1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543
|
# Re-aligner small RNA sequence from SAM/BAM file (miRBase annotation)
from __future__ import print_function
import os.path as op
import re
import shutil
import pandas as pd
import pysam
import argparse
from seqcluster.libs import do
from seqcluster.libs.utils import file_exists
import seqcluster.libs.logger as mylog
from seqcluster.install import _get_miraligner
from seqcluster.seqbuster.snps import create_vcf
from seqcluster.collapse import collapse_fastq
from seqcluster.seqbuster.realign import *
from mirtop.gff import reader
logger = mylog.getLogger(__name__)
def _download_mirbase(args, version="CURRENT"):
"""
Download files from mirbase
"""
if not args.hairpin or not args.mirna:
logger.info("Working with version %s" % version)
hairpin_fn = op.join(op.abspath(args.out), "hairpin.fa.gz")
mirna_fn = op.join(op.abspath(args.out), "miRNA.str.gz")
if not file_exists(hairpin_fn):
cmd_h = "wget ftp://mirbase.org/pub/mirbase/%s/hairpin.fa.gz -O %s && gunzip -f !$" % (version, hairpin_fn)
do.run(cmd_h, "download hairpin")
if not file_exists(mirna_fn):
cmd_m = "wget ftp://mirbase.org/pub/mirbase/%s/miRNA.str.gz -O %s && gunzip -f !$" % (version, mirna_fn)
do.run(cmd_m, "download mirna")
else:
return args.hairpin, args.mirna
def _make_unique(name, idx):
"""Make name unique in case only counts there"""
p = re.compile(".[aA-zZ]+_x[0-9]+")
if p.match(name):
tags = name[1:].split("_x")
return ">%s_%s_x%s" % (tags[0], idx, tags[1])
return name.replace("@", ">")
def _filter_seqs(fn):
"""Convert names of sequences to unique ids"""
out_file = op.splitext(fn)[0] + "_unique.fa"
idx = 0
if not file_exists(out_file):
with open(out_file, 'w') as out_handle:
with open(fn) as in_handle:
line = in_handle.readline()
while line:
if line.startswith("@") or line.startswith(">"):
fixed_name = _make_unique(line.strip(), idx)
seq = in_handle.readline().strip()
counts = _get_freq(fixed_name)
if len(seq) < 26 and (counts > 1 or counts == 0):
idx += 1
print(fixed_name, file=out_handle, end="\n")
print(seq, file=out_handle, end="\n")
if line.startswith("@"):
in_handle.readline()
in_handle.readline()
line = in_handle.readline()
return out_file
def _convert_to_fasta(fn):
out_file = op.splitext(fn)[0] + ".fa"
with open(out_file, 'w') as out_handle:
with open(fn) as in_handle:
line = in_handle.readline()
while line:
if line.startswith("@"):
seq = in_handle.readline()
_ = in_handle.readline()
qual = in_handle.readline()
elif line.startswith(">"):
seq = in_handle.readline()
count = 2
if line.find("_x"):
count = int(line.strip().split("_x")[1])
if count > 1:
print(">%s" % line.strip()[1:], file=out_handle, end="")
print(seq.strip(), file=out_handle, end="")
line = in_handle.readline()
return out_file
def _get_pos(string):
name = string.split(":")[0][1:]
pos = string.split(":")[1][:-1].split("-")
return name, map(int, pos)
def _read_mature(matures, sps):
mature = defaultdict(dict)
with open(matures) as in_handle:
for line in in_handle:
if line.startswith(">") and line.find(sps) > -1:
name = line.strip().replace(">", " ").split()
mir5p = _get_pos(name[2])
mature[name[0]] = {mir5p[0]: mir5p[1]}
if len(name) > 3:
mir3p = _get_pos(name[3])
mature[name[0]].update({mir3p[0]: mir3p[1]})
return mature
def _read_precursor(precursor, sps):
"""
Load precursor file for that species
"""
hairpin = defaultdict(str)
name = None
with open(precursor) as in_handle:
for line in in_handle:
if line.startswith(">"):
if hairpin[name]:
hairpin[name] = hairpin[name] + "NNNNNNNNNNNN"
name = line.strip().replace(">", " ").split()[0]
else:
hairpin[name] += line.strip()
hairpin[name] = hairpin[name] + "NNNNNNNNNNNN"
return hairpin
def _read_gtf(gtf):
"""
Load GTF file with precursor positions on genome
"""
if not gtf:
return gtf
db = defaultdict(list)
with open(gtf) as in_handle:
for line in in_handle:
if line.startswith("#"):
continue
cols = line.strip().split("\t")
name = [n.split("=")[1] for n in cols[-1].split(";") if n.startswith("Name")]
chrom, start, end, strand = cols[0], cols[3], cols[4], cols[6]
if cols[2] == "miRNA_primary_transcript":
db[name[0]].append([chrom, int(start), int(end), strand])
return db
def _coord(sequence, start, mirna, precursor, iso):
"""
Define t5 and t3 isomirs
"""
dif = abs(mirna[0] - start)
if start < mirna[0]:
iso.t5 = sequence[:dif].upper()
elif start > mirna[0]:
iso.t5 = precursor[mirna[0] - 1:mirna[0] - 1 + dif].lower()
elif start == mirna[0]:
iso.t5 = "NA"
if dif > 4:
logger.debug("start > 3 %s %s %s %s %s" % (start, len(sequence), dif, mirna, iso.format()))
return None
end = start + (len(sequence) - len(iso.add)) - 1
dif = abs(mirna[1] - end)
if iso.add:
sequence = sequence[:-len(iso.add)]
# if dif > 3:
# return None
if end > mirna[1]:
iso.t3 = sequence[-dif:].upper()
elif end < mirna[1]:
iso.t3 = precursor[mirna[1] - dif:mirna[1]].lower()
elif end == mirna[1]:
iso.t3 = "NA"
if dif > 4:
logger.debug("end > 3 %s %s %s %s %s" % (len(sequence), end, dif, mirna, iso.format()))
return None
logger.debug("%s %s %s %s %s %s" % (start, len(sequence), end, dif, mirna, iso.format()))
return True
def _annotate(reads, mirbase_ref, precursors):
"""
Using SAM/BAM coordinates, mismatches and realign to annotate isomiRs
"""
for r in reads:
for p in reads[r].precursors:
start = reads[r].precursors[p].start + 1 # convert to 1base
end = start + len(reads[r].sequence)
for mature in mirbase_ref[p]:
mi = mirbase_ref[p][mature]
is_iso = _coord(reads[r].sequence, start, mi, precursors[p], reads[r].precursors[p])
logger.debug(("{r} {p} {start} {is_iso} {mature} {mi} {mature_s}").format(s=reads[r].sequence, mature_s=precursors[p][mi[0]-1:mi[1]], **locals()))
if is_iso:
reads[r].precursors[p].mirna = mature
break
return reads
def _realign(seq, precursor, start):
"""
The actual fn that will realign the sequence
"""
error = set()
pattern_addition = [[1, 1, 0], [1, 0, 1], [0, 1, 0], [0, 1, 1], [0, 0, 1], [1, 1, 1]]
for pos in range(0, len(seq)):
if seq[pos] != precursor[(start + pos)]:
error.add(pos)
subs, add = [], []
for e in error:
if e < len(seq) - 3:
subs.append([e, seq[e], precursor[start + e]])
pattern, error_add = [], []
for e in range(len(seq) - 3, len(seq)):
if e in error:
pattern.append(1)
error_add.append(e)
else:
pattern.append(0)
for p in pattern_addition:
if pattern == p:
add = seq[error_add[0]:]
break
if not add and error_add:
for e in error_add:
subs.append([e, seq[e], precursor[start + e]])
return subs, add
def _clean_hits(reads):
"""
Select only best matches
"""
new_reads = defaultdict(realign)
for r in reads:
world = {}
sc = 0
for p in reads[r].precursors:
world[p] = reads[r].precursors[p].get_score(len(reads[r].sequence))
if sc < world[p]:
sc = world[p]
new_reads[r] = reads[r]
for p in world:
logger.debug("score %s %s %s" % (r, p, world[p]))
if sc != world[p]:
logger.debug("remove %s %s %s" % (r, p, world[p]))
new_reads[r].remove_precursor(p)
return new_reads
def _sort_by_name(bam_fn):
"""
sort bam file by name sequence
"""
def _sam_to_bam(bam_fn):
if bam_fn.endswith("bam"):
bam_out = "%s.bam" % os.path.splitext(bam_fn)[0]
cmd = "samtools view -Sbh {bam_fn} -o {bam_out}"
do.run(cmd)
return bam_out
return bam_fn
def _read_bam(bam_fn, precursors):
"""
read bam file and perform realignment of hits
"""
mode = "r" if bam_fn.endswith("sam") else "rb"
handle = pysam.Samfile(bam_fn, mode)
reads = defaultdict(realign)
for line in handle:
chrom = handle.getrname(line.reference_id)
# print("%s %s %s %s" % (line.query_name, line.reference_start, line.query_sequence, chrom))
query_name = line.query_name
if query_name not in reads:
reads[query_name].sequence = line.query_sequence
iso = isomir()
iso.align = line
iso.start = line.reference_start
iso.subs, iso.add = _realign(reads[query_name].sequence, precursors[chrom], line.reference_start)
reads[query_name].set_precursor(chrom, iso)
reads = _clean_hits(reads)
return reads
def _collapse_fastq(in_fn):
"""
collapse reads into unique sequences
"""
args = argparse.Namespace()
args.fastq = in_fn
args.minimum = 1
args.out = op.dirname(in_fn)
return collapse_fastq(args)
def _read_pyMatch(fn, precursors):
"""
read pyMatch file and perform realignment of hits
"""
with open(fn) as handle:
reads = defaultdict(realign)
for line in handle:
query_name, seq, chrom, reference_start, end, mism, add = line.split()
reference_start = int(reference_start)
# chrom = handle.getrname(cols[1])
# print("%s %s %s %s" % (line.query_name, line.reference_start, line.query_sequence, chrom))
if query_name not in reads:
reads[query_name].sequence = seq
iso = isomir()
iso.align = line
iso.start = reference_start
iso.subs, iso.add = _realign(reads[query_name].sequence, precursors[chrom], reference_start)
logger.debug("%s %s %s %s %s" % (query_name, reference_start, chrom, iso.subs, iso.add))
if len(iso.subs) > 1:
continue
reads[query_name].set_precursor(chrom, iso)
reads = _clean_hits(reads)
return reads
def _parse_mut(subs):
"""
Parse mutation tag from miraligner output
"""
if subs!="0":
subs = [[subs.replace(subs[-2:], ""),subs[-2], subs[-1]]]
return subs
def _read_miraligner(fn):
"""Read ouput of miraligner and create compatible output."""
reads = defaultdict(realign)
with open(fn) as in_handle:
in_handle.readline()
for line in in_handle:
cols = line.strip().split("\t")
iso = isomir()
query_name, seq = cols[1], cols[0]
chrom, reference_start = cols[-2], cols[3]
iso.mirna = cols[3]
subs, add, iso.t5, iso.t3 = cols[6:10]
if query_name not in reads:
reads[query_name].sequence = seq
iso.align = line
iso.start = reference_start
iso.subs, iso.add = _parse_mut(subs), add
logger.debug("%s %s %s %s %s" % (query_name, reference_start, chrom, iso.subs, iso.add))
reads[query_name].set_precursor(chrom, iso)
return reads
def _cmd_miraligner(fn, out_file, species, hairpin, out):
"""
Run miraligner for miRNA annotation
"""
tool = _get_miraligner()
path_db = op.dirname(op.abspath(hairpin))
cmd = "{tool} -freq -i {fn} -o {out_file} -s {species} -db {path_db} -sub 1 -trim 3 -add 3"
if not file_exists(out_file):
logger.info("Running miraligner with %s" % fn)
do.run(cmd.format(**locals()), "miraligner with %s" % fn)
shutil.move(out_file + ".mirna", out_file)
return out_file
def _mirtop(out_files, hairpin, gff3, species, out):
"""
Convert miraligner to mirtop format
"""
args = argparse.Namespace()
args.hairpin = hairpin
args.sps = species
args.gtf = gff3
args.add_extra = True
args.files = out_files
args.format = "seqbuster"
args.out_format = "gff"
args.out = out
reader(args)
def _get_freq(name):
"""
Check if name read contains counts (_xNumber)
"""
try:
counts = int(name.split("_x")[1])
except:
return 0
return counts
def _tab_output(reads, out_file, sample):
seen = set()
lines = []
lines_pre = []
seen_ann = {}
dt = None
with open(out_file, 'w') as out_handle:
print("name\tseq\tfreq\tchrom\tstart\tend\tsubs\tadd\tt5\tt3\ts5\ts3\tDB\tprecursor\thits", file=out_handle, end="")
for (r, read) in reads.items():
hits = set()
[hits.add(mature.mirna) for mature in read.precursors.values() if mature.mirna]
hits = len(hits)
for (p, iso) in read.precursors.items():
if len(iso.subs) > 3 or not iso.mirna:
continue
if (r, iso.mirna) not in seen:
seen.add((r, iso.mirna))
chrom = iso.mirna
if not chrom:
chrom = p
count = _get_freq(r)
seq = reads[r].sequence
if iso.get_score(len(seq)) < 1:
continue
if iso.subs:
iso.subs = [] if "N" in iso.subs[0] else iso.subs
annotation = "%s:%s" % (chrom, iso.format(":"))
res = ("{seq}\t{r}\t{count}\t{chrom}\tNA\tNA\t{format}\tNA\tNA\tmiRNA\t{p}\t{hits}").format(format=iso.format().replace("NA", "0"), **locals())
if annotation in seen_ann and seq.find("N") < 0 and seen_ann[annotation].split("\t")[0].find("N") < 0:
raise ValueError("Same isomir %s from different sequence: \n%s and \n%s" % (annotation, res, seen_ann[annotation]))
seen_ann[annotation] = res
lines.append([annotation, chrom, count, sample, hits])
lines_pre.append([annotation, chrom, p, count, sample, hits])
print(res, file=out_handle, end="")
if lines:
dt = pd.DataFrame(lines)
dt.columns = ["isomir", "chrom", "counts", "sample", "hits"]
dt = dt[dt['hits']>0]
dt = dt.loc[:, "isomir":"sample"]
dt = dt.groupby(['isomir', 'chrom', 'sample'], as_index=False).sum()
dt.to_csv(out_file + "_summary")
dt_pre = pd.DataFrame(lines_pre)
dt_pre.columns = ["isomir", "mature", "chrom", "counts", "sample", "hits"]
dt_pre = dt_pre[dt_pre['hits']==1]
dt_pre = dt_pre.loc[:, "isomir":"sample"]
dt_pre = dt_pre.groupby(['isomir', 'chrom', 'mature', 'sample'], as_index=False).sum()
return out_file, dt, dt_pre
return None
def _merge(dts):
"""
merge multiple samples in one matrix
"""
df = pd.concat(dts)
ma = df.pivot(index='isomir', columns='sample', values='counts')
ma_mirna = ma
ma = ma.fillna(0)
ma_mirna['mirna'] = [m.split(":")[0] for m in ma.index.values]
ma_mirna = ma_mirna.groupby(['mirna']).sum()
ma_mirna = ma_mirna.fillna(0)
return ma, ma_mirna
def _create_counts(out_dts, out_dir):
"""Summarize results into single files."""
ma, ma_mirna = _merge(out_dts)
out_ma = op.join(out_dir, "counts.tsv")
out_ma_mirna = op.join(out_dir, "counts_mirna.tsv")
ma.to_csv(out_ma, sep="\t")
ma_mirna.to_csv(out_ma_mirna, sep="\t")
return out_ma_mirna, out_ma
def miraligner(args):
"""
Realign BAM hits to miRBAse to get better accuracy and annotation
"""
hairpin, mirna = _download_mirbase(args)
precursors = _read_precursor(args.hairpin, args.sps)
matures = _read_mature(args.mirna, args.sps)
gtf = _read_gtf(args.gtf)
out_dts = []
out_files = []
for bam_fn in args.files:
sample = op.splitext(op.basename(bam_fn))[0]
logger.info("Reading %s" % bam_fn)
if bam_fn.endswith("bam") or bam_fn.endswith("sam"):
bam_fn = _sam_to_bam(bam_fn)
bam_sort_by_n = op.splitext(bam_fn)[0] + "_sort"
pysam.sort("-n", bam_fn, bam_sort_by_n)
reads = _read_bam(bam_sort_by_n + ".bam", precursors)
elif bam_fn.endswith("fasta") or bam_fn.endswith("fa") or \
bam_fn.endswith("fastq"):
if args.collapse:
bam_fn = _collapse_fastq(bam_fn)
out_file = op.join(args.out, sample + ".premirna")
bam_fn = _filter_seqs(bam_fn)
if args.miraligner:
_cmd_miraligner(bam_fn, out_file, args.sps, args.hairpin, args.out)
reads = _read_miraligner(out_file)
out_files.append(out_file)
else:
raise ValueError("Format not recognized.")
if args.miraligner:
_mirtop(out_files, args.hairpin, args.gtf, args.sps, args.out)
if not args.miraligner:
reads = _annotate(reads, matures, precursors)
out_file = op.join(args.out, sample + ".mirna")
out_file, dt, dt_pre = _tab_output(reads, out_file, sample)
try:
vcf_file = op.join(args.out, sample + ".vcf")
if not file_exists(vcf_file):
# if True:
create_vcf(dt_pre, matures, gtf, vcf_file)
try:
import vcf
vcf.Reader(filename=vcf_file)
except Exception as e:
logger.warning(e.__doc__)
logger.warning(e)
except Exception as e:
# traceback.print_exc()
logger.warning(e.__doc__)
logger.warning(e)
if isinstance(dt, pd.DataFrame):
out_dts.append(dt)
if out_dts:
_create_counts(out_dts, args.out)
else:
print("No files analyzed!")
|