1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
|
import os.path as op
from progressbar import ProgressBar
import pysam
import pybedtools
from seqcluster.libs import pysen
import numpy as np
from seqcluster.libs.utils import file_exists
import seqcluster.libs.logger as mylog
from seqcluster.libs.classes import *
from seqcluster.detect.metacluster import _get_seqs_from_cluster
from seqcluster.libs.do import run
logger = mylog.getLogger(__name__)
def detect_complexity(bam_in, genome, out):
"""
genome coverage of small RNA
"""
if not genome:
logger.info("No genome given. skipping.")
return None
out_file = op.join(out, op.basename(bam_in) + "_cov.tsv")
if file_exists(out_file):
return None
fai = genome + ".fai"
cov = pybedtools.BedTool(bam_in).genome_coverage(max=1)
cov.saveas(out_file)
total = 0
for region in cov:
if region[0] == "genome" and int(region[1]) != 0:
total += float(region[4])
logger.info("Total genome with sequences: %s " % total)
def clean_bam_file(bam_in, mask=None):
"""
Remove from alignment reads with low counts and highly # of hits
"""
seq_obj = defaultdict(int)
if mask:
mask_file = op.splitext(bam_in)[0] + "_mask.bam"
if not file_exists(mask_file):
pybedtools.BedTool(bam_in).intersect(b=mask, v=True).saveas(mask_file)
bam_in = mask_file
out_file = op.splitext(bam_in)[0] + "_rmlw.bam"
# bam.index(bam_in, {'algorithm':{}})
run("samtools index %s" % bam_in)
if not file_exists(bam_in + ".bai"):
raise IOError("Failed to created bam index of %s. Try to do it manually" % bam_in)
bam_handle = pysam.AlignmentFile(bam_in, "rb")
with pysam.AlignmentFile(out_file, "wb", template=bam_handle) as out_handle:
for read in bam_handle.fetch():
seq_name = int(read.query_name.replace('seq_', ''))
match_size = [nts for oper, nts in read.cigartuples if oper == 0]
subs_size = [nts for oper, nts in read.cigartuples if oper == 4]
if match_size[0] < 17:
continue
if subs_size:
if subs_size[0] > 3:
continue
try:
nh = read.get_tag('NH')
except KeyError:
nh = 1
seq_obj[seq_name] = sequence(seq_name)
seq_obj[seq_name].align = nh
out_handle.write(read)
return out_file, seq_obj
def detect_clusters(c, current_seq, MIN_SEQ, non_un_gl=False):
"""
Parse the merge file of sequences position to create clusters that will have all
sequences that shared any position on the genome
:param c: file from bedtools with merge sequence positions
:param current_seq: list of sequences
:param MIN_SEQ: int cutoff to keep the cluster or not. 10 as default
:return: object with information about:
* cluster
* dict with sequences (as keys) and cluster_id (as value)
* sequences
* loci
"""
current_loci = {}
current_clus = {}
# sequence2clusters = [set()] * (max(current_seq.keys()) + 2)
sequence2clusters = defaultdict(set)
lindex = 0
eindex = 0
previous_id = 0
for line in c.features():
c, start, end, name, score, strand, c_id = line
c_id = int(c_id)
name = int(name.replace('seq_', ''))
pos = int(start) if strand == "+" else int(end)
if name not in current_seq:
continue
if c.find('Un_gl') > -1 and non_un_gl:
continue
if c_id != previous_id:
if previous_id > 0:
if len(current_clus[eindex].idmembers) < MIN_SEQ:
for s in current_clus[eindex].idmembers:
sequence2clusters[s] = sequence2clusters[s] - set([eindex])
del current_clus[eindex]
logger.debug("detect_cluster: %s %s %s" % (c_id, previous_id, name))
lindex += 1
eindex += 1
current_clus[eindex] = cluster(eindex)
newpos = position(lindex, c, start, end, strand)
current_loci[lindex] = newpos
# update locus, sequences in each line
current_loci[lindex].end = int(end)
current_loci[lindex].coverage[pos] += 1
size = range(pos, pos + current_seq[name].len)
current_loci[lindex].counts.update(dict(zip(size, [current_seq[name].total()] * current_seq[name].len)))
current_clus[eindex].idmembers[name] = 1
current_clus[eindex].add_id_member([name], lindex)
current_seq[name].add_pos(lindex, pos)
# current_seq[name].align = 1
previous_id = c_id
sequence2clusters[name].add(eindex)
logger.info("%s Clusters read" % eindex)
# merge cluster with shared sequences
metacluster_obj, cluster_id = _find_metaclusters(current_clus, sequence2clusters, current_seq, MIN_SEQ)
return cluster_info_obj(current_clus, metacluster_obj, current_loci, current_seq)
def _common(items, seen):
intersect = [e for e in map(seen.get, items)]
return list(filter(None, intersect))
def _update(clusters, idx, hash):
return hash.update(dict(zip(clusters, [idx] * len(clusters))))
def _find_metaclusters(clus_obj, sequence2clusters, current_seq, min_seqs):
"""
Mask under same id all clusters that share sequences
:param clus_obj: cluster object coming from detect_cluster
:param min_seqs: int cutoff to keep the cluster or not. 10 as default
:return: updated clus_obj and dict with seq_id: cluster_id
"""
seen = defaultdict(int)
metacluster = defaultdict(set)
c_index = len(sequence2clusters)
logger.info("Creating meta-clusters based on shared sequences: %s" % c_index)
meta_idx = 1
bar = ProgressBar(maxval=c_index).start()
bar.update()
for itern, name in enumerate(sequence2clusters):
clusters = sequence2clusters[name]
if len(clusters) == 0:
c_index -= 1
continue
current_seq[name].align = 1
meta_idx += 1
bar.update(itern)
# import pdb; pdb.set_trace()
already_in = _common(clusters, seen)
_update(clusters, meta_idx, seen)
metacluster[meta_idx] = metacluster[meta_idx].union(clusters)
if already_in:
for seen_metacluster in already_in:
clusters2merge = metacluster[seen_metacluster]
metacluster[meta_idx] = metacluster[meta_idx].union(clusters2merge)
_update(clusters2merge, meta_idx, seen)
# metacluster[seen_metacluster] = 0
del metacluster[seen_metacluster]
logger.info("%s metaclusters from %s sequences" % (len(metacluster), c_index))
return metacluster, seen
def _find_families_deprecated(clus_obj, min_seqs):
"""
Mask under same id all clusters that share sequences
:param clus_obj: cluster object coming from detect_cluster
:param min_seqs: int cutoff to keep the cluster or not. 10 as default
:return: updated clus_obj and dict with seq_id: cluster_id
"""
logger.info("Creating meta-clusters based on shared sequences.")
seen = defaultdict()
metacluster = defaultdict(list)
c_index = clus_obj.keys()
meta_idx = 0
p = ProgressBar(maxval=len(c_index), redirect_stdout=True).start()
for itern, c in enumerate(c_index):
p.update(itern)
clus = clus_obj[c]
if len(clus.idmembers.keys()) < min_seqs:
del clus_obj[c]
continue
logger.debug("reading cluster %s" % c)
logger.debug("loci2seq %s" % clus.loci2seq)
already_in, not_in = _get_seqs_from_cluster(clus.idmembers.keys(), seen)
logger.debug("seen %s news %s" % (already_in, not_in))
meta_idx += 1
metacluster[meta_idx].append(c)
seen.update(dict(zip(not_in, [meta_idx] * len(not_in))))
if len(already_in) > 0:
logger.debug("seen in %s" % already_in)
for eindex in already_in:
for cluster in metacluster[eindex]:
metacluster[meta_idx].append(cluster)
prev_clus = clus_obj[cluster]
logger.debug("_find_families: prev %s current %s" % (eindex, clus.id))
# add current seqs to seen cluster
seqs_in = prev_clus.idmembers.keys()
seen.update(dict(zip(seqs_in, [meta_idx] * len(seqs_in))))
# for s_in_clus in prev_clus.idmembers:
# seen[s_in_clus] = meta_idx
# clus.idmembers[s_in_clus] = 1
# add current locus to seen cluster
# for loci in prev_clus.loci2seq:
# logger.debug("adding %s" % loci)
# if not loci_old in current_clus[eindex].loci2seq:
# clus.add_id_member(list(prev_clus.loci2seq[loci]), loci)
# logger.debug("loci %s" % clus.loci2seq.keys())
del metacluster[eindex]
# clus_obj[c] = clus
# logger.debug("num cluster %s" % len(clus_obj.keys()))
logger.info("%s clusters merged" % len(metacluster))
return metacluster, seen
def peak_calling(clus_obj):
"""
Run peak calling inside each cluster
"""
new_cluster = {}
for cid in clus_obj.clus:
cluster = clus_obj.clus[cid]
cluster.update()
logger.debug("peak calling for %s" % cid)
bigger = cluster.locimaxid
if bigger in clus_obj.loci:
s, e = min(clus_obj.loci[bigger].counts.keys()), max(clus_obj.loci[bigger].counts.keys())
scale = s
if clus_obj.loci[bigger].strand == "-":
scale = e
logger.debug("bigger %s at %s-%s" % (bigger, s, e))
dt = np.array([0] * (abs(e - s) + 12))
for pos in clus_obj.loci[bigger].counts:
ss = abs(int(pos) - scale) + 5
dt[ss] += clus_obj.loci[bigger].counts[pos]
x = np.array(range(0, len(dt)))
logger.debug("x %s and y %s" % (x, dt))
# tab = pd.DataFrame({'x': x, 'y': dt})
# tab.to_csv( str(cid) + "peaks.csv", mode='w', header=False, index=False)
if len(x) > 35 + 12:
peaks = list(np.array(pysen.pysenMMean(x, dt)) - 5)
logger.debug(peaks)
else:
peaks = ['short']
cluster.peaks = peaks
new_cluster[cid] = cluster
clus_obj.clus = new_cluster
return clus_obj
|