File: graphics.rst

package info (click to toggle)
python-sfml 2.2~git20150611.196c88%2Bdfsg-3
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 1,816 kB
  • ctags: 1,605
  • sloc: python: 1,125; cpp: 309; makefile: 118
file content (3163 lines) | stat: -rw-r--r-- 106,215 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
Graphics
========
.. module:: sfml.graphics
.. contents:: :local:


PrimitiveType
^^^^^^^^^^^^^

.. py:class:: PrimitiveType

   Empty class that defines some constants. The are the types of
   primitives that an :class:`VertexArray` can render.

   :const:`POINTS` and :class:`LINES` have no area, therefore their
   thickness will always be 1 pixel, regardless of the current transform
   and view.

   .. py:data:: POINTS

      List of individual points.

   .. py:data:: LINES

      List of individual lines.

   .. py:data:: LINES_STRIP

      List of connected lines, a point uses the previous point to form a line.

   .. py:data:: TRIANGLES

      List of individual triangles.

   .. py:data:: TRIANGLES_STRIP

      List of connected triangles, a point uses the two previous points to form a triangle.

   .. py:data:: TRIANGLES_FAN

      List of connected triangles, a point uses the common center and the previous point to form a triangle.

   .. py:data:: QUADS

      List of individual quads.


Rectangle
^^^^^^^^^

.. class:: Rectangle

   Utility class for manipulating 2D axis aligned rectangles.

   A rectangle is defined by its top-left corner and its size.

   It is a very simple class defined for convenience, so its member
   variables (left, top, width and height) are public and can be
   accessed directly via attributes, just like :class:`.Vector2`.

   Unlike SFML, :class:`Rectangle` does define functions to emulate
   the properties that are not directly members (such as right, bottom,
   center, etc.).

   :class:`Rectangle` uses the usual rules for its boundaries:

      * The left and top edges are included in the rectangle's area
      * The right (left + width) and bottom (top + height) edges are excluded from the rectangle's area

   This means that (0, 0, 1, 1) and (1, 1, 1, 1) don't intersect.

   Usage example::

      # define a rectangle, located at (0, 0) with a size of 20x5
      r1 = sf.Rectangle(sf.Vector2(0, 0), sf.Vector2(20, 5))
      # or r1 = sf.Rectangle((0, 0), (20, 5))

      # define another rectangle, located at (4, 2) with a size of 18x10
      position = sf.Vector2(4, 2)
      size = sf.Vector2(18, 10)

      r2 = sf.Rectangle(position, size)

      # test intersections with the point (3, 1)
      b1 = r1.contains(sf.Vector2(3, 1)) # True
      b2 = r2.contains((3, 1)) # False

      # test the intersection between r1 and r2
      result = r1.intersects(r2) # True

      # as there's an intersection, the result is not None but (4, 2, 16, 3)
      assert result == sf.Rectangle((4, 2), (16, 3))

   .. method:: Rectangle(position=(0, 0), size=(0, 0))

      Construct an :class:`sfml.graphics.Rectangle`

   .. attribute:: position

      Top-left coordinate of the rectangle.

   .. attribute:: size

      Position of the rectangle.

   .. attribute:: left

      Left coordinate of the rectangle. This attribute is provided as a
      shortcut to sfml.graphics.Rectangle.position.x

   .. attribute:: top

      Top coordinate of the rectangle. This attribute is provided as a
      shortcut to sfml.graphics.Rectangle.position.y

   .. attribute:: width

      Width of the rectangle. This attribute is provided as a
      shortcut to sfml.graphics.Rectangle.size.width

   .. attribute:: height

      Height of the rectangle. This attribute is provided as a
      shortcut to sfml.graphics.Rectangle.position.height

   .. attribute:: center

      The center of the rectangle.

   .. attribute:: right

      The right coordinate of the rectangle.

   .. attribute:: bottom

      The bottom coordinate of the rectangle.

   .. method:: contains(point)

      Check if a point is inside the rectangle's area.

      :param sfml.system.Vector2 point: Point to test
      :rtype: bool

   .. method:: intersects(rectangle)

      Check the intersection between two rectangles.

      This overload returns the overlapped rectangle if an intersection
      is found.

      :param sfml.graphics.Rectangle rectangle: Rectangle to test
      :return: Rectangle filled with the intersection or None
      :rtype: :class:`sfml.graphics.Rectangle` or None


Color
^^^^^

.. py:class:: Color

      Utility class for manipulating RGBA colors.

      :class:`Color` is a simple color class composed of 4
      components:

         * Red,
         * Green
         * Blue
         * Alpha (opacity)

      Each component is a property, an unsigned integer in the range
      [0, 255]. Thus, colors can be constructed and manipulated very
      easily::

         c1 = sf.Color(255, 0, 0) # red
         c1.r = 0                 # make it black
         c1.b = 128               # make it dark blue

      The fourth component of colors, named "alpha", represents the
      opacity of the color. A color with an alpha value of 255 will be
      fully opaque, while an alpha value of 0 will make a color fully
      transparent, whatever the value of the other components is.

      The most common colors are already defined. ::

         black       = sf.Color.BLACK
         white       = sf.Color.WHITE
         red         = sf.Color.RED
         green       = sf.Color.GREEN
         blue        = sf.Color.BLUE
         yellow      = sf.Color.YELLOW
         magenta     = sf.Color.MAGENTA
         cyan        = sf.Color.CYAN
         transparent = sf.Color.TRANSPARENT

      Colors can also be added and modulated (multiplied) using the
      overloaded operators + and \*.

   .. py:method:: Color([r=0[, g=0[, b=0[, a=255]]]])

      Construct the color from its 4 RGBA components.

      :param integer r: Red component (in the range [0, 255])
      :param integer g: Green component (in the range [0, 255])
      :param integer b: Blue component (in the range [0, 255])
      :param integer a: Alpha (opacity) component (in the range [0, 255])

   .. py:data:: BLACK

      Black predefined color.

   .. py:data:: WHITE

      White predefined color.

   .. py:data:: RED

      Red predefined color.

   .. py:data:: GREEN

      Green predefined color.

   .. py:data:: BLUE

      Blue predefined color.

   .. py:data:: YELLOW

      Yellow predefined color.

   .. py:data:: MAGENTA

      Magenta predefined color.

   .. py:data:: CYAN

      Cyan predefined color.

   .. py:data:: TRANSPARENT

      Transparent (black) predefined color.

   .. py:attribute:: r

      Red component.

   .. py:attribute:: g

      Green component.

   .. py:attribute:: b

      Blue component.

   .. py:attribute:: a

      Alpha (opacity) component.

Transform
^^^^^^^^^

.. py:class:: Transform

   Define a 3x3 transform matrix.

   A :class:`Transform` specifies how to translate, rotate, scale,
   shear, project, whatever things.

   In mathematical terms, it defines how to transform a coordinate
   system into another.

   For example, if you apply a rotation transform to a sprite, the
   result will be a rotated sprite. And anything that is transformed
   by this rotation transform will be rotated the same way, according
   to its initial position.

   Transforms are typically used for drawing. But they can also be
   used for any computation that requires to transform points between
   the local and global coordinate systems of an entity (like
   collision detection).

   Usage example::

      # define a translation transform
      translation = sf.Transform()
      translation.translate((20, 50))

      # define a rotation transform
      rotation = sf.Transform()
      rotation.rotate(45)

      # combine them
      transform = translation * rotation

      # use the result to transform stuff...
      point = transform.transform_point((10, 20))
      rectangle = transform.transform_rectangle(sf.Rectangle((0, 0), (10, 100)))

   .. py:classmethod:: from_values(a00, a01, a02, a10, a11, a12, a20, a21, a22)

      Construct a transform from a 3x3 matrix

      :param float a00: Element (0, 0) of the matrix
      :param float a01: Element (0, 1) of the matrix
      :param float a02: Element (0, 2) of the matrix
      :param float a10: Element (1, 0) of the matrix
      :param float a11: Element (1, 1) of the matrix
      :param float a12: Element (1, 2) of the matrix
      :param float a20: Element (2, 0) of the matrix
      :param float a21: Element (2, 1) of the matrix
      :param float a22: Element (2, 2) of the matrix
      :rtype: :class:`sfml.graphics.Transform`

   .. py:attribute:: matrix

      Return the transform as a 4x4 matrix.

      This function returns a pointer to an array of 16 floats
      containing the transform elements as a 4x4 matrix, which is
      directly compatible with OpenGL functions.

      :type: long

   .. py:attribute:: inverse

      Return the inverse of the transform.

      If the inverse cannot be computed, an identity transform is
      returned.

      :type: :class:`sfml.graphics.Transform`

   .. py:method:: transform_point(point)

      Transform a 2D point.

      :param point: Point to transform
      :type point: :class:`sfml.system.Vector2` or tuple
      :return: Transformed point
      :rtype: :class:`sfml.system.Vector2`

   .. py:method:: transform_rectangle(rectangle)

      Transform a rectangle.

      Since SFML doesn't provide support for oriented rectangles, the
      result of this function is always an axis-aligned rectangle.
      Which means that if the transform contains a rotation, the
      bounding rectangle of the transformed rectangle is returned.

      :param rectangle: Rectangle to transform
      :type rectangle: :class:`sfml.graphics.Rectangle` or tuple
      :return: Transformed rectangle
      :rtype: :class:`sfml.graphics.Rectangle`

   .. py:method:: combine(transform)

      Combine the current transform with another one.

      The result is a transform that is equivalent to applying this
      followed by transform. Mathematically, it is equivalent to a
      matrix multiplication.

      This function returns a reference *self*, so that calls can be
      chained.

      :param sfml.graphics.Rectangle transform: Transform to combine with this transform
      :return: Return itself
      :rtype: :class:`sfml.graphics.Transform`

   .. py:method:: translate(offset)

      Combine the current transform with a translation.

      This function returns a reference to *self*, so that calls can be
      chained. ::

         transform = sf.Transform()
         transform.translate(sf.Vector2(100, 200)).rotate(45)

      :param offset: Translation offset to apply
      :type offset: :class:`sfml.system.Vector2` or tuple
      :return: Return itself
      :rtype: :class:`sfml.graphics.Transform`

   .. py:method:: rotate(angle[, center])

      Combine the current transform with a rotation.

      The center of rotation is provided for convenience as a second
      argument, so that you can build rotations around arbitrary points
      more easily (and efficiently) than the usual
      translate(-center).rotate(angle).translate(center).

      This function returns a reference to *self*, so that calls can be
      chained. ::

         transform = sf.Transform()
         transform.rotate(90, (8, 3)).translate((50, 20))

      :param float angle: Rotation angle, in degrees
      :param center: Center of rotation
      :type center: :class:`sfml.system.Vector2` or tuple
      :return: Return itself
      :rtype: :class:`sfml.graphics.Transform`

   .. py:method:: scale(factor[, center])

      Combine the current transform with a scaling.

      The center of scaling is provided for convenience as a second
      argument, so that you can build scaling around arbitrary points
      more easily (and efficiently) than the usual
      translate(-center).scale(factors).translate(center).

      This function returns a reference to *self*, so that calls can be
      chained. ::

         transform = sf.Transform()
         transform.scale((2, 1), (8, 3)).rotate(45)

      :param factor: Scaling factors
      :type factor: :class:`sfml.system.Vector2` or tuple
      :param center: Center of scaling
      :type center: :class:`sfml.system.Vector2` or tuple
      :return: Return itself
      :rtype: :class:`sfml.graphics.Transform`

BlendMode
^^^^^^^^^

.. py:class:: BlendMode

   :class:`BlendMode` is a class that represents a blend mode. A blend mode
   determines how the colors of an object you draw are mixed with the colors
   that are already in the buffer.

   The class is composed of 6 components, each of which has its own public
   member variable:

      * Color Source Factor (:attr:`color_src_factor`)
      * Color Destination Factor (:attr:`color_dst_factor`)
      * Color Blend Equation (:attr:`color_equation`)
      * Alpha Source Factor (:attr:`alpha_src_factor`)
      * Alpha Destination Factor (:attr:`alpha_dst_factor`)
      * Alpha Blend Equation (:attr:`alpha_equation`)

   The source factor specifies how the pixel you are drawing contributes to the
   final color. The destination factor specifies how the pixel already drawn in
   the buffer contributes to the final color.

   The color channels RGB (red, green, blue; simply referred to as color) and A
   (alpha; the transparency) can be treated separately. This separation can be
   useful for specific blend modes, but most often you won't need it and will
   simply treat the color as a single unit.

   The blend factors and equations correspond to their OpenGL equivalents. In
   general, the color of the resulting pixel is calculated according to the
   following formula `src` is the color of the source pixel, `dst` the color of
   the destination pixel, the other variables correspond to the public members,
   with the equations being + or - operators)::

      dst.rgb = colorSrcFactor * src.rgb (colorEquation) colorDstFactor * dst.rgb
      dst.a   = alphaSrcFactor * src.a   (alphaEquation) alphaDstFactor * dst.a

   All factors and colors are represented as floating point numbers between 0
   and 1. Where necessary, the result is clamped to fit in that range.

   The most common blending modes are defined as constants in the sf namespace::

      sf.BLEND_ALPHA
      sf.BLEND_ADD
      sf.BLEND_MULTIPLY
      sf.BLEND_NONE


   In SFML, a blend mode can be specified every time you draw a :class:`Drawable`
   object to a render target. It is part of the :class:`RenderStates` compound
   that is passed to the member function :meth:`draw`.

   +---------------------+---------------------------------------------+
   | Factor              | Description                                 |
   +=====================+=============================================+
   | ZERO                | (0, 0, 0, 0)                                |
   +---------------------+---------------------------------------------+
   | ONE                 | (1, 1, 1, 1)                                |
   +---------------------+---------------------------------------------+
   | SRC_COLOR           | (src.r, src.g, src.b, src.a)                |
   +---------------------+---------------------------------------------+
   | ONE_MINUS_SRC_COLOR | (1, 1, 1, 1) - (src.r, src.g, src.b, src.a) |
   +---------------------+---------------------------------------------+
   | DST_COLOR           | (dst.r, dst.g, dst.b, dst.a)                |
   +---------------------+---------------------------------------------+
   | ONE_MINUS_DST_COLOR | (1, 1, 1, 1) - (dst.r, dst.g, dst.b, dst.a) |
   +---------------------+---------------------------------------------+
   | SRC_ALPHA           | (src.a, src.a, src.a, src.a)                |
   +---------------------+---------------------------------------------+
   | ONE_MINUS_SRC_ALPHA | (1, 1, 1, 1) - (src.a, src.a, src.a, src.a) |
   +---------------------+---------------------------------------------+
   | DST_ALPHA           | (dst.a, dst.a, dst.a, dst.a)                |
   +---------------------+---------------------------------------------+
   | ONE_MINUS_DST_ALPHA | (1, 1, 1, 1) - (dst.a, dst.a, dst.a, dst.a) |
   +---------------------+---------------------------------------------+

   +----------+-------------------------------------------+
   | Equation | Description                               |
   +==========+===========================================+
   | ADD      | Pixel = Src * SrcFactor + Dst * DstFactor |
   +----------+-------------------------------------------+
   | SUBTRACT | Pixel = Src * SrcFactor - Dst * DstFactor |
   +----------+-------------------------------------------+

   .. py:method:: BlendMode(*args, **kwargs):

      Construct the blend mode given the factors and equation.

      :param integer color_source_factor: Specifies how to compute the source factor for the color channels.
      :param integer color_destination_factor: Specifies how to compute the destination factor for the color channels.
      :param integer color_blend_equation: Specifies how to combine the source and destination colors.
      :param integer alpha_source_factor: Specifies how to compute the source factor.
      :param integer alpha_destination_factor: Specifies how to compute the destination factor.
      :param integer alpha_blend_equation: Specifies how to combine the source and destination alphas.

   .. py:attribute:: color_src_factor

      Source blending factor for the color channels

   .. py:attribute:: color_dst_factor

      Destination blending factor for the color channels

   .. py:attribute:: color_equation

      Blending equation for the color channels

   .. py:attribute:: alpha_src_factor

      Source blending factor for the alpha channel

   .. py:attribute:: alpha_dst_factor

      Destination blending factor for the alpha channel

   .. py:attribute:: alpha_equation

      Blending equation for the alpha channel

.. py:data:: BLEND_ALPHA

   Blend source and dest according to dest alpha

.. py:data:: BLEND_ADD

   Add source to dest

.. py:data:: BLEND_MULTIPLY

   Multiply source and dest

.. py:data:: BLEND_NONE

   Overwrite dest with source

Pixels
^^^^^^

.. py:class:: Pixels

   .. py:attribute:: width

   .. py:attribute:: height

   .. py:attribute:: data


Image
^^^^^

.. py:class:: Image

   Class for loading, manipulating and saving images.

   :class:`Image` is an abstraction to manipulate images as
   bidimensional arrays of pixels.

   The class provides functions to load, read, write and save pixels,
   as well as many other useful functions.

   :class:`Image` can handle a unique internal representation of
   pixels, which is RGBA 32 bits. This means that a pixel must be
   composed of 8 bits red, green, blue and alpha channels -- just like
   an :class:`Color`. All the functions that return an array of
   pixels follow this rule, and all parameters that you pass to
   :class:`Image` functions (such as :func:`from_pixels`) must
   use this representation as well.

   A :class:`Image` can be copied, but it is a heavy resource; keep it in
   mind!

   For debugging purpose, you can call its method :meth:`show` that
   displays its content in an external window in an external thread.

   Usage example::

      try:
         # load an image file from a file
         background = sf.Image.from_file("background.jpg")

      except IOError: exit(1)

      # create a 20x20 image filled with black color
      image = sf.Image.create(20, 20, sf.Color.BLACK)

      # copy image1 on image 2 at position(10, 10)
      background.blit(image, (10, 10))

      # make the top-left pixel transparent
      color = image[0, 0]
      color.a = 0
      image[0, 0] = color

      # save the image to a file
      background.to_file("result.png")

   .. py:classmethod:: create(width, height[, color])

      Create the image and fill it with a unique color.

      :param integer width: Width of the image
      :param integer height: Height of the image
      :param sfml.graphics.Color color: Fill color
      :rtype: :class:`sfml.graphics.Image`

   .. py:classmethod:: from_pixels(pixels)

      Create the image from an array of pixels wrapped around
      :class:`Pixels`. This function fails without raising error if
      pixels are invalid. On the other hand, it raises one if *pixels*
      points on *NULL*?

      :raise: :exc:`sfml.system.SFMLException` - If *pixels* is empty.
      :param sfml.window.Pixels pixels: Array of pixels to copy to the image
      :rtype: :class:`sfml.graphics.Image`

   .. py:classmethod:: from_file(filename)

      Load the image from a file on disk.

      The supported image formats are bmp, png, tga, jpg, gif, psd, hdr
      and pic. Some format options are not supported, like progressive
      jpeg. If this function fails, it raises an exception.

      :raise: :exc:`IOError` - The image failed to load
      :param str filename: Path of the image file to load
      :rtype: :class:`sfml.graphics.Image`

   .. py:classmethod:: from_memory(data)

      Load the image from a file in memory.

      The supported image formats are bmp, png, tga, jpg, gif, psd, hdr
      and pic. Some format options are not supported, like progressive
      jpeg. If this function fails, it raises an exception.

      :raise: :exc:`IOError` - The image failed to load
      :param bytes data: The data to load, in bytes
      :rtype: :class:`sfml.graphics.Image`

   .. py:classmethod:: to_file(filename)

      Save the image to a file on disk.

      The format of the image is automatically deduced from the
      extension. The supported image formats are bmp, png, tga and jpg.
      The destination file is overwritten if it already exists.

      :raise: :exc:`IOError` - If the image is empty
      :param str filename: Path of the file to save

   .. py:method:: show()

      This function starts an external thread that displays the current
      content of the image in a window. It's a very handy feature for
      debugging purpose only.

   .. py:attribute:: size

      Return the size of the image.

      :type: :class:`sfml.system.Vector2`

   .. py:attribute:: width

      Return the width of the image.

      :type: integer

   .. py:attribute:: height

      Return the width of the image.

      :type: height

   .. py:method:: create_mask_from_color(color[, alpha=0])

      Create a transparency mask from a specified color-key.

      This function sets the alpha value of every pixel matching the
      given color to alpha (0 by default), so that they become
      transparent.

      :param sfml.graphics.Color color: Color to make transparent
      :param integer alpha: Alpha value to assign to transparent pixels

   .. py:method:: blit(source, dest[, source_rect=(0, 0, 0, 0)[, apply_alpha=False]])

      Copy pixels from another image onto this one.

      This function does a slow pixel copy and should not be used
      intensively. It can be used to prepare a complex static image
      from several others, but if you need this kind of feature in
      real-time you'd better use :class:`RenderTexture`.

      If *source_rect* is empty, the whole image is copied. If
      *apply_alpha* is set to true, the transparency of source pixels is
      applied. If it is false, the pixels are copied unchanged with
      their alpha value.

      :param sfml.graphics.Image source: Source image to copy
      :param dest: Coordinate of the destination position
      :type dest: :class:`sfml.system.Vector2` or None
      :param source_rect: Sub-rectangle of the source image to copy
      :type source_rect: :class:`sfml.graphics.Rectangle` or tuple
      :param bool apply_alpha: Should the copy take in account the source transparency ?

   .. py:attribute:: pixels

      Get a read-only pointer to the array of pixels. This pointer is
      wrapped around :class:`Pixels`.

      The returned value points to an array of RGBA pixels made of 8
      bits integers components. The size of the array is :attr:`width`
      * :attr:`height` * 4.

      .. warning::

         The returned object may become invalid if you modify the
         image, so you should never store it for too long. If the image
         is empty, None is returned.

      :type: :class:`sfml.window.Pixels` or None

   .. py:method:: flip_horizontally()

      Flip the image horizontally (left <-> right)

   .. py:method:: flip_vertically

      Flip the image vertically (top <-> bottom)

   .. py:method:: __getitem__()

      Get a pixel from the image. ::

         print(image[0,0])    # create tuple implicitly
         print(image[(0,0)])  # create tuple explicitly

   .. py:method:: __setitem__()

      Set a pixel of the image. ::

         image[0,0]   = sfml.graphics.Color(10, 20, 30)  # create tuple implicitly
         image[(0,0)] = sfml.graphics.Color(10, 20, 30)  # create tuple explicitly


Texture
^^^^^^^

.. py:class:: Texture

   :class:`Image` living on the graphics card that can be used for
   drawing.

   :class:`Texture` stores pixels that can be drawn, with a sprite
   for example.

   A texture lives in the graphics card memory, therefore it is very
   fast to draw a texture to a render target, or copy a render target
   to a texture (the graphics card can access both directly).

   Being stored in the graphics card memory has some drawbacks. A
   texture cannot be manipulated as freely as an :class:`Image`, you
   need to prepare the pixels first and then upload them to the texture
   in a single operation (see :func:`Texture.update`).

   :class:`Texture` makes it easy to convert from/to
   :class:`Image`, but keep in mind that these calls require
   transfers between the graphics card and the central memory,
   therefore they are slow operations.

   A texture can be loaded from an image, but also directly from a file
   or a memory. The necessary shortcuts are defined so that you don't
   need an image first for the most common cases. However, if you want
   to perform some modifications on the pixels before creating the
   final texture, you can load your file to an :class:`Image`, do
   whatever you need with the pixels, and then call
   :func:`Texture.from_image`.

   Since they live in the graphics card memory, the pixels of a texture
   cannot be accessed without a slow copy first. And they cannot be
   accessed individually. Therefore, if you need to read the texture's
   pixels (like for pixel-perfect collisions), it is recommended to
   store the collision information separately, for example in an array
   of booleans.

   Like :class:`Image`, :class:`Texture` can handle a unique
   internal representation of pixels, which is RGBA 32 bits. This means
   that a pixel must be composed of 8 bits red, green, blue and alpha
   channels -- just like an :class:`Color`.

   Usage example:

   This first example shows the most common use of :class:`Texture` drawing a sprite ::

      #load a texture from a file
      try:
         texture = sf.Texture.from_file("texture.png")

      except IOError: exit(1)

      # assign it to a sprite
      sprite = sf.Sprite(texture)

      # draw the textured sprite
      window.draw(sprite);

   This second example shows another common use of :class:`Texture` streaming real-time data, like video frames ::

      # create an empty texture
      texture = sf.Texture.create(640, 480)

      # create a sprite that will display the texture
      sprite = sf.Sprite(texture)

      while loop: # the main loop
         # ...

         # get a fresh chunk of pixels (the next frame of a movie, for example)
         pixels = get_pixels_function()

         # update the texture
         texture.update(pixels)
         # or use update_from_pixels (faster)
         texture.update_from_pixels(pixels)

         # draw it
         window.draw(sprite)
         # ...

   .. py:method:: Texture()

      The default constructor is not meant to be called. It will raise
      :exc:`NotImplementedError` with a message telling you that you
      must use a specific constructor.

      Those specific constructors are: :func:`create`,
      :func:`from_file`, :func:`from_memory`,
      :func:`from_image`.

   .. py:data:: NORMALIZED

      Texture coordinates in range [0 .. 1].

   .. py:data:: PIXELS

      Texture coordinates in range [0 .. size].

   .. py:classmethod:: create(width, height)

      Create a texture.

      :param integer width: Width of the texture
      :param integer height: Height of the texture
      :rtype: :class:`sfml.graphics.Texture`

   .. py:classmethod:: from_file(filename[, area=(0, 0, 0, 0)])

      Load the texture from a file on disk.

      This function is a shortcut for the following code::

         image = sf.Image.from_file(filename)
         texture.from_image(image, area)

      The area argument can be used to load only a sub-rectangle of the
      whole image. If you want the entire image then leave the default
      value (which is an empty :class:`Rectangle`). If the area
      rectangle crosses the bounds of the image, it is adjusted to fit
      the image size.

      The maximum size for a texture depends on the graphics driver and
      can be retrieved with the :func:`get_maximum_size` function.

      If this function fails, it raises an exception.

      :raise: :class:`IOError` - The texture failed to load
      :param str filename: Path of the image file to load
      :param area: Area of the image to load
      :type area: :class:`sfml.graphics.Rectangle`
      :rtype: :class:`sfml.graphics.Texture`

   .. py:classmethod:: from_memory(data, area=(0, 0, 0, 0))

      Load the texture from a file in memory.

      This function is a shortcut for the following code::

         image = sf.Image.from_memory(data)
         texture = sf.Texture.from_image(image, area)

      The area argument can be used to load only a sub-rectangle of the
      whole image. If you want the entire image then leave the default
      value (which is an empty :class:`Rectangle`). If the area
      rectangle crosses the bounds of the image, it is adjusted to fit
      the image size.

      The maximum size for a texture depends on the graphics driver and
      can be retrieved with the :func:`get_maximum_size` function.

      If this function fails, it raises an exception.

      :raise: :class:`IOError` - The texture failed to load
      :param bytes data: Data to load
      :param area: Area of the image to load
      :type area: :class:`sfml.graphics.Rectangle`
      :rtype: :class:`sfml.graphics.Texture`

   .. py:classmethod:: from_image(image[, area=(0, 0, 0, 0)])

      Load the texture from an image.

      The area argument can be used to load only a sub-rectangle of the
      whole image. If you want the entire image then leave the default
      value (which is an empty :class:`Rectangle`). If the area
      rectangle crosses the bounds of the image, it is adjusted to fit
      the image size.

      The maximum size for a texture depends on the graphics driver and
      can be retrieved with the :func:`get_maximum_size` function.

      If this function fails, it raises an error.

      :raise: :class:`sfml.system.SFMLException` - The texture failed to load
      :param sfml.graphics.Image image: Image to load into the texture
      :param sfml.graphics.Rectangle area: Area of the image to load
      :rtype: :class:`sfml.graphics.Texture`

   .. py:attribute:: size

      Return the size of the texture.

      :type: :class:`sfml.system.Vector2`

   .. py:attribute:: width

      Return the width of the texture.

      :type: integer

   .. py:attribute:: height

      Return the height of the texture.

      :type: integer

   .. py:method:: to_image()

      Copy the texture pixels to an image.

      This function performs a slow operation that downloads the
      texture's pixels from the graphics card and copies them to a new
      image, potentially applying transformations to pixels if
      necessary (texture may be padded or flipped).

      :return: Image containing the texture's pixels
      :type: :class:`sfml.graphics.Image`

   .. py:method:: update(*args, **kwargs)

      Refer to :meth:`update_from_pixels`, :meth:`update_from_image`
      or :meth:`update_from_window`.

      This method is provided for convenience, its sisters will be
      faster as they don't have to check the argument's type.

   .. py:method:: update_from_pixels(pixels[, position])

      Update the whole texture from an array of pixels.

      The pixel array is assumed to have the same size as the area
      rectangle, and to contain 32-bits RGBA pixels.

      This function does nothing if pixels is null or if the texture
      was not previously created.

      :param sfml.graphics.Pixels pixels: Array of pixels to copy to the texture
      :param sfml.system.Vector2 position: Offset in the texture where to copy the source pixels

   .. py:method:: update_from_image(image[, position])

      Update the texture from an image.

      Although the source image can be smaller than the texture, this
      function is usually used for updating the whole texture. Provide
      the additional argument **position** for updating a sub-area of
      the texture.

      No additional check is performed on the size of the image,
      passing an image bigger than the texture will lead to an
      undefined behaviour.

      This function does nothing if the texture was not previously
      created.

      :param sfml.graphics.Image image: Image to copy to the texture
      :param sfml.system.Vector2 position: Offset in the texture where to copy the source image

   .. py:method:: update_from_window(window[, position])

      Update the texture from the contents of a window.

      Although the source window can be smaller than the texture, this
      function is usually used for updating the whole texture. Provide
      the additional argument **position** for updating a sub-area of
      the texture.

      No additional check is performed on the size of the window,
      passing a window bigger than the texture will lead to an
      undefined behaviour.

      This function does nothing if either the texture or the window
      was not previously created.

      :param sfml.window.Window window: Window to copy to the texture
      :param sfml.system.Vector2 position: Offset in the texture where to copy the source window

   .. py:method:: bind(coordinate_type=sfml.graphics.Texture.NORMALIZED)

      Activate the texture for rendering.

      This function is mainly used internally by the SFML rendering
      system. However it can be useful when using :class:`Texture`
      together with OpenGL code (this function is equivalent to
      glBindTexture).

      The coordinateType argument controls how texture coordinates will
      be interpreted. If :const:`NORMALIZED` (the default), they must
      be in range [0 .. 1], which is the default way of handling
      texture coordinates with OpenGL. If :const:`PIXELS`, they must be
      given in pixels (range [0 .. size]). This mode is used internally
      by the graphics classes of SFML, it makes the definition of
      texture coordinates more intuitive for the high-level API, users
      don't need to compute normalized values.

      :param coordinate_type: Type of texture coordinates to use
      :type coordinate_type: :class:`sfml.graphics.Texture`'s constant

   .. py:attribute:: smooth

      Get/set the smooth filter.

      When the filter is activated, the texture appears smoother so
      that pixels are less noticeable. However if you want the texture
      to look exactly the same as its source file, you should leave it
      disabled. The smooth filter is disabled by default.

      :type: bool

   .. py:attribute:: repeated

      Enable or disable repeating.

      Repeating is involved when using texture coordinates outside the
      texture rectangle [0, 0, width, height]. In this case, if repeat
      mode is enabled, the whole texture will be repeated as many times
      as needed to reach the coordinate (for example, if the X texture
      coordinate is 3 * width, the texture will be repeated 3 times).
      If repeat mode is disabled, the "extra space" will instead be
      filled with border pixels. Warning: on very old graphics cards,
      white pixels may appear when the texture is repeated. With such
      cards, repeat mode can be used reliably only if the texture has
      power-of-two dimensions (such as 256x128). Repeating is disabled
      by default.

      :type: bool

   .. py:classmethod:: get_maximum_size()

      Get the maximum texture size allowed.

      This maximum size is defined by the graphics driver. You can
      expect a value of 512 pixels for low-end graphics card, and up to
      8192 pixels or more for newer hardware.

      :return: Maximum size allowed for textures, in pixels
      :rtype: integer


Glyph
^^^^^

.. py:class:: Glyph

   Structure describing a glyph.

   A glyph is the visual representation of a character.

   The :class:`Glyph` structure provides the information needed to
   handle the glyph:

       * its coordinates in the font's texture
       * its bounding rectangle
       * the offset to apply to get the starting position of the next glyph


   .. py:method:: Glyph()

      Default constructor.

      :rtype: :class:`sfml.graphics.Glyph`

   .. py:attribute:: advance

      Offset to move horizontally to the next character.

      :rtype: integer

   .. py:attribute:: bounds

      Bounding rectangle of the glyph, in coordinates relative to the
      baseline.

      :rtype: :class:`sfml.graphics.Rectangle`

   .. py:attribute:: texture_rectangle

      :class:`Texture` coordinates of the glyph inside the font's
      texture.

      :rtype: :class:`sfml.graphics.Rectangle`

Font
^^^^

.. py:class:: Font

      Class for loading and manipulating character fonts.

      Fonts can be loaded from a file or from memory, and supports the
      most common types of fonts.

      See the :func:`from_file` function for the complete list of
      supported formats.

      Once it is loaded, an :class:`Font` instance provides three
      types of informations about the font:

          * Global metrics, such as the line spacing
          * Per-glyph metrics, such as bounding box or kerning
          * Pixel representation of glyphs

      Fonts alone are not very useful: they hold the font data but
      cannot make anything useful of it. To do so you need to use the
      :class:`Text` class, which is able to properly output text
      with several options such as character size, style, color,
      position, rotation, etc. This separation allows more flexibility
      and better performances: indeed an :class:`Font` is a heavy
      resource, and any operation on it is slow (often too slow for
      real-time applications). On the other side, an :class:`Text` is
      a lightweight object which can combine the glyphs data and
      metrics of an :class:`Font` to display any text on a render
      target. Note that it is also possible to bind several
      :class:`Text` instances to the same :class:`Font`.

      It is important to note that the :class:`Text` instance
      doesn't copy the font that it uses, it only keeps a reference to
      it. Thus, an :class:`Font` must not be destructed while it is
      used by an :class:`Text`.

      Usage example::

         # declare a new font
         try:
            font = sf.Font.from_file("arial.ttf")

         except IOError: exit(1) # error...

         # create a text which uses our font
         text1 = sf.Text()
         text1.font = font
         text1.character_size = 30
         text1.style = sf.Text.REGULAR

         # create another text using the same font, but with different parameters
         text2 = sf.Text()
         text2.font = font
         text2.character_size = 50
         text2.style = sf.Text.ITALIC

      Apart from loading font files, and passing them to instances of
      :class:`Text`, you should normally not have to deal directly
      with this class. However, it may be useful to access the font
      metrics or rasterized glyphs for advanced usage.

   .. py:method:: Font()

      The default constructor is not meant to be called. It will raise
      :exc:`NotImplementedError` with a message telling you that you
      must use a specific constructor.

      Those specific constructors are: :func:`from_file` and
      :func:`from_memory`.

   .. py:classmethod:: from_file(filename)

      Load the font from a file.

      The supported font formats are: TrueType, Type 1, CFF, OpenType,
      SFNT, X11 PCF, Windows FNT, BDF, PFR and Type 42. Note that this
      function know nothing about the standard fonts installed on the
      user's system, thus you can't load them directly.

      This function raises an exception if it fails.

      :raise: :exc:`IOError` - The font failed to load
      :param str filename: Path of the font file to load
      :rtype: :class:`sfml.graphics.Font`

   .. py:classmethod:: from_memory(data)

      Load the font from a file in memory.

      The supported font formats are: TrueType, Type 1, CFF, OpenType,
      SFNT, X11 PCF, Windows FNT, BDF, PFR and Type 42. Note that this
      function know nothing about the standard fonts installed on the
      user's system, thus you can't load them directly.

      This function raises an exception if it fails.

      :raise: :exc:`IOError` - The font failed to load
      :param bytes data: The data to load
      :rtype: :class:`sfml.graphics.Font`

   .. py:method:: get_glyph(code_point, character_size, bold)

      Retrieve a glyph of the font.

      :param integer code_point: Unicode code point of the character to get
      :param integer character_size: Reference character size
      :param bool bold: Retrieve the bold version or the regular one ?
      :return: The glyph corresponding to *code_point* and *character_size*
      :rtype: :class:`sfml.graphics.Glyph`

   .. py:method:: get_kerning(first, second, character_size)

      Get the kerning offset of two glyphs.

      The kerning is an extra offset (negative) to apply between two
      glyphs when rendering them, to make the pair look more "natural".
      For example, the pair "AV" have a special kerning to make them
      closer than other characters. Most of the glyphs pairs have a
      kerning offset of zero, though.

      :param integer first: Unicode code point of the first character
      :param integer second: Unicode code point of the second character
      :param integer character_size: Reference character size
      :return: Kerning value for first and second, in pixels
      :rtype: integer

   .. py:method:: get_line_spacing(character_size)

      Get the line spacing.

      Line spacing is the vertical offset to apply between two
      consecutive lines of text.

      :param integer character_size: Reference character size
      :return: Line spacing, in pixels
      :rtype: integer

   .. py:method:: get_texture(character_size)

      Retrieve the texture containing the loaded glyphs of a certain
      size.

      The contents of the returned texture changes as more glyphs are
      requested, thus it is not very relevant. It is mainly used
      internally by :class:`Text`.

      :param integer character_size: Reference character size
      :return: Texture containing the glyphs of the requested size
      :rtype: :class:`sfml.graphics.Texture`

   .. py:attribute:: info

      Various information about a font.

      :return: A string containing the font family
      :rtype: str


Shader
^^^^^^

.. py:class:: Shader

   :class:`Shader` class (vertex and fragment)

   Shaders are programs written using a specific language, executed
   directly by the graphics card and allowing to apply real-time
   operations to the rendered entities.

   There are two kinds of shaders:

       * Vertex shaders, that process vertices
       * Fragment (pixel) shaders, that process pixels

   A :class:`Shader` can be composed of either a vertex shader
   alone, a fragment shader alone, or both combined (see the variants
   of the load functions).

   Shaders are written in GLSL, which is a C-like language dedicated to
   OpenGL shaders. You'll probably need to learn its basics before
   writing your own shaders for pySFML.

   Like any C/C++ program, a shader has its own variables that you can
   set from your Python application. :class:`Shader` handles 4
   different types of variables:

       * floats
       * vectors (2, 3 or 4 components)
       * textures
       * transforms (matrices)

   .. py:method:: Shader()

      The default constructor is not meant to be called. It will raise
      :exc:`NotImplementedError` with a message telling you that you
      must use a specific constructor.

      Those specific constructors are: :func:`from_file` and :func:`from_memory`.

   .. py:classmethod:: from_file(vertex_filename=None, fragment_filename=None)

      Load a vertex shader **or** a fragment shader **or** both from files.

      The sources must be text files containing valid shaders in GLSL
      language. GLSL is a C-like language dedicated to OpenGL shaders;
      you'll probably need to read a good documentation for it before
      writing your own shaders.

      :raise: :exc:`IOError` - If one of the two shaders failed to load
      :param str vertex_filename: Path of the vertex or fragment shader file to load
      :param str fragment_filename: Path of the fragment shader file to load
      :rtype: :class:`sfml.graphics.Shader`


   .. py:classmethod:: from_memory(vertex_shader=None, fragment_shader=None)

      Load a vertex shader **or** a fragment shader **or** both from source
      codes in memory.

      This function loads both the vertex and the fragment shaders. If
      one of them fails to load, the error :exc:`IOError` is raised.
      The sources must be valid shaders in GLSL language. GLSL is a
      C-like language dedicated to OpenGL shaders; you'll probably need
      to read a good documentation for it before writing your own
      shaders.

      :raise: :exc:`IOError` - If one of the two shaders failed to load
      :param str vertex_shader: String containing the source code of the vertex shader
      :param str fragment_shader: String containing the source code of the fragment shader
      :rtype: :class:`sfml.graphics.Shader`

   .. py:method:: set_parameter(*args, **kwargs)

      This method takes care of calling the suitable set_parameter
      method. See the table below:


      +--------------------+------------------------------------------+
      | Parameters         | Method                                   |
      +====================+==========================================+
      | 1 float            | :meth:`set_1float_parameter`             |
      +--------------------+------------------------------------------+
      | 2 float            | :meth:`set_2float_parameter`             |
      +--------------------+------------------------------------------+
      | 3 float            | :meth:`set_3float_parameter`             |
      +--------------------+------------------------------------------+
      | 4 float            | :meth:`set_4float_parameter`             |
      +--------------------+------------------------------------------+
      | :class:`.Vector2`  | :meth:`set_vector2_parameter`            |
      +--------------------+------------------------------------------+
      | :class:`.Vector3`  | :meth:`set_vector3_parameter`            |
      +--------------------+------------------------------------------+
      | :class:`.Color`    | :meth:`set_color_parameter`              |
      +--------------------+------------------------------------------+
      | :class:`Transform` | :meth:`set_transform_parameter`          |
      +--------------------+------------------------------------------+
      | :class:`Texture`   | :meth:`set_texture_parameter`            |
      +--------------------+------------------------------------------+
      | CURRENT_TEXTURE    | :meth:`set_currenttexturetype_parameter` |
      +--------------------+------------------------------------------+

   .. py:method:: set_1float_parameter(name, x)

      Change a float parameter of the shader.


      *name* is the name of the variable to change in the shader. The
      corresponding parameter in the shader must be a float (float GLSL
      type).

      Example::

         uniform float myparam; // this is the variable in the shader

      ::

         shader.set_1float_parameter("myparam", 5.2) # using the specific method (faster)
         shader.set_parameter("myparam", 5.2)        # using the general method

      :param str name: Name of the parameter in the shader
      :param float x: Value to assign

   .. py:method:: set_2float_parameter(name, x, y)

      Change a 2-components vector parameter of the shader.

      *name* is the name of the variable to change in the shader. The
      corresponding parameter in the shader must be a 2x1 vector (vec2
      GLSL type).

      Example::

         uniform vec2 myparam; // this is the variable in the shader

      ::

         shader.set_2float_parameter("myparam", 5.2, 6) # using the specific method (faster)
         shader.set_parameter("myparam", 5.2, 6)        # using the general method

      :param str name: Name of the parameter in the shader
      :param float x: First component of the value to assign
      :param float y: Second component of the value to assign

   .. py:method:: set_3float_parameter(name, x, y, z)

      Change a 3-components vector parameter of the shader.

      *name* is the name of the variable to change in the shader. The
      corresponding parameter in the shader must be a 3x1 vector (vec3
      GLSL type).

      Example::

         uniform vec3 myparam; // this is the variable in the shader

      ::

         shader.set_3float_parameter("myparam", 5.2, 6, -8.1) # using the specific method (faster)
         shader.set_parameter("myparam", 5.2, 6, -8.1)        # using the general method

      :param str name: Name of the parameter in the shader
      :param float x: First component of the value to assign
      :param float y: Second component of the value to assign
      :param float z: Third component of the value to assign

   .. py:method:: set_4float_parameter(name, x, y, z, w)

      Change a 4-components vector parameter of the shader.

      *name* is the name of the variable to change in the shader. The
      corresponding parameter in the shader must be a 4x1 vector (vec4
      GLSL type).

      Example::

         uniform vec4 myparam; // this is the variable in the shader

      ::

         shader.set_4float_parameter("myparam", 5.2, 6, -8.1, 0.4) # using the specific method (faster)
         shader.set_parameter("myparam", 5.2, 6, -8.1, 0.4)        # using the general method

      :param str name: Name of the parameter in the shader
      :param float x: First component of the value to assign
      :param float y: Second component of the value to assign
      :param float z: Third component of the value to assign
      :param float w: Fourth component of the value to assign

   .. py:method:: set_vector2_parameter(name, vector)


      Change a 2-components vector parameter of the shader.

      *name* is the name of the variable to change in the shader. The
      corresponding parameter in the shader must be a 2x1 vector (vec2
      GLSL type).

      Example::

         uniform vec2 myparam; // this is the variable in the shader

      ::

         shader.set_vector2_parameter("myparam", sf.Vector2(5.2, 6)) # using the specific method (faster)
         shader.set_parameter("myparam", sf.Vector2(5.2, 6))         # using the general method
         shader.set_parameter("myparam", (5.2, 6))                   # using tuple works too

      :param str name: Name of the parameter in the shader
      :param sfml.system.Vector2 vector: Vector to assign

   .. py:method:: set_vector3_parameter(name, vector)

      Change a 3-components vector parameter of the shader.

      *name* is the name of the variable to change in the shader. The
      corresponding parameter in the shader must be a 3x1 vector (vec3
      GLSL type).

      Example::

         uniform vec3 myparam; // this is the variable in the shader

      ::

         shader.set_vector3_parameter("myparam", sf.Vector3(5.2, 6, -8.1)) # using the specific method (faster)
         shader.set_parameter("myparam", sf.Vector3(5.2, 6, -8.1))         # using the general method
         shader.set_parameter("myparam", (5.2, 6, -8.1))                   # using tuple works too

      :param str name: Name of the parameter in the shader
      :param sfml.system.Vector3 vector: Vector to assign

   .. py:method:: set_color_parameter(name, color)

      Change a color parameter of the shader.

      *name* is the name of the variable to change in the shader. The
      corresponding parameter in the shader must be a 4x1 vector (vec4
      GLSL type).

      It is important to note that the components of the color are
      normalized before being passed to the shader. Therefore, they are
      converted from range [0 .. 255] to range [0 .. 1]. For example,
      a sf.Color(255, 125, 0, 255) will be transformed to a
      vec4(1.0, 0.5, 0.0, 1.0) in the shader.

      Example::

         uniform vec4 color; // this is the variable in the shader

      ::

         shader.set_color_parameter("myparam", sf.Color(255, 128, 0, 255)) # using the specific method (faster)
         shader.set_parameter("myparam", sf.Color(255, 128, 0, 255))       # using the general method

      :param str name: Name of the parameter in the shader
      :param sfml.graphics.Color color: Color to assign

   .. py:method:: set_transform_parameter(name, transform)

      Change a matrix parameter of the shader.

      *name* is the name of the variable to change in the shader. The
      corresponding parameter in the shader must be a 4x4 matrix (mat4
      GLSL type).

      Example::

         uniform mat4 matrix; // this is the variable in the shader

      ::

         transform = sf.Transform()
         transform.translate(sf.Vector2(5, 10))

         shader.set_transform_parameter("matrix", transform) # using the specific method (faster)
         shader.set_parameter("matrix", transform)           # using the general method

      :param str name: Name of the parameter in the shader
      :param sfml.graphics.Transform transform: Transform to assign

   .. py:method:: set_texture_parameter(name, texture)

      Change a texture parameter of the shader.

      *name* is the name of the variable to change in the shader. The
      corresponding parameter in the shader must be a 2D texture
      (sampler2D GLSL type).

      Example::

         uniform sampler2D the_texture; // this is the variable in the shader

      ::

         texture = sf.Texture.create(50, 50)
         # ...

         shader.set_texture_parameter("the_texture", texture) # using the specific method (faster)
         shader.set_parameter("the_texture", texture)         # using the general method

      It is important to note that texture must remain alive as long as
      the shader uses it, no copy is made internally.

      To use the texture of the object being draw, which cannot be
      known in advance, use :meth:`set_currenttexturetype_parameter`.

      :param str name: Name of the parameter in the shader
      :param sfml.graphics.Texture texture: Texture to assign

   .. py:method:: set_currenttexturetype_parameter(name)

      Change a texture parameter of the shader.

      This overload maps a shader texture variable to the texture of
      the object being drawn, which cannot be known in advance. The
      corresponding parameter in the shader must be a 2D texture
      (sampler2D GLSL type).

      Example::

         uniform sampler2D current; // this is the variable in the shader

      ::

         shader.set_currenttexturetype_parameter("current") # using the specific method (faster)
         shader.set_parameter("current")                    # using the general method


   .. py:method:: bind()

      Bind the shader for rendering (activate it)

      This function is normally for internal use only, unless you want
      to use the shader with a custom OpenGL rendering instead of a
      pySFML drawable. ::

         window.active = True
         shader.bind()
         # ... render OpenGL geometry ...
         shader.unbind()


RenderStates
^^^^^^^^^^^^

.. py:class:: RenderStates

   Define the states used for drawing to a :class:`RenderTarget`.

   There are four global states that can be applied to the drawn
   objects:

       * the blend mode: how pixels of the object are blended with the background
       * the transform: how the object is positioned/rotated/scaled
       * the texture: what image is mapped to the object
       * the shader: what custom effect is applied to the object

   High-level objects such as sprites or text force some of these
   states when they are drawn. For example, a sprite will set its own
   texture, so that you don't have to care about it when drawing the
   sprite.

   The transform is a special case: sprites, texts and shapes (and it's
   a good idea to do it with your own drawable classes too) combine
   their transform with the one that is passed in the
   :class:`RenderStates` structure. So that you can use a "global"
   transform on top of each object's transform.

   Most objects, especially high-level drawables, can be drawn directly
   without defining render states explicitly -- the default set of
   states is ok in most cases. ::

      window.draw(sprite)

   If you want to use a single specific render state, for example a
   shader, you can pass it directly to the draw function. ::

      window.draw(sprite, shader)

   When you're inside the draw function of a drawable object (inherited
   from :class:`Drawable`), you can either pass the render states
   unmodified, or change some of them. For example, a transformable
   object will combine the current transform with its own transform. A
   sprite will set its texture. Etc.

   .. py:method:: RenderStates(blendmode=BLEND_ALPHA[, transform, [texture[, shader]]])

      Construct a default render states with custom values.

      :param blendmode: Blend mode to use
      :type blendmode: :class:`sfml.graphics.BlendMode`'s constant
      :param sfml.graphics.Transform transform: Transform to use
      :param sfml.graphics.Texture texture: Texture to use
      :param sfml.graphics.Shader shader: Shader to use
      :rtype: :class:`sfml.graphics.RenderStates`

   .. py:data:: DEFAULT

      Special instance holding the default render states.

   .. py:attribute:: blendmode

      Blending mode.

   .. py:attribute:: transform

      Transform.

   .. py:attribute:: texture

      Texture.

   .. py:attribute:: shader

      Shader.


Drawable
^^^^^^^^

.. py:class:: Drawable

   Abstract base class for objects that can be drawn to a render target.

   :class:`Drawable` is a very simple base class that allows objects
   of derived classes to be drawn to an :class:`RenderTarget`.

   All you have to do in your derived class is to override the draw
   virtual function.

   Note that inheriting from :class:`Drawable` is not mandatory, but
   it allows this nice syntax "window.draw(object)" rather than
   "object.draw(window)", which is more consistent with other pySFML
   classes.

   Example::

      class MyDrawable(sf.Drawable):
         def __init__(self):
            sf.Drawable.__init__(self)
            # ...

         def draw(self, target, states):
            # you can draw other high-level objects
            target.draw(self.sprite, states)

            # ... or use the low-level API
            states.texture = self.texture
            target.draw(self.vertices, states)

            # ... or draw with OpenGL directly
            glBegin(GL_QUADS)
               # ...
            glEnd()

   .. py:method:: draw(target, states):

      Draw the object to a render target.

      This is a virtual method that has to be implemented by the
      derived class to define how the drawable should be drawn.

      :param sfml.graphics.RenderTarget target: Render target to draw to
      :param sfml.graphics.RenderStates states: Current render states

Transformable
^^^^^^^^^^^^^

.. py:class:: Transformable

   Decomposed transform defined by a position, a rotation and a scale.

   This class is provided for convenience, on top of
   :class:`Transform`.

   :class:`Transform`, as a low-level class, offers a great level of
   flexibility but it is not always convenient to manage. Indeed, one
   can easily combine any kind of operation, such as a translation
   followed by a rotation followed by a scaling, but once the result
   transform is built, there's no way to go backward and, let's say,
   change only the rotation without modifying the translation and
   scaling. The entire transform must be recomputed, which means that
   you need to retrieve the initial translation and scale factors as
   well, and combine them the same way you did before updating the
   rotation. This is a tedious operation, and it requires to store all
   the individual components of the final transform.

   That's exactly what :class:`Transformable` was written for: it
   hides these variables and the composed transform behind an easy to
   use interface. You can set or get any of the individual components
   without worrying about the others. It also provides the composed
   transform (as an :class:`Transform`), and keeps it up-to-date.

   In addition to the position, rotation and scale,
   :class:`Transformable` provides an "origin" component, which
   represents the local origin of the three other components. Let's
   take an example with a 10x10 pixels sprite. By default, the sprite
   is positioned/rotated/scaled relatively to its top-left corner,
   because it is the local point (0, 0). But if we change the origin to
   be (5, 5), the sprite will be positioned/rotated/scaled around its
   center instead. And if we set the origin to (10, 10), it will be
   transformed around its bottom-right corner.

   To keep the :class:`Transformable` class simple, there's only one
   origin for all the components. You cannot position the sprite
   relatively to its top-left corner while rotating it around its
   center, for example. To do such things, use
   :class:`Transform` directly.

   :class:`Transformable` can be used as a base class. It is often
   combined with :class:`Drawable` -- that's what SFML's sprites,
   texts and shapes do. ::

      class MyEntity(sf.TransformableDrawable):
         def draw(self, target, states):
            sf.TransformableDrawable.draw(self, target, states)
            states.transform *= get_transform()
            target.draw(..., states)

      entity = MyEntity()
      entity.position = (10, 20)
      entity.rotation = 45
      window.draw(entity)

   .. py:method:: Transformable()

      Default constructor.

      :rtype: :class:`sfml.graphics.Transformable`

   .. py:attribute:: position

      Set/get the position of the object

      This attribute completely overwrites the previous position. See
      :func:`move` to apply an offset based on the previous position
      instead. The default position of a transformable object is (0, 0).

      :rtype: :class:`sfml.system.Vector2`

   .. py:attribute:: rotation

      Set/get the orientation of the object

      This attribute completely overwrites the previous rotation. See
      :func:`rotate` to add an angle based on the previous rotation
      instead. The default rotation of a transformable object is 0.

      :rtype: float

   .. py:attribute:: ratio

      Set/get the scale factors of the object

      This function completely overwrites the previous ratio. See
      :func:`scale` to add a factor based on the previous scale
      instead. The default scale of a transformable object is (1, 1).

      :rtype: :class:`sfml.system.Vector2`

   .. py:attribute:: origin

      Set/get the local origin of the object

      The origin of an object defines the center point for all
      transformations (position, scale, rotation). The coordinates of
      this point must be relative to the top-left corner of the object,
      and ignore all transformations (position, scale, rotation). The
      default origin of a transformable object is (0, 0).

      :rtype: :class:`sfml.system.Vector2`

   .. py:method:: move(offset)

      Move the object by a given offset.

      This function adds to the current position of the object, unlike
      :attr:`position` which overwrites it. Thus, it is equivalent to
      the following code::

         object.position = object.position + offset

      :param sfml.system.Vector2 offset: Offset

   .. py:method:: rotate(angle)

      Rotate the object.

      This function adds to the current rotation of the object, unlike
      :attr:`rotation` which overwrites it. Thus, it is equivalent to
      the following code::

         object.rotation = object.rotation + angle

   .. py:method:: scale(factor)

      Scale the object.

      This function multiplies the current scale of the object, unlike
      :attr:`ratio` which overwrites it. Thus, it is equivalent to the
      following code::

         object.ratio = object.ratio * factor

   .. py:attribute:: transform

      Get the combined transform of the object.

      :rtype: :class:`sfml.graphics.Transform`

   .. py:attribute:: inverse_transform

      Get the inverse of the combined transform of the object.

      :rtype: :class:`sfml.graphics.Transform`

Sprite
^^^^^^

.. py:class:: Sprite(sfml.graphics.Drawable, sfml.graphics.Transformable)

   :class:`Drawable` representation of a texture, with its own
   transformations, color, etc.

   :class:`Sprite` is a drawable class that allows to easily display
   a texture (or a part of it) on a render target.

   It inherits all the functions from :class:`Transformable`:
   position, rotation, scale, origin. It also adds sprite-specific
   properties such as the texture to use, the part of it to display,
   and some convenience functions to change the overall color of the
   sprite, or to get its bounding rectangle.

   :class:`Sprite` works in combination with the :class:`Texture`
   class, which loads and provides the pixel data of a given texture.

   The separation of :class:`Sprite` and :class:`Texture` allows
   more flexibility and better performances: indeed a
   :class:`Texture` is a heavy resource, and any operation on it is
   slow (often too slow for real-time applications). On the other side,
   an :class:`Sprite` is a lightweight object which can use the pixel
   data of an :class:`Texture` and draw it with its own
   transformation/color/blending attributes.

   It is important to note that the :class:`Sprite` instance doesn't
   copy the texture that it uses, it only keeps a reference to it.
   Thus, an :class:`Texture` must not be destroyed while it is used
   by an :class:`Sprite`.

   Usage examples::

      # declare and load a texture
      try: texture = sf.Texture.from_file("texture.png")
      except IOError: exit(1)

      # create a sprite
      sprite = sf.Sprite(texture)
      sprite.texture_rectangle = sf.Rectangle((10, 10), (50, 30))
      sprite.color = sf.Color(255, 255, 255, 200)
      sprite.position = sf.Vector2(100, 25)

      # draw it
      window.draw(sprite)


   .. py:method:: Sprite(texture[, rectangle])

      Construct the sprite from (a sub-rectangle of) a source texture.

      :param sfml.graphics.Texture texture: Source texture
      :param sfml.graphics.Rectangle rectangle: Sub-rectangle of the texture to assign to the sprite

   .. py:attribute:: texture

      Change the source texture of the sprite.

      The texture argument refers to a texture that must exist as long
      as the sprite uses it. Indeed, the sprite doesn't store its own
      copy of the texture, but rather keeps a pointer to the one that
      you passed to this function. If the source texture is destroyed
      and the sprite tries to use it, the behaviour is undefined. The
      :attr:`texture_rectangle` property of the sprite is automatically
      adjusted to the size of the new texture

      .. note::

         Note that in C++, you must explicitly tell you want the texture rectangle to be reset. Here, the texture rectangle is reset by default.

      :rtype: :class:`sfml.graphics.Texture`

   .. py:attribute:: texture_rectangle

      Set/get the sub-rectangle of the texture that the sprite will
      display.

      The texture rectangle is useful when you don't want to display
      the whole texture, but rather a part of it. By default, the
      texture rectangle covers the entire texture.

   .. py:attribute:: color

      Set/get the global color of the sprite.

      This color is modulated (multiplied) with the sprite's texture.
      It can be used to colorize the sprite, or change its global
      opacity. By default, the sprite's color is opaque white.

   .. py:attribute:: local_bounds

      Get the local bounding rectangle of the entity.

      The returned rectangle is in local coordinates, which means that
      it ignores the transformations (translation, rotation, scale,
      ...) that are applied to the entity. In other words, this
      function returns the bounds of the entity in the entity's
      coordinate system.

      :rtype: :class:`sfml.graphics.Rectangle`

   .. py:attribute:: global_bounds

      Get the global bounding rectangle of the entity.

      The returned rectangle is in global coordinates, which means that
      it takes in account the transformations (translation, rotation,
      scale, ...) that are applied to the entity. In other words, this
      function returns the bounds of the sprite in the global 2D
      world's coordinate system.

      :rtype: :class:`sfml.graphics.Rectangle`

Text
^^^^

.. py:class:: Text(sfml.graphics.Drawable, sfml.graphics.Transformable)

      Graphical text that can be drawn to a render target.

      :class:`Text` is a drawable class that allows to easily
      display some text with custom style and color on a render target.

      It inherits all the functions from :class:`Transformable`:
      position, ratio, scale, origin. It also adds text-specific
      properties such as the font to use, the character size, the font
      style (bold, italic, underlined, strike through), the global color
      and the text to display of course.
      It also provides convenience functions to calculate the graphical size
      of the text, or to get the global position of a given character.

      :class:`Text` works in combination with the :class:`Font`
      class, which loads and provides the glyphs (visual characters) of
      a given font.

      The separation of :class:`Font` and :class:`Text` allows
      more flexibility and better performances: indeed a :class:`Font` is
      a heavy resource, and any operation on it is slow (often too slow
      for real-time applications). On the other side, a
      :class:`Text` is a lightweight object which can combine the
      glyphs data and metrics of an :class:`Font` to display any text
      on a render target.

      It is important to note that the :class:`Text` instance
      doesn't copy the font that it uses, it only keeps a reference to
      it. Thus, an :class:`Font` must not be destructed while it is
      used by an :class:`Text`.

      Usage example::

         # declare and load a font
         try: font = sf.Font.from_file("arial.ttf")
         except IOError: exit(1)

         # create a text
         text = sf.Text("hello")
         text.font = font
         text.character_size = 30
         text.style = sf.Text.BOLD
         text.color = sf.Color.RED

         # draw it
         window.draw(text)

      +----------------+------------------------------+
      | Style          | Description                  |
      +================+==============================+
      | REGULAR        | Regular characters, no style |
      +----------------+------------------------------+
      | BOLD           | Bold characters              |
      +----------------+------------------------------+
      | ITALIC         | Italic characters            |
      +----------------+------------------------------+
      | UNDERLINED     | Underlined characters        |
      +----------------+------------------------------+
      | STRIKE_THROUGH | Strike through characters    |
      +----------------+------------------------------+

   .. py:method:: Text([string[, font[, character_size=30]]])

      Construct the string, and optionally from a string, font and size.

      :param str: Text assigned to the string
      :type string: bytes or string
      :param sfml.graphics.Font font: Font used to draw the string
      :param integer character_size: Base size of characters, in pixels

   .. py:data:: REGULAR

      Regular characters, no style.

   .. py:data:: BOLD

      Bold characters.

   .. py:data:: ITALIC

      Italic characters.

   .. py:data:: UNDERLINED

      Underlined characters.

   .. py:data:: STRIKE_THROUGH

      Strike through characters.

   .. py:attribute:: string

      Set/get the text's string.

      :rtype: bytes or string

   .. py:attribute:: font

      Set/get the text's font.

      The font argument refers to a font that must exist as long as the
      text uses it. Indeed, the text doesn't store its own copy of the
      font, but rather keeps a reference to the one that you set to
      this attribute. If the font is destroyed and the text tries to
      use it, the behaviour is undefined.

      :rtype: :class:`sfml.graphics.Font`

   .. py:attribute:: character_size

      Set/get the character size.

      The default size is 30.

      :rtype: integer

   .. py:attribute:: style

      Set/get the text's style.

      You can pass a combination of one or more styles, for example ::

         text.style = sf.Text.BOLD | sf.Text.ITALIC

      The default style is :data:`REGULAR`.

      :rtype: integer

   .. py:attribute:: color

      Set/get the global color of the text.

      By default, the text's color is opaque white.

      :rtype: :class:`sfml.graphics.Color`

   .. py:attribute:: local_bounds

      Get the local bounding rectangle of the entity.

      The returned rectangle is in local coordinates, which means that
      it ignores the transformations (translation, rotation, scale,
      ...) that are applied to the entity. In other words, this
      property returns the bounds of the entity in the entity's
      coordinate system.

      :rtype: :class:`sfml.graphics.Rectangle`

   .. py:attribute:: global_bounds

      Get the global bounding rectangle of the entity.

      The returned rectangle is in global coordinates, which means that
      it takes in account the transformations (translation, rotation,
      scale, ...) that are applied to the entity. In other words, this
      property returns the bounds of the text in the global 2D world's
      coordinate system.

      :rtype: :class:`sfml.graphics.Rectangle`

   .. py:method:: find_character_pos(index)

      Return the position of the index-th character.

      This function computes the visual position of a character from
      its index in the string. The returned position is in global
      coordinates (translation, rotation, scale and origin are
      applied). If index is out of range, the position of the end of
      the string is returned.

      :param integer index: Index of the character
      :return: Position of the character
      :rtype: :class:`sfml.system.Vector2`


Shape
^^^^^

.. py:class:: Shape(sfml.graphics.Drawable, sfml.graphics.Transformable)

   Base class for textured shapes with outline.

   :class:`Shape` is a drawable class that allows to define and
   display a custom convex shape on a render target.

   It's only an abstract base, it needs to be specialized for concrete
   types of shapes (circle, rectangle, convex polygon, star, ...).

   In addition to the attributes provided by the specialized shape
   classes, a shape always has the following attributes:

       * a texture
       * a texture rectangle
       * a fill color
       * an outline color
       * an outline thickness

   Each feature is optional, and can be disabled easily:

       * the texture can be null
       * the fill/outline colors can be :const:`Color.TRANSPARENT`
       * the outline thickness can be zero


   .. py:method:: Shape()

      Shape is abstract, it would raise an error :exc:`NotImplementedError`

   .. py:attribute:: texture

      Change or get the source texture of the shape.

      The texture argument refers to a texture that must exist as long
      as the shape uses it. Indeed, the shape doesn't store its own
      copy of the texture, but rather keeps a pointer to the one that y
      ou passed to this function. If the source texture is destroyed
      and the shape tries to use it, the behaviour is undefined.
      texture can be *None* to disable texturing. The texture_rectangle
      property of the shape is automatically adjusted to the size of
      the new texture.

      .. note::

         Note that in C++, you must explicitly tell you want the texture rectangle to be reset. Here, the texture rectangle is reset by default.

      :rtype: :class:`sfml.graphics.Texture` or None

   .. py:attribute:: texture_rectangle

      Set/get the sub-rectangle of the texture that the shape will display.

      The texture rectangle is useful when you don't want to display
      the whole texture, but rather a part of it. By default, the
      texture rectangle covers the entire texture.

      :rtype: :class:`sfml.graphics.Rectangle`

   .. py:attribute:: fill_color

      Set/get the fill color of the shape.

      This color is modulated (multiplied) with the shape's texture if
      any. It can be used to colorize the shape, or change its global
      opacity. You can use :const:`Color.TRANSPARENT` to make the
      inside of the shape transparent, and have the outline alone. By
      default, the shape's fill color is opaque white.

      :rtype: :class:`sfml.graphics.Color`

   .. py:attribute:: outline_color

      Set/get the outline color of the shape.

      You can use :const:`Color.TRANSPARENT` to disable the outline.
      By default, the shape's outline color is opaque white.

      :rtype: :class:`sfml.graphics.Color`

   .. py:attribute:: outline_thickness

      Set/get the thickness of the shape's outline.

      This number cannot be negative. Using zero disables the outline.
      By default, the outline thickness is 0.

      :rtype: float

   .. py:attribute:: local_bounds

      Get the local bounding rectangle of the entity.

      The returned rectangle is in local coordinates, which means that
      it ignores the transformations (translation, rotation, scale,
      ...) that are applied to the entity. In other words, this
      function returns the bounds of the entity in the entity's
      coordinate system.

      :rtype: :class:`sfml.graphics.Rectangle`

   .. py:attribute:: global_bounds

      Get the global bounding rectangle of the entity.

      The returned rectangle is in global coordinates, which means that
      it takes in account the transformations (translation, rotation,
      scale, ...) that are applied to the entity. In other words, this
      function returns the bounds of the sprite in the global 2D
      world's coordinate system.

      :rtype: :class:`sfml.graphics.Rectangle`

CircleShape
^^^^^^^^^^^

.. py:class:: CircleShape(sfml.graphics.Shape)

   Specialized shape representing a circle.

   This class inherits all the functions of :class:`Transformable`
   (position, rotation, scale, bounds, ...) as well as the functions of
   :class:`Shape` (outline, color, texture, ...).

   Usage example::

      circle = sf.CircleShape()
      circle.radius = 150
      circle.outline_color = sf.Color.RED
      circle.outline_thickness = 5
      circle.position = (10, 20)
      # ...

      window.draw(circle)

   Since the graphics card can't draw perfect circles, we have to fake
   them with multiple triangles connected to each other. The "points
   count" property of :class:`CircleShape` defines how many of these
   triangles to use, and therefore defines the quality of the circle.

   The number of points can also be used for another purpose; with
   small numbers you can create any regular polygon shape: equilateral
   triangle, square, pentagon, hexagon, ...

   .. py:method:: CircleShape([radius[, point_count])

      Default constructor.

      :param float radius: Radius of the circle
      :param integer point_count: Number of points composing the circle

   .. py:attribute:: radius

      Set/get the radius of the circle.

      :rtype: float

   .. py:attribute:: point_count

      Set/get the number of points of the circle.

      :rtype: integer

   .. py:method:: get_point(index)

      Get a point of the shape.

      The result is undefined if index is out of the valid range.

      :param integer index: Index of the point to get, in range [0 .. :attr:`point_count` - 1]
      :return: Index-th point of the shape
      :rtype: :class:`sfml.system.Vector2`

ConvexShape
^^^^^^^^^^^

.. py:class:: ConvexShape(sfml.graphics.Shape)

   Specialized shape representing a convex polygon.

   This class inherits all the functions of :class:`Transformable`
   (position, rotation, scale, bounds, ...) as well as the functions of
   :class:`Shape` (outline, color, texture, ...).

   It is important to keep in mind that a convex shape must always
   be... convex, otherwise it may not be drawn correctly. Moreover, the
   points must be defined in order; using a random order would result
   in an incorrect shape.

   Usage example::

      polygon = sf.ConvexShape()
      polygon.point_count = 3
      polygon.set_point(0, (0, 0))
      polygon.set_point(1, (0, 10))
      polygon.set_point(2, (25, 5))
      polygon.outline_color = sf.Color.RED
      polygon.outline_thickness = 5
      polygon.position = (10, 20)
      # ...
      window.draw(polygon)

   .. py:method:: ConvexShape()

      Default constructor.

   .. py:attribute:: point_count

      Set/get the number of points of the polygon.

      *count* must be greater than 2 to define a valid shape.

      :rtype: integer

   .. py:method:: get_point(index)

      Get the position of a point.

      The result is undefined if index is out of the valid range.

      :param integer index: Index of the point to get, in range [0 .. :attr:`point_count` - 1]
      :return: Vector2 of the index-th point of the polygon
      :rtype: :class:`sfml.system.Vector2`

   .. py:method:: set_point(index, point)

      Set the position of a point.

      Don't forget that the polygon must remain convex, and the points
      need to stay ordered! :attr:`point_count` must be called first in
      order to set the total number of points. The result is undefined
      if index is out of the valid range.

      :param integer index: Index of the point to change, in range [0 .. :attr:`point_count` - 1]
      :param sfml.system.Vector2 point: New position of the point


RectangleShape
^^^^^^^^^^^^^^

.. py:class:: RectangleShape(sfml.graphics.Shape)

   Specialized shape representing a rectangle.

   This class inherits all the functions of :class:`Transformable`
   (position, rotation, scale, bounds, ...) as well as the functions of
   :class:`Shape` (outline, color, texture, ...).

   Usage example::

      rectangle = sf.RectangleShape()
      rectangle.size = (100, 50)
      rectangle.outline_color = sf.Color.RED
      rectangle.outline_thickness = 5
      rectangle.position = (10, 20)
      # ...

      window.draw(rectangle)

   .. py:method:: RectangleShape([size])

      Default constructor.

      :param sfml.system.Vector2 size: Size of the rectangle

   .. py:attribute:: size

      Set/get the size of the rectangle.

      :rtype: :class:`sfml.system.Vector2`

   .. py:attribute:: point_count

      Get the number of points defining the shape.

      :rtype: integer

   .. py:method:: get_point(index)

      Get the position of a point.

      The result is undefined if *index* is out of the valid range.

      :param integer index: Index of the point to get, in range [0 .. :attr:`point_count` - 1]
      :return: Vector2 of the index-th point of the shape
      :rtype: :class:`sfml.system.Vector2`


Vertex
^^^^^^

.. py:class:: Vertex

   Define a point with color and texture coordinates.

   A vertex is an improved point.

   It has a position and other extra attributes that will be used for
   drawing: in pySFML, vertices also have a color and a pair of
   texture coordinates.

   The vertex is the building block of drawing. Everything which is
   visible on screen is made of vertices. They are grouped as 2D
   primitives (triangles, quads, ...), and these primitives are
   grouped to create even more complex 2D entities such as sprites,
   texts, etc.

   If you use the graphical entities of pySFML (sprite, text, shape)
   you won't have to deal with vertices directly. But if you want to
   define your own 2D entities, such as tiled maps or particle
   systems, using vertices will allow you to get maximum performances.

   Example ::

      # define a 100x100 square, red, with a 10x10 texture mapped on it
      sf.Vertex(sf.Vector2(  0,   0), sf.Color.RED, sf.Vector2( 0,  0))
      sf.Vertex(sf.Vector2(  0, 100), sf.Color.RED, sf.Vector2( 0, 10))
      sf.Vertex(sf.Vector2(100, 100), sf.Color.RED, sf.Vector2(10, 10))
      sf.Vertex(sf.Vector2(100,   0), sf.Color.RED, sf.Vector2(10,  0))

      # all arguments are optional
      sf.Vertex()
      sf.Vertex(color=sf.Color.RED)
      sf.Vertex((50, 100), sf.Color.BLUE)
      sf.Vertex(tex_coords=(20, 20))

   Note: although texture coordinates are supposed to be an integer
   amount of pixels, their type is float because of some buggy
   graphics drivers that are not able to process integer coordinates
   correctly.

   .. py:method:: Vertex([position[, color[, tex_coords]]])

      Construct the vertex from its position, color and texture
      coordinates.

      :param sfml.system.Vector2 position: :class:`Vertex` position
      :param sfml.graphics.Color color: :class:`Vertex` color
      :param sfml.system.Vector2 tex_coords: :class:`Vertex` texture coordinates

   .. py:attribute:: position

      2D position of the vertex

      :rtype: :class:`sfml.system.Vector2`

   .. py:attribute:: color

      Color of the vertex.

      :rtype: :class:`sfml.graphics.Color`

   .. py:attribute:: tex_coords

      Coordinates of the texture's pixel to map to the vertex.

      :rtype: :class:`sfml.system.Vector2`

VertexArray
^^^^^^^^^^^

.. py:class:: VertexArray(sfml.graphics.Drawable)

   Define a set of one or more 2D primitives.

   :class:`VertexArray` is a very simple wrapper around a dynamic
   array of vertices and a primitives type.

   It inherits :class:`Drawable`, but unlike other drawables it is
   not transformable.

   Example::

      lines = sf.VertexArray(sf.PrimitiveType.LINES_STRIP, 2)
      lines[0].position = (10, 0)
      lines[1].position = (20, 0)

      lines.append(sf.Vertex((30, 5)))

      lines.resize(4)
      lines[3].position = (40, 2)

      window.draw(lines)

   .. py:method:: VertexArray([type[, vertex_count]])

      Construct the vertex array with a type and an initial number of
      vertices.

      :param sfml.graphics.PrimitiveType type: Type of primitives
      :param integer vertex_count: Initial number of vertices in the array

   .. py:method:: __len__()

      Return the vertex count.

   .. py:method:: __getitem__(index)

      Get an access to a vertex by its index.

   .. py:method:: __setitem__(index, vertex)

      Set a vertex by its index.

   .. py:method:: clear()

      Clear the vertex array.

      This method removes all the vertices from the array. It doesn't
      deallocate the corresponding memory, so that adding new vertices
      after clearing doesn't involve reallocating all the memory.

   .. py:method:: resize(vertex_count)

      Resize the vertex array.

      If *vertex_count* is greater than the current size, the previous
      vertices are kept and new (default-constructed) vertices are
      added. If *vertex_count* is less than the current size, existing
      vertices are removed from the array.

   .. py:method:: append()

      Add a vertex to the array.

   .. py:attribute:: primitive_type:

      Set/get the type of primitives to draw.

      This defines how the vertices must be interpreted when it's time
      to draw them:

         - As points
         - As lines
         - As triangles
         - As quads

      The default primitive type is :const:`POINTS`.

      :rtype: :class:`sfml.graphics.PrimitiveType`

   .. py:attribute:: bounds

      Compute the bounding rectangle of the vertex array.

      This returns the axis-aligned rectangle that contains all the
      vertices of the array.

      :rtype: :class:`sfml.graphics.Rectangle`


View
^^^^

.. class:: View

   2D camera that defines what region is shown on screen

   :class:`View` defines a camera in the 2D scene.

   This is a very powerful concept: you can scroll, rotate or zoom the
   entire scene without altering the way that your drawable objects are
   drawn.

   A view is composed of a source rectangle, which defines what part of
   the 2D scene is shown, and a target viewport, which defines where the
   contents of the source rectangle will be displayed on the render target
   (window or texture).

   The viewport allows to map the scene to a custom part of the render
   target, and can be used for split-screen or for displaying a minimap,
   for example. If the source rectangle has not the same size as the
   viewport, its contents will be stretched to fit in.

   To apply a view, you have to assign it to the render target. Then,
   every objects drawn in this render target will be affected by the view
   until you use another view.

   Usage example::

      view = sf.View()

      # initialize the view to a rectangle located at (100, 100) and with a size of 400x200
      view.reset(sf.Rectangle((100, 100), (400, 200)))

      # rotate it by 45 degrees
      view.rotate(45)

      # set its target viewport to be half of the window
      view.viewport = sf.Rectangle((0, 0), (0.5, 1))

      # apply it
      window.view = view

      # render stuff
      window.draw(some_sprites)

      # set the default view back
      window.view = window.default_view

      # render stuff not affected by the view
      window.draw(some_text)

   .. method:: View([rectangle])

      Construct the view, and optionally from a rectangle.

      :param sfml.graphics.Rectangle rectangle: Rectangle defining the zone to display

   .. attribute:: center

      Set/get the center of the view.

      :rtype: :class:`sfml.system.Vector2`

   .. attribute:: size

      Set/get the size of the view.

      :rtype: :class:`sfml.system.Vector2`

   .. attribute:: rotation

      Set/get the orientation of the view.

      The default rotation of a view is 0 degree.

      :rtype: float

   .. attribute:: viewport

      Set/get the target viewport.

      The viewport is the rectangle into which the contents of the view
      are displayed, expressed as a factor (between 0 and 1) of the
      size of the :class:`RenderTarget` to which the view is applied.
      For example, a view which takes the left side of the target would
      be defined with *view.viewport = (0, 0, 0.5, 1)*. By default, a
      view has a viewport which covers the entire target.

   .. method:: reset(rectangle)

      Reset the view to the given rectangle.

      Note that this function resets the rotation angle to 0.

      :param sfml.graphics.Rectangle rectangle: Rectangle defining the zone to display

   .. method:: move(offset)

      Move the view relatively to its current position.

      :param sfml.system.Vector2 offset: Move offset

   .. method:: rotate(angle)

      Rotate the view relatively to its current orientation.

      :param float angle: Angle to rotate, in degrees

   .. method:: zoom(factor)

      Resize the view rectangle relatively to its current size.

      Resizing the view simulates a zoom, as the zone displayed on
      screen grows or shrinks. factor is a multiplier:

          * 1 keeps the size unchanged
          * > 1 makes the view bigger (objects appear smaller)
          * < 1 makes the view smaller (objects appear bigger)

      :param float factor: Zoom factor to apply

   .. attribute:: transform

      Get the projection transform of the view.

      This function is meant for internal use only.

      :return: Projection transform defining the view
      :rtype: :class:`sfml.graphics.Transform`

   .. attribute:: inverse_transform

      Get the inverse projection transform of the view.

      This function is meant for internal use only.

      :return: Inverse of the projection transform defining the view
      :rtype: :class:`sfml.graphics.Transform`

RenderTarget
^^^^^^^^^^^^

.. py:class:: RenderTarget

   Base class for all render targets (window, texture, ...)

   :class:`RenderTarget` defines the common behaviour of all the
   2D render targets usable in the graphics module.

   It makes it possible to draw 2D entities like sprites, shapes,
   text without using any OpenGL command directly.

   A :class:`RenderTarget` is also able to use views
   (:class:`View`), which are a kind of 2D cameras. With views
   you can globally scroll, rotate or zoom everything that is drawn,
   without having to transform every single entity. See the
   documentation of :class:`View` for more details and sample
   pieces of code about this class.

   On top of that, render targets are still able to render direct
   OpenGL stuff. It is even possible to mix together OpenGL calls
   and regular SFML drawing commands. When doing so, make sure that
   OpenGL states are not messed up by calling the
   :func:`push_GL_states`/:func:`pop_GL_states` functions.

   .. py:method:: RenderTarget()

      This class is abstract.

   .. py:method:: clear([color=sfml.graphics.Color(0, 0, 0, 255)])

      Clear the entire target with a single color.

      This function is usually called once every frame, to clear the
      previous contents of the target.

      :param sfml.graphics.Color color: Fill color to use to clear the render target

   .. py:attribute:: view

      Change or get the current active view.

      The view is like a 2D camera, it controls which part of the 2D
      scene is visible, and how it is viewed in the render-target. The
      new view will affect everything that is drawn, until another view
      is set. The render target keeps its own copy of the view object,
      so it is not necessary to keep the original one alive after
      calling this function. To restore the original view of the
      target, you can set the result of :attr:`default_view` to this
      attribute.

      :rtype: :class:`sfml.graphics.View`

   .. py:attribute:: default_view

      Get the default view of the render target.

      The default view has the initial size of the render target, and
      never changes after the target has been created.

   .. py:method:: get_viewport(view)

      Get the viewport of a view, applied to this render target.

      The viewport is defined in the view as a ratio, this function
      simply applies this ratio to the current dimensions of the render
      target to calculate the pixels rectangle that the viewport
      actually covers in the target.

      :param sfml.graphics.View view: The view for which we want to compute the viewport
      :return: Viewport rectangle, expressed in pixels
      :rtype: :class:`sfml.graphics.Rectangle`

   .. py:method:: convert_coords(point[, view])

      Convert a point from target coordinates to view coordinates.

      Initially, a unit of the 2D world matches a pixel of the render
      target. But if you define a custom view, this assertion is not
      true anymore, ie. a point located at (10, 50) in your render
      target (for example a window) may map to the point (150, 75) in
      your 2D world -- for example if the view is translated by
      (140, 25).

      For render windows, this function is typically used to find which
      point (or object) is located below the mouse cursor.

      It uses a custom view for calculations if provided, otherwise, it
      uses the current view of the render target.

      :param sfml.system.Vector2 point: Point to convert, relative to the render target
      :param sfml.graphics.View view: The view to use for converting the point
      :return: The converted point, in "world" units
      :rtype: :class:`sfml.system.Vector2`

   .. py:method:: draw(drawable[, states])

      Draw a drawable object to the render-target.

      :param sfml.graphics.Drawable drawable: Object to draw
      :param sfml.graphics.RenderStates states: Render states to use for drawing

   .. py:attribute:: size

      Return the size of the rendering region of the target.

      :rtype: :class:`sfml.system.Vector2`

   .. py:attribute:: width

      Return the width of the rendering region of the target.

      :rtype: integer

   .. py:attribute:: height

      Return the height of the rendering region of the target.

      :rtype: integer

   .. py:method:: push_GL_states()

      Save the current OpenGL render states and matrices.

      This function can be used when you mix pySFML drawing and direct
      OpenGL rendering. Combined with :func:`pop_GL_states`, it ensures
      that:

          * pySFML's internal states are not messed up by your OpenGL code
          * your OpenGL states are not modified by a call to a pySFML function

      More specifically, it must be used around code that calls :func:`draw` functions. Example::

         # OpenGL code here...
         window.push_GL_state()
         window.draw(...)
         window.draw(...)
         window.pop_GL_states()
         # OpenGL code here...

      Note that this function is quite expensive, as it saves all the
      possible OpenGL states and matrices, even the ones you don't care
      about. Therefore it should be used wisely. It is provided for
      convenience, but the best results will be achieved if you handle
      OpenGL states yourself (because you know which states have really
      changed, and need to be saved and restored). Take a look at the
      :func:`reset_GL_states` function if you do so.

   .. py:method:: pop_GL_states()

      Restore the previously saved OpenGL render states and matrices.

      See the description of :func:`push_GL_states` to get a detailed
      description of these functions.

   .. py:method:: reset_GL_states()

      Reset the internal OpenGL states so that the target is ready for
      drawing.

      This function can be used when you mix pySFML drawing and direct
      OpenGL rendering, if you choose not to use
      :func:`push_GL_states`/:func:`pop_GL_states`. It makes sure that
      all OpenGL states needed by pySFML are set, so that subsequent
      :func:`draw` calls will work as expected.

         # OpenGL code here...
         glPushAttrib(...)
         window.reset_GL_states()
         window.draw(...)
         window.draw(...)
         glPopAttrib(...)
         # OpenGL code here...

RenderWindow
^^^^^^^^^^^^

.. py:class:: RenderWindow(sfml.graphics.Window, sfml.graphics.RenderTarget)

   :class:`.Window` that can serve as a target for 2D drawing.

   :class:`RenderWindow` is the main class of the graphics module.

   It defines an OS window that can be painted using the other classes
   of the graphics module.

   :class:`RenderWindow` is derived from :class:`.Window`, thus it
   inherits all its features: events, window management, OpenGL
   rendering, etc. See the documentation of :class:`.Window` for a
   more complete description of all these features, as well as code
   examples.

   On top of that, :class:`RenderWindow` adds more features related
   to 2D drawing with the graphics module (see its base class
   :class:`RenderTarget` for more details). Here is a typical
   rendering and event loop with an :class:`RenderWindow`

   .. py:method:: RenderWindow(mode, title[, style[, settings]])

      Construct a new window.

      This constructor creates the window with the size and pixel depth
      defined in mode. An optional style can be passed to customize the
      look and behaviour of the window (borders, title bar, resizable,
      closable, ...).

      The fourth parameter is an optional structure specifying advanced
      OpenGL context settings such as antialiasing, depth-buffer bits,
      etc. You shouldn't care about these parameters for a regular
      usage of the graphics module.

      :param sfml.window.VideoMode mode: Video mode to use (defines the width, height and depth of the rendering area of the window)
      :param str title: Title of the window
      :param style:	Window style
      :type style: :class:`sfml.window.Style`'s constant
      :param sfml.window.ContextSettings settings: Additional settings for the underlying OpenGL context

   .. py:method:: capture()

      Copy the current contents of the window to an image.

      This is a slow operation, whose main purpose is to make
      screenshots of the application. If you want to update an image
      with the contents of the window and then use it for drawing, you
      should rather use an :class:`Texture` and its
      :func:`Texture.update_from_window` function. You can also draw things directly
      to a texture with the :class:`RenderTexture` class.

      :return: Image containing the captured contents
      :rtype: :class:`sfml.graphics.Image`

RenderTexture
^^^^^^^^^^^^^

.. py:class:: RenderTexture(sfml.graphics.RenderTarget)

   Target for off-screen 2D rendering into an texture.

   :class:`RenderTexture` is the little brother of :class:`RenderWindow`.

   It implements the same 2D drawing and OpenGL-related functions (see
   their base class :class:`RenderTarget` for more details), the
   difference is that the result is stored in an off-screen texture
   rather than being show in a window.

   Rendering to a texture can be useful in a variety of situations:

       * precomputing a complex static texture (like a level's background from multiple tiles)
       * applying post-effects to the whole scene with shaders
       * creating a sprite from a 3D object rendered with OpenGL
       * etc.

   Usage example::

      # create a new render-window
      window = sf.RenderWindow(sf.VideoMode(800, 600), "pySFML - RenderWindow")

      # create a new render-texture
      texture = sf.RenderTexture.create(500, 500)

      # the main loop
      while window.is_open:

         # ...

         # clear the whole texture with red color
         texture.clear(sf.Color.RED)

         # draw stuff to the texture
         texture.draw(sprite)
         texture.draw(shape)
         texture.draw(text)

         # we're done drawing to the texture
         texture.display()

         # now we start rendering to the window, clear it first
         window.clear()

         # draw the texture
         sprite = sf.Sprite(texture.texture)
         window.draw(sprite)

         # end the current frame and display its content on screen
         window.display()

   .. py:method:: RenderTexture(width, height[, depth_buffer=False])

      Construct the render-texture.

      The last parameter, *depth_buffer*, is useful if you want to use
      the render-texture for 3D OpenGL rendering that requires a
      depth-buffer. Otherwise it is unnecessary, and you should leave
      this parameter to false (which is its default value).

      :param integer width: Width of the render-texture
      :param integer height: Height of the render-texture
      :param integer depth_buffer: Do you want this render-texture to have a depth buffer?
      :rtype: :class:`sfml.graphics.RenderTexture`

   .. py:attribute:: smooth

      Enable or disable texture smoothing.

      This property is similar to :attr:`Texture.smooth`. This
      parameter is disabled by default.

      :rtype: bool

   .. py:attribute:: active

      Activate of deactivate the render-texture for rendering.

      This function makes the render-texture's context current for
      future OpenGL rendering operations (so you shouldn't care about
      it if you're not doing direct OpenGL stuff). Only one context can
      be current in a thread, so if you want to draw OpenGL geometry to
      another render target (like an :class:`RenderWindow`) don't
      forget to activate it again.

      :rtype: bool

   .. py:method:: display()

      Update the contents of the target texture.

      This function updates the target texture with what has been drawn
      so far. Like for windows, calling this function is mandatory at
      the end of rendering. Not calling it may leave the texture in an
      undefined state.

   .. py:attribute:: texture

      Get a read-only reference to the target texture.

      After drawing to the render-texture and calling :func:`display`,
      you can retrieve the updated texture using this function, and
      draw it using a sprite (for example). The internal
      :class:`Texture` of a render-texture is always the same
      instance, so that it is possible to call this function once and
      keep a reference to the texture even after it is modified.

      :rtype: :class:`sfml.graphics.Texture`