1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407
|
---
output:
knitrBootstrap::bootstrap_document:
theme: readable
highlight: zenburn
theme.chooser: TRUE
highlight.chooser: TRUE
html_document:
toc: true
highlight: zenburn
---
```{r setup, echo=FALSE}
library(knitr)
library(ggplot2)
library(reshape)
library(DESeq2)
library(genefilter)
library(CHBUtils)
library(gtools)
library(gridExtra)
library(devtools)
library(dplyr)
library(isomiRs)
knitr::opts_chunk$set(tidy=TRUE, highlight=TRUE, dev="png", fig.width=10,fig.heigh=6,
cache=FALSE, highlight=TRUE, autodep=TRUE, warning=FALSE, error=FALSE,
message=FALSE, prompt=TRUE, comment='', fig.cap='', bootstrap.show.code=FALSE)
root_path = "~/orch/scratch/simulator/mirqc/work"
root_file = file.path(root_path)
condition = "condition"
setwd(root_path)
```
```{r render,eval=FALSE, echo=FALSE}
library(rmarkdown)
library(knitrBootstrap)
render("mirqc_report.rmd")
```
```{r load}
files = read.table(file.path(root_path, "summary_re.csv"), sep=",",header=T,colClasses = "character")
files = files[files$group=="Homo_sapiens_miRQC",]
samples = files[,"sample_id"]
names_stats = files[,"size_stats"]
names(names_stats) = samples
groups = files[,"group"]
names(groups) = samples
summarydata = data.frame(row.names=samples,samples=samples,group=groups)
summarydata = summarydata[summarydata$group=="Homo_sapiens_miRQC",]
summarydata$group = c("QCA", "QCA", "QCB", "QCB", "QCC", "QCC", "QCD", "QCD")
design <- data.frame(row.names=summarydata$samples, condition=summarydata$group)
```
# Exploratory analysis
In this section we will see descriptive figures about quality of the data,
reads with adapter, reads mapped to miRNAs, reads mapped to other small RNAs.
## size distribution
After adapter removal, we can plot the size distribution of the small RNAs.
```{r adapter,fig.width=10}
tab = data.frame()
for (sample in samples){
d = read.table(file.path(root_path,names_stats[sample]), sep=" ")
tab = rbind(tab, d %>% mutate(sample=sample, group=groups[sample]))
}
reads_adapter = tab %>% group_by(sample, group) %>% summarise(total=sum(V2))
ggplot(reads_adapter, aes(x=sample,y=total,fill=group)) +
geom_bar(stat="identity", position = "dodge") +
ggtitle("total number of reads with adapter") +
ylab("# reads") +
theme(axis.text.x = element_text(angle = 90, vjust = 0.5, hjust=1))
ggplot(tab, aes(x=V1,y=V2,fill=sample)) +
geom_bar(stat="identity", position = "dodge") +
facet_wrap(~group, ncol=2)+
ggtitle("size distribution") +
ylab("# reads") + xlab("size") +
theme(axis.text.x = element_text(angle = 90, vjust = 0.5, hjust=1))
```
## miRNA
### total miRNA expression annotated with mirbase
```{r mirna,results='hide'}
mi_files = file.path(root_path,files[,"miraligner"])
row.names(design) = samples
obj <- IsomirDataSeqFromFiles(files = mi_files, design = design ,header = T, cov = 1)
```
```{r mirna-mirbase}
ggplot( data.frame(sample=colnames(counts(obj)), total=colSums(counts(obj)))) +
geom_bar(aes(x=sample,y=total), stat='identity')+
theme(axis.text.x = element_text(angle = 90, vjust = 0.5, hjust=1))
mirna_step <- as.data.frame(colSums(counts(obj)))
```
### Distribution of mirna expression
```{r depth}
ggplot(melt(counts(obj))) +
geom_boxplot(aes(x=X2,y=value))+
scale_y_log10()+
theme(axis.text.x = element_text(angle = 90, vjust = 0.5, hjust=1))
```
### cumulative distribution of miRNAs
```{r cum}
cs <- as.data.frame(apply(counts(obj),2,function(x){cumsum(sort(x, decreasing = T))}))
cs$pos <- 1:nrow(cs)
ggplot((melt(cs,id.vars = "pos")))+
geom_line(aes(x=pos,y=value,color=variable))+
scale_y_log10()
```
### complexity
Number of miRNAs with > 3 counts.
```{r complexity}
kable(as.data.frame(colSums(counts(obj)>10)))
```
## Others small RNA
The data was analyzed with [seqcluster](http://seqcluster.readthedocs.org/)
This tools used all reads, uniquely mapped and multi-mapped reads. The first
step is to cluster sequences in all locations they overlap. The second step is to
create meta-clusters: is the unit that merge all clusters that share the
same sequences. This way the output are meta-clusters, common sequences that could
come from different region of the genome.
### genome covered
In this table 1 means % of the genome with at least 1 read, and 0 means %
of the genome without reads.
```{r genome-covered, results='asis'}
cov_stats <- read.table(file.path(root_path, "align", "seqs_clean_rmlw.bam_cov.tsv"),sep="\t",check.names = F)
kable(cov_stats[cov_stats$V1=="genome",] %>% dplyr::select(coverage=V2,ratio_genome=V5), row.names = FALSE)
```
The normal value for human data with strong small RNA signal is: 0.0002.
This will change for smaller genomes.
### classification
Number of reads in the data after each step:
* raw: initial reads
* cluster: after cluster detection
* multimap: after meta-cluster detection
```{r reads-track}
reads_stats <- read.table(file.path(root_path, "seqcluster", "cluster", "read_stats.tsv"),sep="\t",check.names = F)
ggplot(reads_stats %>% filter(V2 %in% summarydata$samples), aes(x=V2, y=V1, fill=V3)) +
geom_bar(stat = 'identity', position = 'dodge') +
labs(list(x="samples", y="reads")) +
scale_fill_brewer("steps", palette = 'Set1')+
theme(axis.text.x = element_text(angle = 90, vjust = 0.5, hjust=1))
```
```{r cluster}
clus <- read.table(file.path(root_path, "seqcluster", "cluster", "counts.tsv"),header=T,sep="\t",row.names=1, check.names = FALSE)
ann <- clus[,2]
toomany <- clus[,1]
clus_ma <- clus[,3:ncol(clus)]
clus_ma = clus_ma[,row.names(design)]
```
Check complex meta-clusters: This kind of events happen when there are small RNA over the whole genome, and all
repetitive small rnas map to thousands of places and sharing many sequences in many positions.
If any meta-cluster is > 40% of the total data, maybe it is worth to add some filters
like: minimum number of counts `-e` or `--min--shared` in `seqcluster prepare`
```{r complex-meta-clusters}
library(edgeR)
clus_ma_norm = cpm(DGEList(clus_ma),normalized.lib.sizes = TRUE)
head(clus_ma_norm[toomany>0,])
```
### complexity
Number of miRNAs with > 10 counts.
```{r complexity-clus}
kable(as.data.frame(colSums(clus_ma>10)))
```
### Contribution by class
```{r cluster_type}
rRNA <- colSums(clus_ma[grepl("rRNA",ann) & grepl("miRNA",ann)==F,])
miRNA <- colSums(clus_ma[grepl("miRNA",ann),])
tRNA <- colSums(clus_ma[grepl("tRNA",ann) & grepl("rRNA",ann)==F & grepl("ncRNA",ann)==F & grepl("miRNA",ann)==F,])
rmsk <- colSums(clus_ma[grepl("ncRNA",ann) & grepl("rRNA",ann)==F & grepl("miRNA",ann)==F,])
total <- colSums(clus_ma)
dd <- data.frame(samples=names(rRNA),
rRNA=rRNA,
miRNA=miRNA,
tRNA=tRNA,
ncRNA=rmsk,
total=total)
ggplot(melt(dd)) +
geom_bar(aes(x=samples,y=value,fill=variable),
stat='identity',
position="dodge")+
scale_fill_brewer(palette = "Set1")+
theme(axis.text.x = element_text(angle = 90, vjust = 0.5, hjust=1))
dd_norm = dd
dd_norm[,2:5] = sweep(dd[,2:5],1,dd[,6],"/")
ggplot(melt(dd_norm[,1:5])) +
geom_bar(aes(x=samples,y=value,fill=variable),
stat='identity',
position="dodge")+
scale_fill_brewer(palette = "Set1")+
theme(axis.text.x = element_text(angle = 90, vjust = 0.5, hjust=1))+
labs(list(title="relative proportion of small RNAs",y="% reads"))
```
```{r clus-size-by-class}
# size_clus <- read.table(file.path(root_path, "..", "seqcluster", "cluster", "size_counts.tsv"),sep="\t",check.names = F)
```
# Differential expression
[DESeq2](http://bioconductor.org/packages/release/bioc/html/DESeq2.html) is used for this analysis.
```{r de-setup}
library(DESeq2)
library(DEGreport)
library(vsn)
```
```{r deseq2-handler}
filter_handle <- function(res){
res_nona <- res[!is.na(res$padj),]
keep <- res_nona$padj < 0.1
res_nona[keep,]
}
handle_deseq2 = function(dds, summarydata, column) {
all_combs = combn(levels(summarydata[,column]), 2, simplify=FALSE)
all_results = list()
contrast_strings = list()
for(comb in all_combs) {
contrast_string = paste(comb, collapse="_vs_")
contrast = c(column, comb)
res = results(dds, contrast=contrast)
res = res[order(res$padj),]
all_results = c(all_results, res)
contrast_strings = c(contrast_strings, contrast_string)
}
names(all_results) = contrast_strings
return(all_results)
}
plot_MA = function(res){
for(i in seq(length(res))) {
DESeq2::plotMA(res[[i]])
title(paste("MA plot for contrast", names(res)[i]))
}
}
plot_volcano = function(res){
for(i in seq(length(res))) {
stats = as.data.frame(res[[i]][,c(2,6)])
p = volcano_density_plot(stats, title=names(res)[i], lfc.cutoff=1)
print(p)
}
}
do_de = function(raw, summarydata, condition, minc=3){
dss = DESeqDataSetFromMatrix(countData = raw[rowMeans(raw)>minc,],
colData = summarydata,
design = ~ condition)
dss = DESeq(dss)
plotDispEsts(dss)
dss
}
do_norm = function(dss, root_path, prefix){
rlog_ma = assay(rlog(dss))
count_ma = counts(dss, normalized=TRUE)
raw = counts(dss, normalized=FALSE)
fn_log = paste0(root_file, prefix, "log_matrix.txt")
write.table(rlog_ma,fn_log,sep="\t")
fn_count = paste0(root_file, prefix, "count_matrix.txt")
write.table(count_ma,fn_count,sep="\t")
fn_raw = paste0(root_file, prefix, "raw_matrix.txt")
write.table(count_ma,fn_raw,sep="\t")
}
```
## Analysis for miRNA
```{r de}
dds = do_de(counts(obj), design, condition)
```
```{r tables}
do_norm(dds, root_path, "mirna_")
```
### MA-plots
```{r DESeq-output, results='asis'}
all_results = handle_deseq2(dds, design, condition)
plot_MA(all_results)
kable(head(all_results[[1]]))
```
```{r DESeq-confirmation, eval=FALSE}
DESeq2::plotCounts(dds, put_gene_name_here)
```
## Analysis for isomiRs
```{r de-iso}
dds = do_de(counts(isoCounts(obj, ref=T, iso5=T, iso3=T, add=T, subs =T)), design, condition, 10)
```
```{r tables-iso}
do_norm(dds, root_path, "isomirs_")
```
### MA-plots
```{r DESeq-output-iso, results='asis'}
all_results = handle_deseq2(dds, design, condition)
plot_MA(all_results)
kable(head(all_results[[1]]))
```
```{r DESeq-confirmation-iso, eval=FALSE}
DESeq2::plotCounts(dds, put_gene_name_here)
```
## Analysis for clusters
```{r de-c}
dds = do_de(clus_ma, design, condition)
```
```{r tables-c}
do_norm(dds, root_path, "clusters_")
```
### MA-plots
```{r DESeq-output-c, results='asis'}
all_results = handle_deseq2(dds, design, condition)
plot_MA(all_results)
clust_des = head(all_results[[1]])
ann_des = clus[rownames(clust_des),colnames(clus_ma)]
kable(cbind(clust_des, ann_des))
```
# Files
Files generated contains raw count, normalized counts, log2 normalized counts and DESeq2 results.
|