File: benchmarks.py

package info (click to toggle)
python-shapely 2.1.1-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 2,528 kB
  • sloc: python: 18,648; ansic: 6,615; makefile: 88; sh: 62
file content (374 lines) | stat: -rw-r--r-- 12,480 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
"""
Shapely benchmarks

These are run using asv: "pip install asv" or "conda install -c conda-forge asv"

To run a specific test within the existing environment, e.g., PointPolygonTimeSuite:
$ asv run -b PointPolygonTimeSuite -E 'existing'
"""

import numpy as np
import shapely


# Seed the numpy random generator for more reproducible benchmarks
np.random.seed(0)


class PointPolygonTimeSuite:
    """Benchmarks running on 100000 points and one polygon"""

    def setup(self):
        self.points = shapely.points(np.random.random((100000, 2)))
        self.polygon = shapely.polygons(np.random.random((3, 2)))

    def time_contains(self):
        shapely.contains(self.points, self.polygon)

    def time_distance(self):
        shapely.distance(self.points, self.polygon)

    def time_intersection(self):
        shapely.intersection(self.points, self.polygon)


class IOSuite:
    """Benchmarks I/O operations (WKT and WKB) on a set of 10000 polygons"""

    def setup(self):
        self.to_write = shapely.polygons(np.random.random((10000, 100, 2)))
        self.to_read_wkt = shapely.to_wkt(self.to_write)
        self.to_read_wkb = shapely.to_wkb(self.to_write)

    def time_write_to_wkt(self):
        shapely.to_wkt(self.to_write)

    def time_write_to_wkb(self):
        shapely.to_wkb(self.to_write)

    def time_read_from_wkt(self):
        shapely.from_wkt(self.to_read_wkt)

    def time_read_from_wkb(self):
        shapely.from_wkb(self.to_read_wkb)


class ConstructorsSuite:
    """Microbenchmarks for the Geometry class constructors"""

    def setup(self):
        self.coords = np.random.random((1000, 2))

    def time_point(self):
        shapely.Point(1.0, 2.0)

    def time_linestring_from_numpy(self):
        shapely.LineString(self.coords)

    def time_linearring_from_numpy(self):
        shapely.LinearRing(self.coords)

    def test_polygon_from_numpy(self):
        shapely.Polygon(self.coords)

    def test_multipoint_from_numpy(self):
        shapely.MultiPoint(self.coords)


class ConstructiveSuite:
    """Benchmarks constructive functions on a set of 10,000 points"""

    def setup(self):
        self.coords = np.random.random((10000, 2))
        self.points = shapely.points(self.coords)

    def time_voronoi_polygons(self):
        shapely.voronoi_polygons(self.points)

    def time_envelope(self):
        shapely.envelope(self.points)

    def time_convex_hull(self):
        shapely.convex_hull(self.points)

    def time_concave_hull(self):
        shapely.concave_hull(self.points, ratio=0.2, allow_holes=False)

    def time_concave_hull_with_holes(self):
        shapely.concave_hull(self.points, ratio=0.2, allow_holes=True)

    def time_delaunay_triangles(self):
        shapely.delaunay_triangles(self.points)

    def time_box(self):
        shapely.box(*np.hstack([self.coords, self.coords + 100]).T)


class ClipSuite:
    """Benchmarks for different methods of clipping geometries by boxes"""

    def setup(self):
        # create irregular polygons by merging overlapping point buffers
        self.polygon = shapely.union_all(
            shapely.buffer(shapely.points(np.random.random((1000, 2)) * 500), 10)
        )
        xmin = np.random.random(100) * 100
        xmax = xmin + 100
        ymin = np.random.random(100) * 100
        ymax = ymin + 100
        self.bounds = np.array([xmin, ymin, xmax, ymax]).T
        self.boxes = shapely.box(xmin, ymin, xmax, ymax)

    def time_clip_by_box(self):
        shapely.intersection(self.polygon, self.boxes)

    def time_clip_by_rect(self):
        for bounds in self.bounds:
            shapely.clip_by_rect(self.polygon, *bounds)


class GetParts:
    """Benchmarks for getting individual parts from 100 multipolygons of 100 polygons each"""

    def setup(self):
        self.multipolygons = np.array(
            [
                shapely.multipolygons(shapely.polygons(np.random.random((2, 100, 2))))
                for i in range(10000)
            ],
            dtype=object,
        )

    def time_get_parts(self):
        """Cython implementation of get_parts"""
        shapely.get_parts(self.multipolygons)

    def time_get_parts_python(self):
        """Python / ufuncs version of get_parts"""

        parts = []
        for i in range(len(self.multipolygons)):
            num_parts = shapely.get_num_geometries(self.multipolygons[i])
            parts.append(shapely.get_geometry(self.multipolygons[i], range(num_parts)))

        parts = np.concatenate(parts)


class OverlaySuite:
    """Benchmarks for different methods of overlaying geometries"""

    def setup(self):
        # create irregular polygons by merging overlapping point buffers
        self.left = shapely.union_all(
            shapely.buffer(shapely.points(np.random.random((500, 2)) * 500), 15)
        )
        # shift this up and right
        self.right = shapely.transform(self.left, lambda x: x + 50)

    def time_difference(self):
        shapely.difference(self.left, self.right)

    def time_difference_prec1(self):
        shapely.difference(self.left, self.right, grid_size=1)

    def time_difference_prec2(self):
        shapely.difference(self.left, self.right, grid_size=2)

    def time_intersection(self):
        shapely.intersection(self.left, self.right)

    def time_intersection_prec1(self):
        shapely.intersection(self.left, self.right, grid_size=1)

    def time_intersection_prec2(self):
        shapely.intersection(self.left, self.right, grid_size=2)

    def time_symmetric_difference(self):
        shapely.symmetric_difference(self.left, self.right)

    def time_symmetric_difference_prec1(self):
        shapely.symmetric_difference(self.left, self.right, grid_size=1)

    def time_symmetric_difference_prec2(self):
        shapely.symmetric_difference(self.left, self.right, grid_size=2)

    def time_union(self):
        shapely.union(self.left, self.right)

    def time_union_prec1(self):
        shapely.union(self.left, self.right, grid_size=1)

    def time_union_prec2(self):
        shapely.union(self.left, self.right, grid_size=2)

    def time_union_all(self):
        shapely.union_all([self.left, self.right])

    def time_union_all_prec1(self):
        shapely.union_all([self.left, self.right], grid_size=1)

    def time_union_all_prec2(self):
        shapely.union_all([self.left, self.right], grid_size=2)


class STRtree:
    """Benchmarks queries against STRtree"""

    def setup(self):
        # create irregular polygons my merging overlapping point buffers
        self.polygons = shapely.get_parts(
            shapely.union_all(
                shapely.buffer(shapely.points(np.random.random((2000, 2)) * 500), 5)
            )
        )
        self.tree = shapely.STRtree(self.polygons)
        # initialize the tree by making a tiny query first
        self.tree.query(shapely.points(0, 0))

        # create points that extend beyond the domain of the above polygons to ensure
        # some don't overlap
        self.points = shapely.points((np.random.random((2000, 2)) * 750) - 125)
        self.point_tree = shapely.STRtree(
            shapely.points(np.random.random((2000, 2)) * 750)
        )
        self.point_tree.query(shapely.points(0, 0))

        # create points on a grid for testing equidistant nearest neighbors
        # creates 2025 points
        grid_coords = np.mgrid[:45, :45].T.reshape(-1, 2)
        self.grid_point_tree = shapely.STRtree(shapely.points(grid_coords))
        self.grid_points = shapely.points(grid_coords + 0.5)

    def time_tree_create(self):
        tree = shapely.STRtree(self.polygons)
        tree.query(shapely.points(0, 0))

    def time_tree_query(self):
        self.tree.query(self.polygons)

    def time_tree_query_intersects(self):
        self.tree.query(self.polygons, predicate="intersects")

    def time_tree_query_within(self):
        self.tree.query(self.polygons, predicate="within")

    def time_tree_query_contains(self):
        self.tree.query(self.polygons, predicate="contains")

    def time_tree_query_overlaps(self):
        self.tree.query(self.polygons, predicate="overlaps")

    def time_tree_query_crosses(self):
        self.tree.query(self.polygons, predicate="crosses")

    def time_tree_query_touches(self):
        self.tree.query(self.polygons, predicate="touches")

    def time_tree_query_covers(self):
        self.tree.query(self.polygons, predicate="covers")

    def time_tree_query_covered_by(self):
        self.tree.query(self.polygons, predicate="covered_by")

    def time_tree_query_contains_properly(self):
        self.tree.query(self.polygons, predicate="contains_properly")

    def time_tree_nearest_points(self):
        self.point_tree.nearest(self.points)

    def time_tree_nearest_points_equidistant(self):
        self.grid_point_tree.nearest(self.grid_points)

    def time_tree_nearest_points_equidistant_manual_all(self):
        # This benchmark approximates query_nearest for equidistant results
        # starting from singular nearest neighbors and searching for more
        # within same distance.

        # try to find all equidistant neighbors ourselves given single nearest
        # result
        l, r = self.grid_point_tree.nearest(self.grid_points)
        # calculate distance to nearest neighbor
        dist = shapely.distance(
            self.grid_points.take(l), self.grid_point_tree.geometries.take(r)
        )
        # include a slight epsilon to ensure nearest are within this radius
        b = shapely.buffer(self.grid_points, dist + 1e-8)

        # query the tree for others in the same buffer distance
        left, right = self.grid_point_tree.query(b, predicate="intersects")
        dist = shapely.distance(
            self.grid_points.take(left), self.grid_point_tree.geometries.take(right)
        )

        # sort by left, distance
        ix = np.lexsort((right, dist, left))
        left = left[ix]
        right = right[ix]
        dist = dist[ix]

        run_start = np.r_[True, left[:-1] != left[1:]]
        run_counts = np.diff(np.r_[np.nonzero(run_start)[0], left.shape[0]])

        mins = dist[run_start]

        # spread to rest of array so we can extract out all within each group that match
        all_mins = np.repeat(mins, run_counts)
        ix = dist == all_mins
        left = left[ix]
        right = right[ix]
        dist = dist[ix]

    def time_tree_query_nearest_points(self):
        self.point_tree.query_nearest(self.points)

    def time_tree_query_nearest_points_equidistant(self):
        self.grid_point_tree.query_nearest(self.grid_points)

    def time_tree_query_nearest_points_small_max_distance(self):
        # returns >300 results
        self.point_tree.query_nearest(self.points, max_distance=5)

    def time_tree_query_nearest_points_large_max_distance(self):
        # measures the overhead of using a distance that would encompass all tree points
        self.point_tree.query_nearest(self.points, max_distance=1000)

    def time_tree_nearest_poly(self):
        self.tree.nearest(self.points)

    def time_tree_query_nearest_poly(self):
        self.tree.query_nearest(self.points)

    def time_tree_query_nearest_poly_small_max_distance(self):
        # returns >300 results
        self.tree.query_nearest(self.points, max_distance=5)

    def time_tree_query_nearest_poly_python(self):
        # returns all input points

        # use an arbitrary search tolerance that seems appropriate for the density of
        # geometries
        tolerance = 200
        b = shapely.buffer(self.points, tolerance, quad_segs=1)
        left, right = self.tree.query(b)
        dist = shapely.distance(self.points.take(left), self.polygons.take(right))

        # sort by left, distance
        ix = np.lexsort((right, dist, left))
        left = left[ix]
        right = right[ix]
        dist = dist[ix]

        run_start = np.r_[True, left[:-1] != left[1:]]
        run_counts = np.diff(np.r_[np.nonzero(run_start)[0], left.shape[0]])

        mins = dist[run_start]

        # spread to rest of array so we can extract out all within each group that match
        all_mins = np.repeat(mins, run_counts)
        ix = dist == all_mins
        left = left[ix]
        right = right[ix]
        dist = dist[ix]

        # arrays are now roughly representative of what tree.query_nearest would provide, though
        # some query_nearest neighbors may be missed if they are outside tolerance