1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477
|
#
# Copyright (c) 2018 Andrew R. Kozlik
#
# Permission is hereby granted, free of charge, to any person obtaining a copy of
# this software and associated documentation files (the "Software"), to deal in
# the Software without restriction, including without limitation the rights to
# use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
# of the Software, and to permit persons to whom the Software is furnished to do
# so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
# WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
# CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
#
import hmac
import secrets
from dataclasses import dataclass
from typing import Any, Dict, Iterable, Iterator, List, NamedTuple, Sequence, Set, Tuple
from . import cipher
from .constants import (
DIGEST_INDEX,
DIGEST_LENGTH_BYTES,
GROUP_PREFIX_LENGTH_WORDS,
ID_EXP_LENGTH_WORDS,
ID_LENGTH_BITS,
MAX_SHARE_COUNT,
MIN_STRENGTH_BITS,
SECRET_INDEX,
)
from .share import Share, ShareCommonParameters, ShareGroupParameters
from .utils import MnemonicError, bits_to_bytes
class RawShare(NamedTuple):
x: int
data: bytes
class ShareGroup:
def __init__(self) -> None:
self.shares: Set[Share] = set()
def __iter__(self) -> Iterator[Share]:
return iter(self.shares)
def __len__(self) -> int:
return len(self.shares)
def __bool__(self) -> bool:
return bool(self.shares)
def __contains__(self, obj: Any) -> bool:
return obj in self.shares
def add(self, share: Share) -> None:
if self.shares and self.group_parameters() != share.group_parameters():
fields = zip(
ShareGroupParameters._fields,
self.group_parameters(),
share.group_parameters(),
)
mismatch = next(name for name, x, y in fields if x != y)
raise MnemonicError(
f"Invalid set of mnemonics. The {mismatch} parameters don't match."
)
self.shares.add(share)
def to_raw_shares(self) -> List[RawShare]:
return [RawShare(s.index, s.value) for s in self.shares]
def get_minimal_group(self) -> "ShareGroup":
group = ShareGroup()
group.shares = set(
share for _, share in zip(range(self.member_threshold()), self.shares)
)
return group
def common_parameters(self) -> ShareCommonParameters:
return next(iter(self.shares)).common_parameters()
def group_parameters(self) -> ShareGroupParameters:
return next(iter(self.shares)).group_parameters()
def member_threshold(self) -> int:
return next(iter(self.shares)).member_threshold
def is_complete(self) -> bool:
if self.shares:
return len(self.shares) >= self.member_threshold()
else:
return False
@dataclass(frozen=True)
class EncryptedMasterSecret:
identifier: int
extendable: bool
iteration_exponent: int
ciphertext: bytes
@classmethod
def from_master_secret(
cls,
master_secret: bytes,
passphrase: bytes,
identifier: int,
extendable: bool,
iteration_exponent: int,
) -> "EncryptedMasterSecret":
ciphertext = cipher.encrypt(
master_secret, passphrase, iteration_exponent, identifier, extendable
)
return EncryptedMasterSecret(
identifier, extendable, iteration_exponent, ciphertext
)
def decrypt(self, passphrase: bytes) -> bytes:
return cipher.decrypt(
self.ciphertext,
passphrase,
self.iteration_exponent,
self.identifier,
self.extendable,
)
RANDOM_BYTES = secrets.token_bytes
"""Source of random bytes. Can be overriden for deterministic testing."""
def _precompute_exp_log() -> Tuple[List[int], List[int]]:
exp = [0 for i in range(255)]
log = [0 for i in range(256)]
poly = 1
for i in range(255):
exp[i] = poly
log[poly] = i
# Multiply poly by the polynomial x + 1.
poly = (poly << 1) ^ poly
# Reduce poly by x^8 + x^4 + x^3 + x + 1.
if poly & 0x100:
poly ^= 0x11B
return exp, log
EXP_TABLE, LOG_TABLE = _precompute_exp_log()
def _interpolate(shares: Sequence[RawShare], x: int) -> bytes:
"""
Returns f(x) given the Shamir shares (x_1, f(x_1)), ... , (x_k, f(x_k)).
:param shares: The Shamir shares.
:type shares: A list of pairs (x_i, y_i), where x_i is an integer and y_i is an array of
bytes representing the evaluations of the polynomials in x_i.
:param int x: The x coordinate of the result.
:return: Evaluations of the polynomials in x.
:rtype: Array of bytes.
"""
x_coordinates = set(share.x for share in shares)
if len(x_coordinates) != len(shares):
raise MnemonicError("Invalid set of shares. Share indices must be unique.")
share_value_lengths = set(len(share.data) for share in shares)
if len(share_value_lengths) != 1:
raise MnemonicError(
"Invalid set of shares. All share values must have the same length."
)
if x in x_coordinates:
for share in shares:
if share.x == x:
return share.data
# Logarithm of the product of (x_i - x) for i = 1, ... , k.
log_prod = sum(LOG_TABLE[share.x ^ x] for share in shares)
result = bytes(share_value_lengths.pop())
for share in shares:
# The logarithm of the Lagrange basis polynomial evaluated at x.
log_basis_eval = (
log_prod
- LOG_TABLE[share.x ^ x]
- sum(LOG_TABLE[share.x ^ other.x] for other in shares)
) % 255
result = bytes(
intermediate_sum
^ (
EXP_TABLE[(LOG_TABLE[share_val] + log_basis_eval) % 255]
if share_val != 0
else 0
)
for share_val, intermediate_sum in zip(share.data, result)
)
return result
def _create_digest(random_data: bytes, shared_secret: bytes) -> bytes:
return hmac.new(random_data, shared_secret, "sha256").digest()[:DIGEST_LENGTH_BYTES]
def _split_secret(
threshold: int, share_count: int, shared_secret: bytes
) -> List[RawShare]:
if threshold < 1:
raise ValueError("The requested threshold must be a positive integer.")
if threshold > share_count:
raise ValueError(
"The requested threshold must not exceed the number of shares."
)
if share_count > MAX_SHARE_COUNT:
raise ValueError(
f"The requested number of shares must not exceed {MAX_SHARE_COUNT}."
)
# If the threshold is 1, then the digest of the shared secret is not used.
if threshold == 1:
return [RawShare(i, shared_secret) for i in range(share_count)]
random_share_count = threshold - 2
shares = [
RawShare(i, RANDOM_BYTES(len(shared_secret))) for i in range(random_share_count)
]
random_part = RANDOM_BYTES(len(shared_secret) - DIGEST_LENGTH_BYTES)
digest = _create_digest(random_part, shared_secret)
base_shares = shares + [
RawShare(DIGEST_INDEX, digest + random_part),
RawShare(SECRET_INDEX, shared_secret),
]
for i in range(random_share_count, share_count):
shares.append(RawShare(i, _interpolate(base_shares, i)))
return shares
def _recover_secret(threshold: int, shares: Sequence[RawShare]) -> bytes:
# If the threshold is 1, then the digest of the shared secret is not used.
if threshold == 1:
return next(iter(shares)).data
shared_secret = _interpolate(shares, SECRET_INDEX)
digest_share = _interpolate(shares, DIGEST_INDEX)
digest = digest_share[:DIGEST_LENGTH_BYTES]
random_part = digest_share[DIGEST_LENGTH_BYTES:]
if digest != _create_digest(random_part, shared_secret):
raise MnemonicError("Invalid digest of the shared secret.")
return shared_secret
def decode_mnemonics(mnemonics: Iterable[str]) -> Dict[int, ShareGroup]:
common_params: Set[ShareCommonParameters] = set()
groups: Dict[int, ShareGroup] = {}
for mnemonic in mnemonics:
share = Share.from_mnemonic(mnemonic)
common_params.add(share.common_parameters())
group = groups.setdefault(share.group_index, ShareGroup())
group.add(share)
if len(common_params) != 1:
raise MnemonicError(
"Invalid set of mnemonics. "
f"All mnemonics must begin with the same {ID_EXP_LENGTH_WORDS} words, "
"must have the same group threshold and the same group count."
)
return groups
def split_ems(
group_threshold: int,
groups: Sequence[Tuple[int, int]],
encrypted_master_secret: EncryptedMasterSecret,
) -> List[List[Share]]:
"""
Split an Encrypted Master Secret into mnemonic shares.
This function is a counterpart to `recover_ems`, and it is used as a subroutine in
`generate_mnemonics`. The input is an *already encrypted* Master Secret (EMS), so it
is possible to encrypt the Master Secret in advance and perform the splitting later.
:param group_threshold: The number of groups required to reconstruct the master secret.
:param groups: A list of (member_threshold, member_count) pairs for each group, where member_count
is the number of shares to generate for the group and member_threshold is the number of members required to
reconstruct the group secret.
:param encrypted_master_secret: The encrypted master secret to split.
:return: List of groups of mnemonics.
"""
if len(encrypted_master_secret.ciphertext) * 8 < MIN_STRENGTH_BITS:
raise ValueError(
"The length of the master secret must be "
f"at least {bits_to_bytes(MIN_STRENGTH_BITS)} bytes."
)
if group_threshold > len(groups):
raise ValueError(
"The requested group threshold must not exceed the number of groups."
)
if any(
member_threshold == 1 and member_count > 1
for member_threshold, member_count in groups
):
raise ValueError(
"Creating multiple member shares with member threshold 1 is not allowed. "
"Use 1-of-1 member sharing instead."
)
group_shares = _split_secret(
group_threshold, len(groups), encrypted_master_secret.ciphertext
)
return [
[
Share(
encrypted_master_secret.identifier,
encrypted_master_secret.extendable,
encrypted_master_secret.iteration_exponent,
group_index,
group_threshold,
len(groups),
member_index,
member_threshold,
value,
)
for member_index, value in _split_secret(
member_threshold, member_count, group_secret
)
]
for (member_threshold, member_count), (group_index, group_secret) in zip(
groups, group_shares
)
]
def _random_identifier() -> int:
"""Returns a random identifier with the given bit length."""
identifier = int.from_bytes(RANDOM_BYTES(bits_to_bytes(ID_LENGTH_BITS)), "big")
return identifier & ((1 << ID_LENGTH_BITS) - 1)
def generate_mnemonics(
group_threshold: int,
groups: Sequence[Tuple[int, int]],
master_secret: bytes,
passphrase: bytes = b"",
extendable: bool = True,
iteration_exponent: int = 1,
) -> List[List[str]]:
"""
Split a master secret into mnemonic shares using Shamir's secret sharing scheme.
The supplied Master Secret is encrypted by the passphrase (empty passphrase is used
if none is provided) and split into a set of mnemonic shares.
This is the user-friendly method to back up a pre-existing secret with the Shamir
scheme, optionally protected by a passphrase.
:param group_threshold: The number of groups required to reconstruct the master secret.
:param groups: A list of (member_threshold, member_count) pairs for each group, where member_count
is the number of shares to generate for the group and member_threshold is the number of members required to
reconstruct the group secret.
:param master_secret: The master secret to split.
:param passphrase: The passphrase used to encrypt the master secret.
:param int iteration_exponent: The encryption iteration exponent.
:return: List of groups mnemonics.
"""
if not all(32 <= c <= 126 for c in passphrase):
raise ValueError(
"The passphrase must contain only printable ASCII characters (code points 32-126)."
)
identifier = _random_identifier()
encrypted_master_secret = EncryptedMasterSecret.from_master_secret(
master_secret, passphrase, identifier, extendable, iteration_exponent
)
grouped_shares = split_ems(group_threshold, groups, encrypted_master_secret)
return [[share.mnemonic() for share in group] for group in grouped_shares]
def recover_ems(groups: Dict[int, ShareGroup]) -> EncryptedMasterSecret:
"""
Combine shares, recover metadata and the Encrypted Master Secret.
This function is a counterpart to `split_ems`, and it is used as a subroutine in
`combine_mnemonics`. It returns the EMS itself and data required for its decryption,
except for the passphrase. It is thus possible to defer decryption of the Master
Secret to a later time.
:param groups: Set of shares classified into groups.
:return: Encrypted Master Secret
"""
if not groups:
raise MnemonicError("The set of shares is empty.")
params = next(iter(groups.values())).common_parameters()
if len(groups) < params.group_threshold:
raise MnemonicError(
"Insufficient number of mnemonic groups. "
f"The required number of groups is {params.group_threshold}."
)
if len(groups) != params.group_threshold:
raise MnemonicError(
"Wrong number of mnemonic groups. "
f"Expected {params.group_threshold} groups, "
f"but {len(groups)} were provided."
)
for group in groups.values():
if len(group) != group.member_threshold():
share_words = next(iter(group)).words()
prefix = " ".join(share_words[:GROUP_PREFIX_LENGTH_WORDS])
raise MnemonicError(
"Wrong number of mnemonics. "
f'Expected {group.member_threshold()} mnemonics starting with "{prefix} ...", '
f"but {len(group)} were provided."
)
group_shares = [
RawShare(
group_index,
_recover_secret(group.member_threshold(), group.to_raw_shares()),
)
for group_index, group in groups.items()
]
ciphertext = _recover_secret(params.group_threshold, group_shares)
return EncryptedMasterSecret(
params.identifier, params.extendable, params.iteration_exponent, ciphertext
)
def combine_mnemonics(mnemonics: Iterable[str], passphrase: bytes = b"") -> bytes:
"""
Combine mnemonic shares to obtain the master secret which was previously split
using Shamir's secret sharing scheme.
This is the user-friendly method to recover a backed-up secret optionally protected
by a passphrase.
:param mnemonics: List of mnemonics.
:param passphrase: The passphrase used to encrypt the master secret.
:return: The master secret.
"""
if not mnemonics:
raise MnemonicError("The list of mnemonics is empty.")
groups = decode_mnemonics(mnemonics)
encrypted_master_secret = recover_ems(groups)
return encrypted_master_secret.decrypt(passphrase)
|