_distribution
    """
    def __init__(self, alpha=1, beta=1, name=''):
        """Initializes a Beta distribution."""
        self.alpha = alpha
        self.beta = beta
        self.name = name

    def Update(self, data):
        """Updates a Beta distribution.

        data: pair of int (heads, tails)
        """
        heads, tails = data
        self.alpha += heads
        self.beta += tails

    def Mean(self):
        """Computes the mean of this distribution."""
        return float(self.alpha) / (self.alpha + self.beta)

    def Random(self):
        """Generates a random variate from this distribution."""
        return random.betavariate(self.alpha, self.beta)

    def Sample(self, n):
        """Generates a random sample from this distribution.

        n: int sample size
        """
        size = n,
        return numpy.random.beta(self.alpha, self.beta, size)

    def EvalPdf(self, x):
        """Evaluates the PDF at x."""
        return x ** (self.alpha - 1) * (1 - x) ** (self.beta - 1)

    def MakePmf(self, steps=101, name=''):
        """Returns a Pmf of this distribution.

        Note: Normally, we just evaluate the PDF at a sequence
        of points and treat the probability density as a probability
        mass.

        But if alpha or beta is less than one, we have to be
        more careful because the PDF goes to infinity at x=0
        and x=1.  In that case we evaluate the CDF and compute
        differences.
        """
        if self.alpha < 1 or self.beta < 1:
            cdf = self.MakeCdf()
            pmf = cdf.MakePmf()
            return pmf

        xs = [i / (steps - 1.0) for i in xrange(steps)]
        probs = [self.EvalPdf(x) for x in xs]
        pmf = MakePmfFromDict(dict(zip(xs, probs)), name)
        return pmf

    def MakeCdf(self, steps=101):
        """Returns the CDF of this distribution."""
        xs = [i / (steps - 1.0) for i in xrange(steps)]
        ps = [scipy.special.betainc(self.alpha, self.beta, x) for x in xs]
        cdf = Cdf(xs, ps)
        return cdf


class Dirichlet(object):
    """Represents a Dirichlet distribution.

    See http://en.wikipedia.org/wiki/Dirichlet_distribution
    """

    def __init__(self, n, conc=1, name=''):
        """Initializes a Dirichlet distribution.

        n: number of dimensions
        conc: concentration parameter (smaller yields more concentration)
        name: string name
        """
        if n < 2:
            raise ValueError('A Dirichlet distribution with '
                             'n<2 makes no sense')

        self.n = n
        self.params = numpy.ones(n, dtype=numpy.float) * conc
        self.name = name

    def Update(self, data):
        """Updates a Dirichlet distribution.

        data: sequence of observations, in order corresponding to params
        """
        m = len(data)
        self.params[:m] += data

    def Random(self):
        """Generates a random variate from this distribution.

        Returns: normalized vector of fractions
        """
        p = numpy.random.gamma(self.params)
        return p / p.sum()

    def Likelihood(self, data):
        """Computes the likelihood of the data.

        Selects a random vector of probabilities from this distribution.

        Returns: float probability
        """
        m = len(data)
        if self.n < m:
            return 0

        x = data
        p = self.Random()
        q = p[:m] ** x
        return q.prod()

    def LogLikelihood(self, data):
        """Computes the log likelihood of the data.

        Selects a random vector of probabilities from this distribution.

        Returns: float log probability
        """
        m = len(data)
        if self.n < m:
            return float('-inf')

        x = self.Random()
        y = numpy.log(x[:m]) * data
        return y.sum()

    def MarginalBeta(self, i):
        """Computes the marginal distribution of the ith element.

        See http://en.wikipedia.org/wiki/Dirichlet_distribution
        #Marginal_distributions

        i: int

        Returns: Beta object
        """
        alpha0 = self.params.sum()
        alpha = self.params[i]
        return Beta(alpha, alpha0 - alpha)

    def PredictivePmf(self, xs, name=''):
        """Makes a predictive distribution.

        xs: values to go into the Pmf

        Returns: Pmf that maps from x to the mean prevalence of x
        """
        alpha0 = self.params.sum()
        ps = self.params / alpha0
        return MakePmfFromItems(zip(xs, ps), name=name)


def BinomialCoef(n, k):
    """Compute the binomial coefficient "n choose k".

    n: number of trials
    k: number of successes

    Returns: float
    """
    return scipy.misc.comb(n, k)


def LogBinomialCoef(n, k):
    """Computes the log of the binomial coefficient.

    http://math.stackexchange.com/questions/64716/
    approximating-the-logarithm-of-the-binomial-coefficient

    n: number of trials
    k: number of successes

    Returns: float
    """
    return n * log(n) - k * log(k) - (n - k) * log(n - k)