File: manual.rst

package info (click to toggle)
python-shapely 2.1.1-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 2,528 kB
  • sloc: python: 18,648; ansic: 6,615; makefile: 88; sh: 62
file content (2908 lines) | stat: -rw-r--r-- 90,850 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
.. _manual:

=======================
The Shapely User Manual
=======================

:Author: Sean Gillies, <sean.gillies@gmail.com>
:Version: |release|
:Date: |today|
:Copyright:
  This work is licensed under a `Creative Commons Attribution 3.0
  United States License`__.

.. __: https://creativecommons.org/licenses/by/3.0/us/

:Abstract:
  This document explains how to use the Shapely Python package for
  computational geometry.

.. _intro:

Introduction
============

Deterministic spatial analysis is an important component of computational
approaches to problems in agriculture, ecology, epidemiology, sociology, and
many other fields. What is the surveyed perimeter/area ratio of these patches
of animal habitat? Which properties in this town intersect with the 50-year
flood contour from this new flooding model? What are the extents of findspots
for ancient ceramic wares with maker's marks "A" and "B", and where do the
extents overlap? What's the path from home to office that best skirts
identified zones of location based spam? These are just a few of the possible
questions addressable using non-statistical spatial analysis, and more
specifically, computational geometry.

Shapely is a Python package for set-theoretic analysis and manipulation of
planar features using functions from the
well known and widely deployed GEOS_ library. GEOS, a port of the `Java
Topology Suite`_ (JTS), is the geometry engine of the PostGIS_ spatial
extension for the PostgreSQL RDBMS. The designs of JTS and GEOS are largely
guided by the `Open Geospatial Consortium`_'s Simple Features Access
Specification [1]_ and Shapely adheres mainly to the same set of standard
classes and operations. Shapely is thereby deeply rooted in the conventions of
the geographic information systems (GIS) world, but aspires to be equally
useful to programmers working on non-conventional problems.

The first premise of Shapely is that Python programmers should be able to
perform PostGIS type geometry operations outside of an RDBMS. Not all
geographic data originate or reside in a RDBMS or are best processed using SQL.
We can load data into a spatial RDBMS to do work, but if there's no mandate to
manage (the "M" in "RDBMS") the data over time in the database we're using the
wrong tool for the job. The second premise is that the persistence,
serialization, and map projection of features are significant, but orthogonal
problems. You may not need a hundred GIS format readers and writers or the
multitude of State Plane projections, and Shapely doesn't burden you with them.
The third premise is that Python idioms trump GIS (or Java, in this case, since
the GEOS library is derived from JTS, a Java project) idioms.

If you enjoy and profit from idiomatic Python, appreciate packages that do one
thing well, and agree that a spatially enabled RDBMS is often enough the wrong
tool for your computational geometry job, Shapely might be for you.

.. _intro-spatial-data-model:

Spatial Data Model
------------------

The fundamental types of geometric objects implemented by Shapely are points,
curves, and surfaces. Each is associated with three sets of (possibly infinite)
points in the plane. The `interior`, `boundary`, and `exterior` sets of a
feature are mutually exclusive and their union coincides with the entire plane
[2]_.

* A `Point` has an `interior` set of exactly one point, a `boundary` set of
  exactly no points, and an `exterior` set of all other points. A `Point` has
  a topological dimension of 0.

* A `Curve` has an `interior` set consisting of the infinitely many points
  along its length (imagine a `Point` dragged in space), a `boundary` set
  consisting of its two end points, and an `exterior` set of all other points.
  A `Curve` has a topological dimension of 1.

* A `Surface` has an `interior` set consisting of the infinitely many points
  within (imagine a `Curve` dragged in space to cover an area), a `boundary`
  set consisting of one or more `Curves`, and an `exterior` set of all other
  points including those within holes that might exist in the surface. A
  `Surface` has a topological dimension of 2.

That may seem a bit esoteric, but will help clarify the meanings of Shapely's
spatial predicates, and it's as deep into theory as this manual will go.
Consequences of point-set theory, including some that manifest themselves as
"gotchas", for different classes will be discussed later in this manual.

The point type is implemented by a `Point` class; curve by the `LineString` and
`LinearRing` classes; and surface by a `Polygon` class. Shapely implements no
smooth (`i.e.` having continuous tangents) curves. All curves must be
approximated by linear splines. All rounded patches must be approximated by
regions bounded by linear splines.

Collections of points are implemented by a `MultiPoint` class, collections of
curves by a `MultiLineString` class, and collections of surfaces by a
`MultiPolygon` class. These collections aren't computationally significant, but
are useful for modeling certain kinds of features. A Y-shaped line feature, for
example, is well modeled as a whole by a `MultiLineString`.

The standard data model has additional constraints specific to certain types
of geometric objects that will be discussed in following sections of this
manual.

See also https://web.archive.org/web/20160719195511/http://www.vividsolutions.com/jts/discussion.htm
for more illustrations of this data model.

.. _intro-relationships:

Relationships
-------------

The spatial data model is accompanied by a group of natural language
relationships between geometric objects – `contains`, `intersects`, `overlaps`,
`touches`, etc. – and a theoretical framework for understanding them using the
3x3 matrix of the mutual intersections of their component point sets [3]_: the
DE-9IM. A comprehensive review of the relationships in terms of the DE-9IM is
found in [4]_ and will not be reiterated in this manual.

.. _intro-operations:

Operations
----------

Following the JTS technical specs [5]_, this manual will make a distinction
between constructive (`buffer`, `convex hull`) and set-theoretic operations
(`intersection`, `union`, etc.). The individual operations will be fully
described in a following section of the manual.

.. _intro-coordinate-systems:

Coordinate Systems
------------------

Even though the Earth is not flat – and for that matter not exactly spherical –
there are many analytic problems that can be approached by transforming Earth
features to a Cartesian plane, applying tried and true algorithms, and then
transforming the results back to geographic coordinates.  This practice is as
old as the tradition of accurate paper maps.

Shapely does not support coordinate system transformations. All operations on
two or more features presume that the features exist in the same Cartesian
plane.

.. _objects:

Geometric Objects
=================

Geometric objects are created in the typical Python fashion, using the classes
themselves as instance factories. A few of their intrinsic properties will be
discussed in this sections, others in the following sections on operations and
serializations.

Instances of ``Point``, ``LineString``, and ``LinearRing`` have as their most
important attribute a finite sequence of coordinates that determines their
interior, boundary, and exterior point sets. A line string can be determined by
as few as 2 points, but contains an infinite number of points. Coordinate
sequences are immutable. A third `z` coordinate value may be used when
constructing instances, but has no effect on geometric analysis.  All
operations are performed in the `x-y` plane.

In all constructors, numeric values are converted to type ``float``. In other
words, ``Point(0, 0)`` and ``Point(0.0, 0.0)`` produce geometrically equivalent
instances. Shapely does not check the topological simplicity or validity of
instances when they are constructed as the cost is unwarranted in most cases.
Validating factories are easily implemented using the :attr:``is_valid``
predicate by users that require them.

.. note::

   Shapely is a planar geometry library and `z`, the height
   above or below the plane, is ignored in geometric analysis. There is
   a potential pitfall for users here: coordinate tuples that differ only in
   `z` are not distinguished from each other and their application can result
   in surprisingly invalid geometry objects. For example, ``LineString([(0, 0,
   0), (0, 0, 1)])`` does not return a vertical line of unit length, but an invalid line
   in the plane with zero length. Similarly, ``Polygon([(0, 0, 0), (0, 0, 1),
   (1, 1, 1)])`` is not bounded by a closed ring and is invalid.


General Attributes and Methods
------------------------------

.. attribute:: object.area

  Returns the area (``float``) of the object.

.. attribute:: object.bounds

  Returns a ``(minx, miny, maxx, maxy)`` tuple (``float`` values) that bounds
  the object.

.. attribute:: object.length

  Returns the length (``float``) of the object.

.. attribute:: object.minimum_clearance

  Returns the smallest distance by which a node could be moved to produce an invalid geometry.

  This can be thought of as a measure of the robustness of a geometry, where larger values of
  minimum clearance indicate a more robust geometry. If no minimum clearance exists for a geometry,
  such as a point, this will return `math.infinity`.

  `New in Shapely 1.7.1`

.. code-block:: pycon

  >>> from shapely import Polygon
  >>> Polygon([[0, 0], [1, 0], [1, 1], [0, 1], [0, 0]]).minimum_clearance
  1.0

.. attribute:: object.geom_type

  Returns a string specifying the `Geometry Type` of the object in accordance
  with [1]_.

.. code-block:: pycon

  >>> from shapely import Point, LineString
  >>> Point(0, 0).geom_type
  'Point'

.. method:: object.distance(other)

  Returns the minimum distance (``float``) to the `other` geometric object.

.. code-block:: pycon

  >>> Point(0,0).distance(Point(1,1))
  1.4142135623730951

.. method:: object.hausdorff_distance(other)

  Returns the Hausdorff distance (``float``) to the `other` geometric object.
  The Hausdorff distance between two geometries is the furthest distance that
  a point on either geometry can be from the nearest point to it on the other
  geometry.

  `New in Shapely 1.6.0`

.. code-block:: pycon

  >>> point = Point(1, 1)
  >>> line = LineString([(2, 0), (2, 4), (3, 4)])
  >>> point.hausdorff_distance(line)
  3.605551275463989
  >>> point.distance(Point(3, 4))
  3.605551275463989

.. method:: object.representative_point()

  Returns a cheaply computed point that is guaranteed to be within the
  geometric object.

.. note::
  This is not in general the same as the centroid.

.. code-block:: pycon

  >>> diamond = Point(0, 0).buffer(2.0, 1).difference(Point(0, 0).buffer(1.0, 1))
  >>> diamond.centroid
  <POINT (0 0)>
  >>> diamond.representative_point()
  <POINT (-1 0.5)>

.. _points:

Points
------

.. class:: Point(coordinates)

  The `Point` constructor takes positional coordinate values or point tuple
  parameters.

.. code-block:: pycon

  >>> from shapely import Point
  >>> point = Point(0.0, 0.0)
  >>> q = Point((0.0, 0.0))

A `Point` has zero area and zero length.

.. code-block:: pycon

  >>> point.area
  0.0
  >>> point.length
  0.0

Its `x-y` bounding box is a ``(minx, miny, maxx, maxy)`` tuple.

.. code-block:: pycon

  >>> point.bounds
  (0.0, 0.0, 0.0, 0.0)

Coordinate values are accessed via `coords`, `x`, `y`, `z`, and `m` properties.

.. code-block:: pycon

  >>> list(point.coords)
  [(0.0, 0.0)]
  >>> point.x
  0.0
  >>> point.y
  0.0

Coordinates may also be sliced. `New in version 1.2.14`.

.. code-block:: pycon

  >>> point.coords[:]
  [(0.0, 0.0)]

When a `Point` instance is passed to the `Point` constructor, it returns a
reference to the passed instance. It does not make a copy, as geometry objects
are immutable.

.. code-block:: pycon

  >>> Point(point)
  <POINT (0 0)>

.. _linestrings:

LineStrings
-----------

.. class:: LineString(coordinates)

  The `LineString` constructor takes an ordered sequence of 2 or more
  ``(x, y[, z])`` point tuples.

The constructed `LineString` object represents one or more connected linear
splines between the points. Repeated points in the ordered sequence are
allowed, but may incur performance penalties and should be avoided. A
`LineString` may cross itself (*i.e.* be `complex` and not `simple`).

.. plot:: code/linestring.py

Figure 1. A simple `LineString` on the left, a complex `LineString` on the
right. The (`MultiPoint`) boundary of each is shown in black, the other points
that describe the lines are shown in grey.

A `LineString` has zero area and non-zero length if it isn't
:ref:`empty <empties>`.

.. code-block:: pycon

  >>> from shapely import LineString
  >>> line = LineString([(0, 0), (1, 1)])
  >>> line.area
  0.0
  >>> line.length
  1.4142135623730951

Its `x-y` bounding box is a ``(minx, miny, maxx, maxy)`` tuple.

.. code-block:: pycon

  >>> line.bounds
  (0.0, 0.0, 1.0, 1.0)

The defining coordinate values are accessed via the `coords` property.

.. code-block:: pycon

  >>> len(line.coords)
  2
  >>> list(line.coords)
  [(0.0, 0.0), (1.0, 1.0)]

Coordinates may also be sliced. `New in version 1.2.14`.

.. code-block:: pycon

  >>> line.coords[:]
  [(0.0, 0.0), (1.0, 1.0)]
  >>> line.coords[1:]
  [(1.0, 1.0)]

When the constructor is passed another `LineString` instance, a reference to
the instance is returned.

.. code-block:: pycon

  >>> LineString(line)
  <LINESTRING (0 0, 1 1)>

A `LineString` may also be constructed using a sequence of mixed `Point`
instances or coordinate tuples. The individual coordinates are copied into
the new object.

.. code-block:: pycon

  >>> LineString([Point(0.0, 1.0), (2.0, 3.0), Point(4.0, 5.0)])
  <LINESTRING (0 1, 2 3, 4 5)>

.. _linearrings:

LinearRings
-----------

.. class:: LinearRing(coordinates)

  The `LinearRing` constructor takes an ordered sequence of ``(x, y[, z])``
  point tuples.

The sequence may be explicitly closed by passing identical values in the first
and last indices. Otherwise, the sequence will be implicitly closed by copying
the first tuple to the last index. As with a `LineString`, repeated points in
the ordered sequence are allowed, but may incur performance penalties and
should be avoided. A `LinearRing` may not cross itself, and may not touch
itself at a single point.

.. plot:: code/linearring.py

Figure 2. A valid `LinearRing` on the left, an invalid self-touching
`LinearRing` on the right. The points that describe the rings are shown in
grey. A ring's boundary is `empty`.

.. note::
   Shapely will not prevent the creation of such rings, but exceptions will be
   raised when they are operated on.

A `LinearRing` has zero area and non-zero length if it isn't
:ref:`empty <empties>`.

.. code-block:: pycon

  >>> from shapely import LinearRing
  >>> ring = LinearRing([(0, 0), (1, 1), (1, 0)])
  >>> ring.area
  0.0
  >>> ring.length
  3.414213562373095

Its `x-y` bounding box is a ``(minx, miny, maxx, maxy)`` tuple.

.. code-block:: pycon

  >>> ring.bounds
  (0.0, 0.0, 1.0, 1.0)

Defining coordinate values are accessed via the `coords` property.

.. code-block:: pycon

  >>> len(ring.coords)
  4
  >>> list(ring.coords)
  [(0.0, 0.0), (1.0, 1.0), (1.0, 0.0), (0.0, 0.0)]

The `LinearRing` constructor also accepts another `LineString` or `LinearRing`
instance, returning a new `LinearRing` instance or a reference to the passed
instance, respectively.

.. code-block:: pycon

  >>> LinearRing(ring)
  <LINEARRING (0 0, 1 1, 1 0, 0 0)>

As with `LineString`, a sequence of `Point` instances is a valid
constructor parameter.

.. _polygons:

Polygons
--------

.. class:: Polygon(shell [,holes=None])

  The `Polygon` constructor takes two positional parameters. The first is an
  ordered sequence of ``(x, y[, z])`` point tuples and is treated exactly as in
  the `LinearRing` case. The second is an optional unordered sequence of
  ring-like sequences specifying the interior boundaries or "holes" of the
  feature.

Rings of a `valid` `Polygon` may not cross each other, but may touch at a
single point only.  Again, Shapely will not prevent the creation of invalid
features, but when they are operated on the results might be wrong or
exceptions might be raised.

.. plot:: code/polygon.py

Figure 3. On the left, a valid `Polygon` with one interior ring that touches
the exterior ring at one point, and on the right a `Polygon` that is `invalid`
because its interior ring touches the exterior ring at more than one point. The
points that describe the rings are shown in grey.

.. plot:: code/polygon2.py

Figure 4. On the left, a `Polygon` that is `invalid` because its exterior and
interior rings touch along a line, and on the right, a `Polygon` that is
`invalid` because its interior rings touch along a line.

A `Polygon` has non-zero area and non-zero length if it isn't
:ref:`empty <empties>`.

.. code-block:: pycon

  >>> from shapely import Polygon
  >>> polygon = Polygon([(0, 0), (1, 1), (1, 0)])
  >>> polygon.area
  0.5
  >>> polygon.length
  3.414213562373095

Its `x-y` bounding box is a ``(minx, miny, maxx, maxy)`` tuple.

.. code-block:: pycon

  >>> polygon.bounds
  (0.0, 0.0, 1.0, 1.0)

Component rings are accessed via `exterior` and `interiors` properties.

.. code-block:: pycon

  >>> list(polygon.exterior.coords)
  [(0.0, 0.0), (1.0, 1.0), (1.0, 0.0), (0.0, 0.0)]
  >>> list(polygon.interiors)
  []

The `Polygon` constructor also accepts instances of `LineString` and
`LinearRing`.

.. code-block:: pycon

  >>> coords = [(0, 0), (1, 1), (1, 0)]
  >>> r = LinearRing(coords)
  >>> s = Polygon(r)
  >>> s.area
  0.5
  >>> t = Polygon(s.buffer(1.0).exterior, [r])
  >>> t.area
  6.5507620529190325

Rectangular polygons occur commonly, and can be conveniently constructed using
the :func:`shapely.geometry.box()` function.

.. function:: shapely.geometry.box(minx, miny, maxx, maxy, ccw=True)

  Makes a rectangular polygon from the provided bounding box values, with
  counter-clockwise order by default.

  `New in version 1.2.9`.

For example:

.. code-block:: pycon

  >>> from shapely import box
  >>> b = box(0.0, 0.0, 1.0, 1.0)
  >>> b
  <POLYGON ((1 0, 1 1, 0 1, 0 0, 1 0))>
  >>> list(b.exterior.coords)
  [(1.0, 0.0), (1.0, 1.0), (0.0, 1.0), (0.0, 0.0), (1.0, 0.0)]

This is the first appearance of an explicit polygon handedness in Shapely.

To obtain a polygon with a known orientation, use
:func:`shapely.geometry.polygon.orient()`:

.. function:: shapely.geometry.polygon.orient(polygon, sign=1.0)

  Returns a new `Polygon` instance with the coordinates of the given polygon in
  proper orientation. The signed area of the result will have the given sign. A
  sign of 1.0 means that the coordinates of the product's exterior ring will be
  oriented counter-clockwise and the interior rings (holes) will be oriented
  clockwise.

  `New in version 1.2.10`.

.. _collections:

Collections
-----------

Heterogeneous collections of geometric objects may result from some Shapely
operations. For example, two `LineStrings` may intersect along a line and at a
point. To represent these kind of results, Shapely provides frozenset_-like,
immutable collections of geometric objects.  The collections may be homogeneous
(`MultiPoint` etc.) or heterogeneous.

.. code-block:: python

  >>> a = LineString([(0, 0), (1, 1), (1,2), (2,2)])
  >>> b = LineString([(0, 0), (1, 1), (2,1), (2,2)])
  >>> x = a.intersection(b)
  >>> x
  <GEOMETRYCOLLECTION (LINESTRING (0 0, 1 1), POINT (2 2))>
  >>> list(x.geoms)
  [<LINESTRING (0 0, 1 1)>, <POINT (2 2)>]


.. plot:: code/geometrycollection.py
   :class: figure

Figure 5. a) a green and a yellow line that intersect along a line and at a
single point; b) the intersection (in blue) is a collection containing one
`LineString` and one `Point`.

Members of a `GeometryCollection` are accessed via the ``geoms`` property.

.. code-block:: pycon

  >>> list(x.geoms)
  [<LINESTRING (0 0, 1 1)>, <POINT (2 2)>]

.. note::

  When possible, it is better to use one of the homogeneous collection types
  described below.

.. _multipoints:

Collections of Points
---------------------

.. class:: MultiPoint(points)

  The `MultiPoint` constructor takes a sequence of ``(x, y[, z ])`` point
  tuples.

A `MultiPoint` has zero area and zero length.

.. code-block:: pycon

  >>> from shapely import MultiPoint
  >>> points = MultiPoint([(0.0, 0.0), (1.0, 1.0)])
  >>> points.area
  0.0
  >>> points.length
  0.0

Its `x-y` bounding box is a ``(minx, miny, maxx, maxy)`` tuple.

.. code-block:: pycon

  >>> points.bounds
  (0.0, 0.0, 1.0, 1.0)

Members of a multi-point collection are accessed via the ``geoms`` property.

.. code-block:: pycon

  >>> list(points.geoms)
  [<POINT (0 0)>, <POINT (1 1)>]

The constructor also accepts another `MultiPoint` instance or an unordered
sequence of `Point` instances, thereby making copies.

.. code-block:: pycon

  >>> MultiPoint([Point(0, 0), Point(1, 1)])
  <MULTIPOINT ((0 0), (1 1))>

.. _multilinestrings:

Collections of Lines
--------------------

.. class:: MultiLineString(lines)

  The `MultiLineString` constructor takes a sequence of line-like sequences or
  objects.

.. plot:: code/multilinestring.py

Figure 6. On the left, a `simple`, disconnected `MultiLineString`, and on the
right, a non-simple `MultiLineString`. The points defining the objects are
shown in gray, the boundaries of the objects in black.

A `MultiLineString` has zero area and non-zero length if it isn't
:ref:`empty <empties>`.

.. code-block:: pycon

  >>> from shapely import MultiLineString
  >>> coords = [((0, 0), (1, 1)), ((-1, 0), (1, 0))]
  >>> lines = MultiLineString(coords)
  >>> lines.area
  0.0
  >>> lines.length
  3.414213562373095

Its `x-y` bounding box is a ``(minx, miny, maxx, maxy)`` tuple.

.. code-block:: pycon

  >>> lines.bounds
  (-1.0, 0.0, 1.0, 1.0)

Its members are instances of `LineString` and are accessed via the ``geoms``
property.

.. code-block:: pycon

  >>> len(lines.geoms)
  2
  >>> print(list(lines.geoms))
  [<LINESTRING (0 0, 1 1)>, <LINESTRING (-1 0, 1 0)>]

The constructor also accepts another instance of `MultiLineString` or an
unordered sequence of `LineString` instances, thereby making copies.

.. code-block:: pycon

  >>> MultiLineString(lines)
  <MULTILINESTRING ((0 0, 1 1), (-1 0, 1 0))>
  >>> MultiLineString(lines.geoms)
  <MULTILINESTRING ((0 0, 1 1), (-1 0, 1 0))>

.. _multipolygons:

Collections of Polygons
-----------------------

.. class:: MultiPolygon(polygons)

  The `MultiPolygon` constructor takes a sequence of exterior ring and
  hole list tuples: [((a1, ..., aM), [(b1, ..., bN), ...]), ...].

More clearly, the constructor also accepts an unordered sequence of `Polygon`
instances, thereby making copies.

.. code-block:: pycon

  >>> from shapely import MultiPolygon
  >>> polygons = MultiPolygon([polygon, s, t])
  >>> len(polygons.geoms)
  3

.. plot:: code/multipolygon.py

Figure 7. On the left, a `valid` `MultiPolygon` with 2 members, and on the
right, a `MultiPolygon` that is invalid because its members touch at an
infinite number of points (along a line).

Its `x-y` bounding box is a ``(minx, miny, maxx, maxy)`` tuple.

.. code-block:: pycon

  >>> polygons.bounds
  (-1.0, -1.0, 2.0, 2.0)

Its members are instances of `Polygon` and are accessed via the ``geoms``
property.

.. code-block:: pycon

  >>> len(polygons.geoms)
  3

.. _empties:

Empty features
--------------

An "empty" feature is one with a point set that coincides with the empty set;
not ``None``, but like ``set([])``. Empty features can be created by calling
the various constructors with no arguments. Almost no operations are supported
by empty features.

.. code-block:: pycon

  >>> line = LineString()
  >>> line.is_empty
  True
  >>> line.length
  0.0
  >>> line.bounds
  (nan, nan, nan, nan)
  >>> list(line.coords)
  []

Coordinate sequences
--------------------

The list of coordinates that describe a geometry are represented as the
``CoordinateSequence`` object. These sequences should not be initialised
directly, but can be accessed from an existing geometry as the
``Geometry.coords`` property.

.. code-block:: pycon

  >>> line = LineString([(0, 1), (2, 3), (4, 5)])
  >>> line.coords
  <shapely.coords.CoordinateSequence object at ...>

Coordinate sequences can be indexed, sliced and iterated over as if they were a
list of coordinate tuples.

.. code-block:: pycon

  >>> line.coords[0]
  (0.0, 1.0)
  >>> line.coords[1:]
  [(2.0, 3.0), (4.0, 5.0)]
  >>> for x, y in line.coords:
  ...     print("x={}, y={}".format(x, y))
  ...
  x=0.0, y=1.0
  x=2.0, y=3.0
  x=4.0, y=5.0

Polygons have a coordinate sequence for their exterior and each of their
interior rings.

.. code-block:: pycon

  >>> poly = Polygon([(0, 0), (0, 1), (1, 1), (0, 0)])
  >>> poly.exterior.coords
  <shapely.coords.CoordinateSequence object at ...>

Multipart geometries do not have a coordinate sequence. Instead the coordinate
sequences are stored on their component geometries.

.. code-block:: pycon

  >>> p = MultiPoint([(0, 0), (1, 1), (2, 2)])
  >>> p.geoms[2].coords
  <shapely.coords.CoordinateSequence object at ...>

Linear Referencing Methods
--------------------------

It can be useful to specify position along linear features such as
`LineStrings` and `MultiLineStrings` with a 1-dimensional referencing system.
Shapely supports linear referencing based on length or distance, evaluating the
distance along a geometric object to the projection of a given point, or the
point at a given distance along the object.

.. method:: object.interpolate(distance[, normalized=False])

  Return a point at the specified distance along a linear geometric object.

If the `normalized` arg is ``True``, the distance will be interpreted as a
fraction of the geometric object's length.

.. code-block:: pycon

  >>> ip = LineString([(0, 0), (0, 1), (1, 1)]).interpolate(1.5)
  >>> ip
  <POINT (0.5 1)>
  >>> LineString([(0, 0), (0, 1), (1, 1)]).interpolate(0.75, normalized=True)
  <POINT (0.5 1)>

.. method:: object.project(other[, normalized=False])

  Returns the distance along this geometric object to a point nearest the
  `other` object.

If the `normalized` arg is ``True``, return the distance normalized to the
length of the object. The :meth:`~object.project` method is the inverse of
:meth:`~object.interpolate`.

.. code-block:: pycon

  >>> LineString([(0, 0), (0, 1), (1, 1)]).project(ip)
  1.5
  >>> LineString([(0, 0), (0, 1), (1, 1)]).project(ip, normalized=True)
  0.75

For example, the linear referencing methods might be used to cut lines at a
specified distance.

.. code-block:: python

  def cut(line, distance):
      # Cuts a line in two at a distance from its starting point
      if distance <= 0.0 or distance >= line.length:
          return [LineString(line)]
      coords = list(line.coords)
      for i, p in enumerate(coords):
          pd = line.project(Point(p))
          if pd == distance:
              return [
                  LineString(coords[:i+1]),
                  LineString(coords[i:])]
          if pd > distance:
              cp = line.interpolate(distance)
              return [
                  LineString(coords[:i] + [(cp.x, cp.y)]),
                  LineString([(cp.x, cp.y)] + coords[i:])]

.. code-block:: pycon

  >>> line = LineString([(0, 0), (1, 0), (2, 0), (3, 0), (4, 0), (5, 0)])
  >>> print([list(x.coords) for x in cut(line, 1.0)])  # doctest: +SKIP
  [[(0.0, 0.0), (1.0, 0.0)],
   [(1.0, 0.0), (2.0, 0.0), (3.0, 0.0), (4.0, 0.0), (5.0, 0.0)]]
  >>> print([list(x.coords) for x in cut(line, 2.5)])  # doctest: +SKIP
  [[(0.0, 0.0), (1.0, 0.0), (2.0, 0.0), (2.5, 0.0)],
   [(2.5, 0.0), (3.0, 0.0), (4.0, 0.0), (5.0, 0.0)]]

.. _predicates:

Predicates and Relationships
============================

Objects of the types explained in :ref:`objects` provide standard [1]_
predicates as attributes (for unary predicates) and methods (for binary
predicates). Whether unary or binary, all return ``True`` or ``False``.

.. _unary-predicates:

Unary Predicates
----------------

Standard unary predicates are implemented as read-only property attributes. An
example will be shown for each.

.. attribute:: object.has_z

  Returns ``True`` if the feature has `z` coordinates, either with XYZ or XYZM
  coordinate types.

.. code-block:: pycon

  >>> Point(0, 0).has_z
  False
  >>> Point(0, 0, 0).has_z
  True

.. attribute:: object.has_m

  Returns ``True`` if the feature has `m` coordinates, either with XYM or XYZM
  coordinate types.

  `New in version 2.1 with GEOS 3.12`.

.. code-block:: pycon

  >>> Point(0, 0, 0).has_m
  False
  >>> from shapely import from_wkt
  >>> from_wkt("POINT M (0 0 0)").has_m
  True

.. attribute:: object.is_ccw

  Returns ``True`` if coordinates are in counter-clockwise order (bounding a
  region with positive signed area). This method applies to `LinearRing`
  objects only.

  `New in version 1.2.10`.

.. code-block:: pycon

  >>> LinearRing([(1,0), (1,1), (0,0)]).is_ccw
  True

A ring with an undesired orientation can be reversed like this:

.. code-block:: pycon

  >>> ring = LinearRing([(0,0), (1,1), (1,0)])
  >>> ring.is_ccw
  False
  >>> ring2 = LinearRing(list(ring.coords)[::-1])
  >>> ring2.is_ccw
  True

.. attribute:: object.is_empty

  Returns ``True`` if the feature's `interior` and `boundary` (in point set
  terms) coincide with the empty set.

.. code-block:: pycon

  >>> Point().is_empty
  True
  >>> Point(0, 0).is_empty
  False

.. note::

   With the help of the :external+python:mod:`operator` module's
   :external+python:func:`~operator.attrgetter` function,
   unary predicates such as ``is_empty`` can be easily used as predicates for
   the built in :external+python:func:`filter`.

.. code-block:: pycon

  >>> from operator import attrgetter
  >>> empties = filter(attrgetter('is_empty'), [Point(), Point(0, 0)])
  >>> len(list(empties))
  1

.. attribute:: object.is_ring

  Returns ``True`` if the feature is a closed and simple ``LineString``. A closed feature's `boundary`
  coincides with the empty set.

.. code-block:: pycon

  >>> LineString([(0, 0), (1, 1), (1, -1)]).is_ring
  False
  >>> LinearRing([(0, 0), (1, 1), (1, -1)]).is_ring
  True

This property is applicable to `LineString` and `LinearRing` instances, but
meaningless for others.

.. attribute:: object.is_simple

  Returns ``True`` if the feature does not cross itself.

.. note::

   The simplicity test is meaningful only for `LineStrings` and `LinearRings`.

.. code-block:: pycon

  >>> LineString([(0, 0), (1, 1), (1, -1), (0, 1)]).is_simple
  False

Operations on non-simple `LineStrings` are fully supported by Shapely.

.. attribute:: object.is_valid

  Returns ``True`` if a feature is "valid" in the sense of [1]_.

A valid `Polygon` may not possess any overlapping exterior or interior rings. A
valid `MultiPolygon` may not collect any overlapping polygons. A valid `LineString`
must have non-zero length if it isn't :ref:`empty <empties>`. Operations on invalid
features may fail.

.. code-block:: pycon

  >>> MultiPolygon([Point(0, 0).buffer(2.0), Point(1, 1).buffer(2.0)]).is_valid
  False

The two points above are close enough that the polygons resulting from the
buffer operations (explained in a following section) overlap.

.. note::

  The ``is_valid`` predicate can be used to write a validating decorator that
  could ensure that only valid objects are returned from a constructor
  function.

.. code-block:: python

  from functools import wraps
  def validate(func):
      @wraps(func)
      def wrapper(*args, **kwargs):
          ob = func(*args, **kwargs)
          if not ob.is_valid:
              raise TopologicalError(
                  "Given arguments do not determine a valid geometric object")
          return ob
      return wrapper

.. code-block:: pycon

  >>> @validate  # doctest: +SKIP
  ... def ring(coordinates):
  ...     return LinearRing(coordinates)
  ...
  >>> coords = [(0, 0), (1, 1), (1, -1), (0, 1)]
  >>> ring(coords)  # doctest: +SKIP
  Traceback (most recent call last):
    File "<stdin>", line 1, in <module>
    File "<stdin>", line 7, in wrapper
  shapely.geos.TopologicalError: Given arguments do not determine a valid geometric object

.. _binary-predicates:

Binary Predicates
-----------------

Standard binary predicates are implemented as methods. These predicates
evaluate topological, set-theoretic relationships. In a few cases the results
may not be what one might expect starting from different assumptions. All take
another geometric object as argument and return ``True`` or ``False``.

.. method:: object.__eq__(other)

  Returns ``True`` if the two objects are of the same geometric type, and
  the coordinates of the two objects match precisely.

.. method:: object.equals(other)

  Returns ``True`` if the set-theoretic `boundary`, `interior`, and `exterior`
  of the object coincide with those of the other.

The coordinates passed to the object constructors are of these sets, and
determine them, but are not the entirety of the sets. This is a potential
"gotcha" for new users.  Equivalent lines, for example, can be constructed
differently.

.. code-block:: pycon

  >>> a = LineString([(0, 0), (1, 1)])
  >>> b = LineString([(0, 0), (0.5, 0.5), (1, 1)])
  >>> c = LineString([(0, 0), (0, 0), (1, 1)])
  >>> a.equals(b)
  True
  >>> a == b
  False
  >>> b.equals(c)
  True
  >>> b == c
  False

.. method:: object.equals_exact(other, tolerance=0.0, normalize=False)

    Returns ``True`` if the geometries are structurally equivalent within a
    given tolerance.

    This method uses exact coordinate equality, which requires coordinates
    to be equal (within specified tolerance) and in the same order for
    all components (vertices, rings, or parts) of a geometry. This is in
    contrast with the :meth:`~object.equals` function which uses spatial
    (topological) equality and does not require all components to be in the
    same order. Because of this, it is possible for :meth:`~object.equals` to
    be ``True`` while :meth:`~object.equals_exact` is ``False``.

    The order of the coordinates can be normalized (by setting the `normalize`
    keyword to ``True``) so that this function will return ``True`` when geometries
    are structurally equivalent but differ only in the ordering of vertices.
    However, this function will still return ``False`` if the order of interior
    rings within a :class:`Polygon` or the order of geometries within a multi
    geometry are different.

.. code-block:: pycon

  >>> p1 = Point(1.0, 1.0)
  >>> p2 = Point(2.0, 2.0)
  >>> p3 = Point(1.0, 1.0 + 1e-7)
  >>> p1.equals_exact(p2)
  False
  >>> p1.equals_exact(p3)
  False
  >>> p1.equals_exact(p3, tolerance=1e-6)
  True

.. method:: object.contains(other)

  Returns ``True`` if no points of `other` lie in the exterior of the `object`
  and at least one point of the interior of `other` lies in the interior of
  `object`.

This predicate applies to all types, and is inverse to :meth:`~object.within`.
The expression ``a.contains(b) == b.within(a)`` always evaluates to ``True``.

.. code-block:: pycon

  >>> coords = [(0, 0), (1, 1)]
  >>> LineString(coords).contains(Point(0.5, 0.5))
  True
  >>> Point(0.5, 0.5).within(LineString(coords))
  True

A line's endpoints are part of its `boundary` and are therefore not contained.

.. code-block:: pycon

  >>> LineString(coords).contains(Point(1.0, 1.0))
  False

.. note::

  Binary predicates can be used directly as predicates for ``filter()`` or
  ``itertools.ifilter()``.

.. code-block:: pycon

  >>> line = LineString(coords)
  >>> contained = list(filter(line.contains, [Point(), Point(0.5, 0.5)]))
  >>> len(contained)
  1
  >>> contained
  [<POINT (0.5 0.5)>]

.. method:: object.covers(other)

  Returns ``True`` if every point of `other` is a point on the interior or
  boundary of `object`. This is similar to ``object.contains(other)`` except
  that this does not require any interior points of `other` to lie in the
  interior of `object`.

.. method:: object.covered_by(other)

  Returns ``True`` if every point of `object` is a point on the interior or
  boundary of `other`. This is equivalent to ``other.covers(object)``.

  `New in version 1.8`.

.. method:: object.crosses(other)

  Returns ``True`` if the `interior` of the object intersects the `interior` of
  the other but does not contain it, and the dimension of the intersection is
  less than the dimension of the one or the other.

.. code-block:: pycon

  >>> LineString(coords).crosses(LineString([(0, 1), (1, 0)]))
  True

A line does not cross a point that it contains.

.. code-block:: pycon

  >>> LineString(coords).crosses(Point(0.5, 0.5))
  False

.. method:: object.disjoint(other)

  Returns ``True`` if the `boundary` and `interior` of the object do not
  intersect at all with those of the other.

.. code-block:: pycon

  >>> Point(0, 0).disjoint(Point(1, 1))
  True

This predicate applies to all types and is the inverse of
:meth:`~object.intersects`.

.. method:: object.intersects(other)

  Returns ``True`` if the `boundary` or `interior` of the object intersect in
  any way with those of the other.

In other words, geometric objects intersect if they have any boundary or
interior point in common.

.. method:: object.overlaps(other)

  Returns ``True`` if the geometries have more than one but not all points in
  common, have the same dimension, and the intersection of the interiors of the
  geometries has the same dimension as the geometries themselves.

.. method:: object.touches(other)

  Returns ``True`` if the objects have at least one point in common and their
  interiors do not intersect with any part of the other.

Overlapping features do not therefore `touch`, another potential "gotcha". For
example, the following lines touch at ``(1, 1)``, but do not overlap.

.. code-block:: pycon

  >>> a = LineString([(0, 0), (1, 1)])
  >>> b = LineString([(1, 1), (2, 2)])
  >>> a.touches(b)
  True

.. method:: object.within(other)

  Returns ``True`` if the object's `boundary` and `interior` intersect only
  with the `interior` of the other (not its `boundary` or `exterior`).

This applies to all types and is the inverse of :meth:`~object.contains`.

Used in a ``sorted()`` `key`, :meth:`~object.within` makes it easy to spatially
sort objects. Let's say we have 4 stereotypic features: a point that is
contained by a polygon which is itself contained by another polygon, and a free
spirited point contained by none

.. code-block:: pycon

  >>> a = Point(2, 2)
  >>> b = Polygon([[1, 1], [1, 3], [3, 3], [3, 1]])
  >>> c = Polygon([[0, 0], [0, 4], [4, 4], [4, 0]])
  >>> d = Point(-1, -1)

and that copies of these are collected into a list

.. code-block:: pycon

  >>> features = [c, a, d, b, c]

that we'd prefer to have ordered as ``[d, c, c, b, a]`` in reverse containment
order.

DE-9IM Relationships
--------------------

The :meth:`~object.relate` method tests all the DE-9IM [4]_ relationships
between objects, of which the named relationship predicates above are a subset.

.. method:: object.relate(other)

    Returns a string representation of the DE-9IM matrix of relationships
    between an object's `interior`, `boundary`, `exterior` and those of another
    geometric object.

The named relationship predicates (:meth:`~object.contains`, etc.) are
typically implemented as wrappers around :meth:`~object.relate`.

Two different points have mainly ``F`` (false) values in their matrix; the
intersection of their `external` sets (the 9th element) is a ``2`` dimensional
object (the rest of the plane). The intersection of the `interior` of one with
the `exterior` of the other is a ``0`` dimensional object (3rd and 7th elements
of the matrix).

.. code-block:: pycon

  >>> Point(0, 0).relate(Point(1, 1))
  'FF0FFF0F2'

The matrix for a line and a point on the line has more "true" (not ``F``)
elements.

.. code-block:: pycon

  >>> Point(0, 0).relate(LineString([(0, 0), (1, 1)]))
  'F0FFFF102'

.. method:: object.relate_pattern(other, pattern)

    Returns True if the DE-9IM string code for the relationship between the
    geometries satisfies the pattern, otherwise False.

The :meth:`~object.relate_pattern` compares the DE-9IM code string for two
geometries against a specified pattern. If the string matches the pattern then
``True`` is returned, otherwise ``False``. The pattern specified can be an
exact match (``0``, ``1`` or ``2``), a boolean match (``T`` or ``F``), or a
wildcard (``*``). For example, the pattern for the `within` predicate is
``T*****FF*``.

.. code-block:: pycon

  >>> point = Point(0.5, 0.5)
  >>> square = Polygon([(0, 0), (0, 1), (1, 1), (1, 0)])
  >>> square.relate_pattern(point, 'T*****FF*')
  True
  >>> point.within(square)
  True

Note that the order or the geometries is significant, as demonstrated below.
In this example the square contains the point, but the point does not contain
the square.

.. code-block:: pycon

  >>> point.relate(square)
  '0FFFFF212'
  >>> square.relate(point)
  '0F2FF1FF2'

Further discussion of the DE-9IM matrix is beyond the scope of this manual. See
[4]_ and https://pypi.org/project/de9im/.

.. _analysis-methods:

Spatial Analysis Methods
========================

As well as boolean attributes and methods, Shapely provides analysis methods
that return new geometric objects.

.. _set-theoretic-methods:

Set-theoretic Methods
---------------------

Almost every binary predicate method has a counterpart that returns a new
geometric object. In addition, the set-theoretic `boundary` of an object is
available as a read-only attribute.

.. note::

  These methods will `always` return a geometric object. An intersection of
  disjoint geometries for example will return an empty `GeometryCollection`,
  not `None` or `False`. To test for a non-empty result, use the geometry's
  :attr:`~object.is_empty` property.

.. attribute:: object.boundary

  Returns a lower dimensional object representing the object's set-theoretic
  `boundary`.

The boundary of a polygon is a line, the boundary of a line is a collection of
points. The boundary of a point is an empty collection.

.. code-block:: pycon

  >>> coords = [((0, 0), (1, 1)), ((-1, 0), (1, 0))]
  >>> lines = MultiLineString(coords)
  >>> lines.boundary
  <MULTIPOINT ((-1 0), (0 0), (1 0), (1 1))>
  >>> list(lines.boundary.geoms)
  [<POINT (-1 0)>, <POINT (0 0)>, <POINT (1 0)>, <POINT (1 1)>]
  >>> lines.boundary.boundary
  <GEOMETRYCOLLECTION EMPTY>

See the figures in :ref:`linestrings` and :ref:`multilinestrings` for the
illustration of lines and their boundaries.

.. attribute:: object.centroid

  Returns a representation of the object's geometric centroid (point).

.. code-block:: pycon

  >>> LineString([(0, 0), (1, 1)]).centroid
  <POINT (0.5 0.5)>

.. note::

  The centroid of an object might be one of its points, but this is not
  guaranteed.

.. method:: object.difference(other)

  Returns a representation of the points making up this geometric object that
  do not make up the *other* object.

.. code-block:: pycon

  >>> a = Point(1, 1).buffer(1.5)
  >>> b = Point(2, 1).buffer(1.5)
  >>> a.difference(b)
  <POLYGON ((1.435 -0.435, 1.293 -0.471, 1.147 -0.493, 1 -0.5, 0.853 -0.493, 0...>

.. note::

  The :meth:`~object.buffer` method is used to produce approximately circular polygons
  in the examples of this section; it will be explained in detail later in this
  manual.

.. plot:: code/difference.py

Figure 8. Differences between two approximately circular polygons.

.. note::

  Shapely can not represent the difference between an object and a lower
  dimensional object (such as the difference between a polygon and a line or
  point) as a single object, and in these cases the difference method returns a
  deep copy of the object named ``self``.

.. method:: object.intersection(other)

  Returns a representation of the intersection of this object with the `other`
  geometric object.

.. code-block:: pycon

  >>> a = Point(1, 1).buffer(1.5)
  >>> b = Point(2, 1).buffer(1.5)
  >>> a.intersection(b)
  <POLYGON ((2.493 0.853, 2.471 0.707, 2.435 0.565, 2.386 0.426, 2.323 0.293, ...>

See the figure under :meth:`~object.symmetric_difference` below.

.. method:: object.symmetric_difference(other)

  Returns a representation of the points in this object not in the `other`
  geometric object, and the points in the `other` not in this geometric object.

.. code-block:: pycon

  >>> a = Point(1, 1).buffer(1.5)
  >>> b = Point(2, 1).buffer(1.5)
  >>> a.symmetric_difference(b)
  <MULTIPOLYGON (((1.574 -0.386, 1.707 -0.323, 1.833 -0.247, 1.952 -0.16, 2.06...>

.. plot:: code/intersection-sym-difference.py

.. method:: object.union(other)

  Returns a representation of the union of points from this object and the
  `other` geometric object.

The type of object returned depends on the relationship between the operands.
The union of polygons (for example) will be a polygon or a multi-polygon
depending on whether they intersect or not.

.. code-block:: pycon

  >>> a = Point(1, 1).buffer(1.5)
  >>> b = Point(2, 1).buffer(1.5)
  >>> a.union(b)
  <POLYGON ((1.435 -0.435, 1.293 -0.471, 1.147 -0.493, 1 -0.5, 0.853 -0.493, 0...>

The semantics of these operations vary with type of geometric object.  For
example, compare the boundary of the union of polygons to the union of their
boundaries.

.. code-block:: pycon

  >>> a.union(b).boundary
  <LINESTRING (1.435 -0.435, 1.293 -0.471, 1.147 -0.493, 1 -0.5, 0.853 -0.493,...>
  >>> a.boundary.union(b.boundary)
  <MULTILINESTRING ((2.5 1, 2.493 0.853, 2.471 0.707, 2.435 0.565, 2.386 0.426...>

.. plot:: code/union.py

.. note::

  :meth:`~object.union` is an expensive way to find the cumulative union
  of many objects. See :func:`shapely.unary_union` for a more effective
  method.

Several of these set-theoretic methods can be invoked using overloaded
operators:

- `intersection` can be accessed with and, `&`
- `union` can be accessed with or, `|`
- `difference` can be accessed with minus, `-`
- `symmetric_difference` can be accessed with xor, `^`


.. code-block:: pycon

  >>> from shapely import wkt
  >>> p1 = wkt.loads('POLYGON((0 0, 1 0, 1 1, 0 1, 0 0))')
  >>> p2 = wkt.loads('POLYGON((0.5 0, 1.5 0, 1.5 1, 0.5 1, 0.5 0))')
  >>> p1 & p2
  <POLYGON ((0.5 0, 0.5 1, 1 1, 1 0, 0.5 0))>
  >>> p1 | p2
  <POLYGON ((0 0, 0 1, 0.5 1, 1 1, 1.5 1, 1.5 0, 1 0, 0.5 0, 0 0))>
  >>> p1 - p2
  <POLYGON ((0 0, 0 1, 0.5 1, 0.5 0, 0 0))>
  >>> (p1 ^ p2).wkt
  'MULTIPOLYGON (((0 0, 0 1, 0.5 1, 0.5 0, 0 0)), ((1 1, 1.5 1, 1.5 0, 1 0, 1 1)))'


Constructive Methods
--------------------

Shapely geometric object have several methods that yield new objects not
derived from set-theoretic analysis.

.. method:: object.buffer(distance, quad_segs=16, cap_style=1, join_style=1, mitre_limit=5.0, single_sided=False)

  Returns an approximate representation of all points within a given `distance`
  of the this geometric object.

  The styles of caps are specified by integer values: 1 (round), 2 (flat),
  3 (square). These values are also enumerated by the object
  :class:`shapely.BufferCapStyle` (see below).

  The styles of joins between offset segments are specified by integer values:
  1 (round), 2 (mitre), and 3 (bevel). These values are also enumerated by the
  object :class:`shapely.BufferJoinStyle` (see below).

.. data:: shapely.BufferCapStyle

   ========= =====
   Attribute Value
   ========= =====
   round        1
   flat         2
   square       3
   ========= =====

.. data:: shapely.BufferJoinStyle

   ========= =====
   Attribute Value
   ========= =====
   round         1
   mitre         2
   bevel         3
   ========= =====

.. code-block:: pycon

  >>> from shapely import BufferCapStyle, BufferJoinStyle
  >>> BufferCapStyle.flat.value
  2
  >>> BufferJoinStyle.bevel.value
  3

A positive distance has an effect of dilation; a negative distance, erosion.
The optional `quad_segs` argument determines the number of segments used to
approximate a quarter circle around a point.

.. code-block:: pycon

  >>> line = LineString([(0, 0), (1, 1), (0, 2), (2, 2), (3, 1), (1, 0)])
  >>> dilated = line.buffer(0.5)
  >>> eroded = dilated.buffer(-0.3)

.. plot:: code/buffer.py

Figure 9. Dilation of a line (left) and erosion of a polygon (right). New
object is shown in blue.

The default (`quad_segs` of 16) buffer of a point is a polygonal patch with
99.8% of the area of the circular disk it approximates.

.. code-block:: pycon

  >>> p = Point(0, 0).buffer(10.0)
  >>> len(p.exterior.coords)
  65
  >>> p.area
  313.6548490545941

With a `quad_segs` of 1, the buffer is a square patch.

.. code-block:: pycon

  >>> q = Point(0, 0).buffer(10.0, 1)
  >>> len(q.exterior.coords)
  5
  >>> q.area
  200.0

You may want a buffer only on one side. You can achieve this effect with
`single_sided` option.

The side used is determined by the sign of the buffer distance:

- a positive distance indicates the left-hand side
- a negative distance indicates the right-hand side

.. code-block:: pycon

  >>> line = LineString([(0, 0), (1, 1), (0, 2), (2, 2), (3, 1), (1, 0)])
  >>> left_hand_side = line.buffer(0.5, single_sided=True)
  >>> right_hand_side = line.buffer(-0.3, single_sided=True)

.. plot:: code/buffer_single_side.py

Figure 10. Single sided buffer of 0.5 left hand (left) and of 0.3 right hand
(right).

The single-sided buffer of point geometries is the same as the regular buffer.
The End Cap Style for single-sided buffers is always ignored, and forced to
the equivalent of `BufferCapStyle.flat`.

Passed a `distance` of 0, :meth:`~object.buffer` can sometimes be used to
"clean" self-touching or self-crossing polygons such as the classic "bowtie".
Users have reported that very small distance values sometimes produce cleaner
results than 0. Your mileage may vary when cleaning surfaces.

.. code-block:: pycon

  >>> coords = [(0, 0), (0, 2), (1, 1), (2, 2), (2, 0), (1, 1), (0, 0)]
  >>> bowtie = Polygon(coords)
  >>> bowtie.is_valid
  False
  >>> clean = bowtie.buffer(0)
  >>> clean.is_valid
  True
  >>> clean
  <MULTIPOLYGON (((0 0, 0 2, 1 1, 0 0)), ((1 1, 2 2, 2 0, 1 1)))>
  >>> len(clean.geoms)
  2
  >>> list(clean.geoms[0].exterior.coords)
  [(0.0, 0.0), (0.0, 2.0), (1.0, 1.0), (0.0, 0.0)]
  >>> list(clean.geoms[1].exterior.coords)
  [(1.0, 1.0), (2.0, 2.0), (2.0, 0.0), (1.0, 1.0)]

Buffering splits the polygon in two at the point where they touch.

.. attribute:: object.convex_hull

  Returns a representation of the smallest convex `Polygon` containing all the
  points in the object unless the number of points in the object is less than
  three. For two points, the convex hull collapses to a `LineString`; for 1, a
  `Point`.

.. code-block:: pycon

  >>> Point(0, 0).convex_hull
  <POINT (0 0)>
  >>> MultiPoint([(0, 0), (1, 1)]).convex_hull
  <LINESTRING (0 0, 1 1)>
  >>> MultiPoint([(0, 0), (1, 1), (1, -1)]).convex_hull
  <POLYGON ((1 -1, 0 0, 1 1, 1 -1))>

.. plot:: code/convex_hull.py

Figure 11. Convex hull (blue) of 2 points (left) and of 6 points (right).

.. attribute:: object.envelope

  Returns a representation of the point or smallest rectangular polygon (with
  sides parallel to the coordinate axes) that contains the object.

.. code-block:: pycon

  >>> Point(0, 0).envelope
  <POINT (0 0)>
  >>> MultiPoint([(0, 0), (1, 1)]).envelope
  <POLYGON ((0 0, 1 0, 1 1, 0 1, 0 0))>

.. attribute:: object.minimum_rotated_rectangle

  Returns the general minimum bounding rectangle that contains the object.
  Unlike envelope this rectangle is not constrained to be parallel to the
  coordinate axes. If the convex hull of the object is a degenerate (line or
  point) this degenerate is returned.

  `New in Shapely 1.6.0`

.. code-block:: pycon

  >>> Point(0, 0).minimum_rotated_rectangle
  <POINT (0 0)>
  >>> MultiPoint([(0,0),(1,1),(2,0.5)]).minimum_rotated_rectangle.normalize()
  <POLYGON ((-0.176 0.706, 1.824 1.206, 2 0.5, 0 0, -0.176 0.706))>

.. plot:: code/minimum_rotated_rectangle.py

Figure 12. Minimum rotated rectangle for a multipoint feature (left) and a
linestring feature (right).

.. method:: object.parallel_offset(distance, side, resolution=16, join_style=1, mitre_limit=5.0)

  Returns a LineString or MultiLineString geometry at a distance from the
  object on its right or its left side.

  Older alternative method to the :meth:`~object.offset_curve` method, but uses
  `resolution` instead of `quad_segs` and a `side` keyword ('left' or
  'right') instead of sign of the distance. This method is kept for backwards
  compatibility for now, but is is recommended to use
  :meth:`~object.offset_curve` instead.

.. method:: object.offset_curve(distance, quad_segs=16, join_style=1, mitre_limit=5.0)

  Returns a LineString or MultiLineString geometry at a distance from the
  object on its right or its left side.

  The `distance` parameter must be a float value.

  The side is determined by the sign of the `distance` parameter (negative for
  right side offset, positive for left side offset). Left and right are
  determined by following the direction of the given geometric points of the
  LineString.

  Note: the behaviour regarding orientation of the resulting line depends
  on the GEOS version. With GEOS < 3.11, the line retains the same
  direction for a left offset (positive distance) or has reverse direction
  for a right offset (negative distance), and this behaviour was documented
  as such in previous Shapely versions. Starting with GEOS 3.11, the
  function tries to preserve the orientation of the original line.

  The resolution of the offset around each vertex of the object is
  parameterized as in the :meth:`~object.buffer` method (using `quad_segs`).

  The `join_style` is for outside corners between line segments. Accepted
  integer values are 1 (round), 2 (mitre), and 3 (bevel). See also
  :data:`shapely.BufferJoinStyle`.

  Severely mitered corners can be controlled by the `mitre_limit` parameter
  (spelled in British English, en-gb). The corners of a parallel line will
  be further from the original than most places with the mitre join style.
  The ratio of this further distance to the specified `distance` is the miter
  ratio. Corners with a ratio which exceed the limit will be beveled.

  .. note::

    This method may sometimes return a `MultiLineString` where a simple
    `LineString` was expected; for example, an offset to a slightly
    curved LineString.

  .. note::

    This method is only available for `LinearRing` and `LineString`  objects.

.. plot:: code/parallel_offset.py

Figure 13. Three styles of parallel offset lines on the left side of a simple
line string (its starting point shown as a circle) and one offset on the right
side, a multipart.

The effect of the `mitre_limit` parameter is shown below.

.. plot:: code/parallel_offset_mitre.py

Figure 14. Large and small mitre_limit values for left and right offsets.

.. method:: object.simplify(tolerance, preserve_topology=True)

  Returns a simplified representation of the geometric object.

All points in the simplified object will be within the `tolerance` distance of
the original geometry. By default a slower algorithm is used that preserves
topology. If preserve topology is set to ``False`` the much quicker
Douglas-Peucker algorithm [6]_ is used.

.. code-block:: pycon

  >>> p = Point(0.0, 0.0)
  >>> x = p.buffer(1.0)
  >>> x.area
  3.1365484905459398
  >>> len(x.exterior.coords)
  65
  >>> s = x.simplify(0.05, preserve_topology=False)
  >>> s.area
  3.061467458920719
  >>> len(s.exterior.coords)
  17

.. plot:: code/simplify.py

Figure 15. Simplification of a nearly circular polygon using a tolerance of 0.2
(left) and 0.5 (right).

.. note::

  `Invalid` geometric objects may result from simplification that does not
  preserve topology and simplification may be sensitive to the order of
  coordinates: two geometries differing only in order of coordinates may be
  simplified differently.


Affine Transformations
======================

A collection of affine transform functions are in the :mod:`shapely.affinity`
module, which return transformed geometries by either directly supplying
coefficients to an affine transformation matrix, or by using a specific, named
transform (`rotate`, `scale`, etc.). The functions can be used with all
geometry types (except `GeometryCollection`), and 3D types are either
preserved or supported by 3D affine transformations.

`New in version 1.2.17`.

.. function:: shapely.affinity.affine_transform(geom, matrix)

  Returns a transformed geometry using an affine transformation matrix.

  The coefficient ``matrix`` is provided as a list or tuple with 6 or 12 items
  for 2D or 3D transformations, respectively.

  For 2D affine transformations, the 6 parameter ``matrix`` is:

    ``[a, b, d, e, xoff, yoff]``

  which represents the augmented matrix:

  .. math::
    \begin{bmatrix}
      x' \\
      y' \\
      1
    \end{bmatrix} =
    \begin{bmatrix}
      a & b & x_\mathrm{off} \\
      d & e & y_\mathrm{off} \\
      0 & 0 & 1
    \end{bmatrix}
    \begin{bmatrix}
      x \\
      y \\
      1
    \end{bmatrix}

  or the equations for the transformed coordinates:

  .. math::
    x' &= a x + b y + x_\mathrm{off} \\
    y' &= d x + e y + y_\mathrm{off}.

  For 3D affine transformations, the 12 parameter ``matrix`` is:

    ``[a, b, c, d, e, f, g, h, i, xoff, yoff, zoff]``

  which represents the augmented matrix:

  .. math::
    \begin{bmatrix}
      x' \\
      y' \\
      z' \\
      1
    \end{bmatrix} =
    \begin{bmatrix}
      a & b & c & x_\mathrm{off} \\
      d & e & f & y_\mathrm{off} \\
      g & h & i & z_\mathrm{off} \\
      0 & 0 & 0 & 1
    \end{bmatrix}
    \begin{bmatrix}
      x \\
      y \\
      z \\
      1
    \end{bmatrix}

  or the equations for the transformed coordinates:

  .. math::
    x' &= a x + b y + c z + x_\mathrm{off} \\
    y' &= d x + e y + f z + y_\mathrm{off} \\
    z' &= g x + h y + i z + z_\mathrm{off}.

.. function:: shapely.affinity.rotate(geom, angle, origin='center', use_radians=False)

  Returns a rotated geometry on a 2D plane.

  The angle of rotation can be specified in either degrees (default) or
  radians by setting ``use_radians=True``. Positive angles are
  counter-clockwise and negative are clockwise rotations.

  The point of origin can be a keyword ``'center'`` for the bounding box
  center (default), ``'centroid'`` for the geometry's centroid, a `Point` object
  or a coordinate tuple ``(x0, y0)``.

  The affine transformation matrix for 2D rotation with angle :math:`\theta` is:

  .. math::
    \begin{bmatrix}
      \cos{\theta} & -\sin{\theta} & x_\mathrm{off} \\
      \sin{\theta} &  \cos{\theta} & y_\mathrm{off} \\
            0      &        0      & 1
    \end{bmatrix}

  where the offsets are calculated from the origin :math:`(x_0, y_0)`:

  .. math::
    x_\mathrm{off} &= x_0 - x_0 \cos{\theta} + y_0 \sin{\theta} \\
    y_\mathrm{off} &= y_0 - x_0 \sin{\theta} - y_0 \cos{\theta}

  .. code-block:: pycon

    >>> from shapely import affinity
    >>> line = LineString([(1, 3), (1, 1), (4, 1)])
    >>> rotated_a = affinity.rotate(line, 90)
    >>> rotated_b = affinity.rotate(line, 90, origin='centroid')

  .. plot:: code/rotate.py

  Figure 16. Rotation of a `LineString` (gray) by an angle of 90°
  counter-clockwise (blue) using different origins.

.. function:: shapely.affinity.scale(geom, xfact=1.0, yfact=1.0, zfact=1.0, origin='center')

  Returns a scaled geometry, scaled by factors along each dimension.

  The point of origin can be a keyword ``'center'`` for the 2D bounding box
  center (default), ``'centroid'`` for the geometry's 2D centroid, a `Point`
  object or a coordinate tuple ``(x0, y0, z0)``.

  Negative scale factors will mirror or reflect coordinates.

  The general 3D affine transformation matrix for scaling is:

  .. math::
    \begin{bmatrix}
      x_\mathrm{fact} & 0               & 0               & x_\mathrm{off} \\
      0               & y_\mathrm{fact} & 0               & y_\mathrm{off} \\
      0               & 0               & z_\mathrm{fact} & z_\mathrm{off} \\
      0               & 0               & 0               & 1
    \end{bmatrix}

  where the offsets are calculated from the origin :math:`(x_0, y_0, z_0)`:

  .. math::
    x_\mathrm{off} &= x_0 - x_0 x_\mathrm{fact} \\
    y_\mathrm{off} &= y_0 - y_0 y_\mathrm{fact} \\
    z_\mathrm{off} &= z_0 - z_0 z_\mathrm{fact}

  .. code-block:: pycon

    >>> triangle = Polygon([(1, 1), (2, 3), (3, 1)])
    >>> triangle_a = affinity.scale(triangle, xfact=1.5, yfact=-1)
    >>> triangle_a.exterior.coords[:]
    [(0.5, 3.0), (2.0, 1.0), (3.5, 3.0), (0.5, 3.0)]
    >>> triangle_b = affinity.scale(triangle, xfact=2, origin=(1,1))
    >>> triangle_b.exterior.coords[:]
    [(1.0, 1.0), (3.0, 3.0), (5.0, 1.0), (1.0, 1.0)]

  .. plot:: code/scale.py

  Figure 17. Scaling of a gray triangle to blue result: a) by a factor of 1.5
  along x-direction, with reflection across y-axis; b) by a factor of 2 along
  x-direction with custom origin at (1, 1).

.. function:: shapely.affinity.skew(geom, xs=0.0, ys=0.0, origin='center', use_radians=False)

  Returns a skewed geometry, sheared by angles along x and y dimensions.

  The shear angle can be specified in either degrees (default) or radians
  by setting ``use_radians=True``.

  The point of origin can be a keyword ``'center'`` for the bounding box
  center (default), ``'centroid'`` for the geometry's centroid, a `Point`
  object or a coordinate tuple ``(x0, y0)``.

  The general 2D affine transformation matrix for skewing is:

  .. math::
    \begin{bmatrix}
      1 & \tan{x_s} & x_\mathrm{off} \\
      \tan{y_s} & 1 & y_\mathrm{off} \\
      0 & 0 & 1
    \end{bmatrix}

  where the offsets are calculated from the origin :math:`(x_0, y_0)`:

  .. math::
    x_\mathrm{off} &= -y_0 \tan{x_s} \\
    y_\mathrm{off} &= -x_0 \tan{y_s}

  .. plot:: code/skew.py

  Figure 18. Skewing of a gray "R" to blue result: a) by a shear angle of 20°
  along the x-direction and an origin at (1, 1); b) by a shear angle of 30°
  along the y-direction, using default origin.

.. function:: shapely.affinity.translate(geom, xoff=0.0, yoff=0.0, zoff=0.0)

  Returns a translated geometry shifted by offsets along each dimension.

  The general 3D affine transformation matrix for translation is:

  .. math::
    \begin{bmatrix}
      1 & 0 & 0 & x_\mathrm{off} \\
      0 & 1 & 0 & y_\mathrm{off} \\
      0 & 0 & 1 & z_\mathrm{off} \\
      0 & 0 & 0 & 1
    \end{bmatrix}


Other Transformations
=====================

Shapely supports map projections and other arbitrary transformations of
geometric objects.

.. function:: shapely.ops.transform(func, geom)

  Applies `func` to all coordinates of `geom` and returns a new
  geometry of the same type from the transformed coordinates.

  `func` maps x, y, and optionally z to output xp, yp, zp. The input
  parameters may be iterable types like lists or arrays or single values.
  The output shall be of the same type: scalars in, scalars out;
  lists in, lists out.

  `transform` tries to determine which kind of function was passed in
  by calling `func` first with n iterables of coordinates, where n
  is the dimensionality of the input geometry. If `func` raises
  a `TypeError` when called with iterables as arguments,
  then it will instead call `func` on each individual coordinate
  in the geometry.

  `New in version 1.2.18`.

For example, here is an identity function applicable to both types of input
(scalar or array).

.. code-block:: python

    def id_func(x, y, z=None):
        return tuple(filter(None, [x, y, z]))

    g2 = transform(id_func, g1)


If using `pyproj>=2.1.0`, the preferred method to project geometries is:

.. code-block:: python

    import pyproj

    from shapely import Point
    from shapely.ops import transform

    wgs84_pt = Point(-72.2495, 43.886)

    wgs84 = pyproj.CRS('EPSG:4326')
    utm = pyproj.CRS('EPSG:32618')

    project = pyproj.Transformer.from_crs(wgs84, utm, always_xy=True).transform
    utm_point = transform(project, wgs84_pt)

It is important to note that in the example above, the `always_xy` kwarg is
required as Shapely only supports coordinates in X,Y order, and in PROJ 6 the
WGS84 CRS uses the EPSG-defined Lat/Lon coordinate order instead of the
expected Lon/Lat.

If using `pyproj < 2.1`, then the canonical example is:

.. code-block:: python

    from functools import partial
    import pyproj

    from shapely.ops import transform

    wgs84 = pyproj.Proj(init='epsg:4326')
    utm = pyproj.Proj(init='epsg:32618')

    project = partial(
        pyproj.transform,
        wgs84,
        utm)

    utm_point = transform(project, wgs84_pt)

Lambda expressions such as the one in

.. code-block:: python

    g2 = transform(lambda x, y, z=None: (x+1.0, y+1.0), g1)

also satisfy the requirements for `func`.


Other Operations
================

Merging Linear Features
-----------------------

Sequences of touching lines can be merged into `MultiLineStrings` or
`Polygons`.

.. function:: shapely.polygonize(lines)

  Returns an iterator over polygons constructed from the input `lines`.

  The source should be a sequence of LineString objects.

  .. code-block:: pycon

    >>> from shapely import polygonize
    >>> lines = [
    ...     LineString([(0, 0), (1, 1)]),
    ...     LineString([(0, 0), (0, 1)]),
    ...     LineString([(0, 1), (1, 1)]),
    ...     LineString([(1, 1), (1, 0)]),
    ...     LineString([(1, 0), (0, 0)]),
    ...     ]
    >>> list(polygonize(lines).geoms)
    [<POLYGON ((0 0, 1 1, 1 0, 0 0))>, <POLYGON ((1 1, 0 0, 0 1, 1 1))>]

.. function:: shapely.polygonize_full(lines)

  Creates polygons from a source of lines, returning the polygons
  and leftover geometries.

  The source should be a sequence of LineString objects.

  Returns a tuple of objects: (polygons, cut edges, dangles, invalid ring
  lines). Each are a geometry collection.

  Dangles are edges which have one or both ends which are not incident on
  another edge endpoint. Cut edges are connected at both ends but do not
  form part of polygon. Invalid ring lines form rings which are invalid
  (bowties, etc).

  `New in version 1.2.18.`

  .. code-block:: pycon

    >>> from shapely import polygonize_full
    >>> lines = [
    ...     LineString([(0, 0), (1, 1)]),
    ...     LineString([(0, 0), (0, 1)]),
    ...     LineString([(0, 1), (1, 1)]),
    ...     LineString([(1, 1), (1, 0)]),
    ...     LineString([(1, 0), (0, 0)]),
    ...     LineString([(5, 5), (6, 6)]),
    ...     LineString([(1, 1), (100, 100)]),
    ...     ]
    >>> result, cuts, dangles, invalids = polygonize_full(lines)
    >>> len(result.geoms)
    2
    >>> list(result.geoms)
    [<POLYGON ((0 0, 1 1, 1 0, 0 0))>, <POLYGON ((1 1, 0 0, 0 1, 1 1))>]
    >>> list(dangles.geoms)
    [<LINESTRING (1 1, 100 100)>, <LINESTRING (5 5, 6 6)>]

.. function:: shapely.line_merge(multilinestring)

  Returns `LineString(s)` or `MultiLineString(s)` representing the merger of
  all contiguous elements of the input `MultiLineString(s)`.

.. code-block:: python

    >>> from shapely import line_merge
    >>> line_merge(MultiLineString(lines))
    <MULTILINESTRING ((1 1, 1 0, 0 0), (0 0, 1 1), (0 0, 0 1, 1 1), (1 1, 100 10...>
    >>> list(line_merge(MultiLineString(lines)).geoms)
    [<LINESTRING (1 1, 1 0, 0 0)>,
     <LINESTRING (0 0, 1 1)>,
     <LINESTRING (0 0, 0 1, 1 1)>,
     <LINESTRING (1 1, 100 100)>,
     <LINESTRING (5 5, 6 6)>]

Efficient Rectangle Clipping
----------------------------
The :func:`~shapely.clip_by_rect` function returns the portion of a geometry
within a rectangle.

.. function:: shapely.clip_by_rect(geom, xmin, ymin, xmax, ymax)

    The geometry is clipped in a fast but possibly dirty way. The output is
    not guaranteed to be valid. No exceptions will be raised for topological
    errors.

    `New in version 1.7.`

.. code-block:: python

  >>> from shapely import clip_by_rect
  >>> polygon = Polygon(
  ...     shell=[(0, 0), (0, 30), (30, 30), (30, 0), (0, 0)],
  ...     holes=[[(10, 10), (20, 10), (20, 20), (10, 20), (10, 10)]],
  ... )
  >>> clipped_polygon = clip_by_rect(polygon, 5, 5, 15, 15)
  >>> clipped_polygon
  <POLYGON ((5 5, 5 15, 10 15, 10 10, 15 10, 15 5, 5 5))>

Efficient Unions
----------------

The :func:`~shapely.unary_union` function is more efficient than accumulating
with :meth:`~object.union`.

.. plot:: code/unary_union.py

.. function:: shapely.unary_union(geoms)

  Returns a representation of the union of the given geometric objects.

  Areas of overlapping `Polygons` will get merged. `LineStrings` will
  get fully dissolved and noded. Duplicate `Points` will get merged.

  .. code-block:: pycon

    >>> from shapely import unary_union
    >>> polygons = [Point(i, 0).buffer(0.7) for i in range(5)]
    >>> unary_union(polygons)
    <POLYGON ((0.444 -0.541, 0.389 -0.582, 0.33 -0.617, 0.268 -0.647, 0.203 -0.6...>

  Because the union merges the areas of overlapping `Polygons` it can be
  used in an attempt to fix invalid `MultiPolygons`. As with the zero
  distance :meth:`~object.buffer` trick, your mileage may vary when using this.

  .. code-block:: pycon

    >>> m = MultiPolygon(polygons)
    >>> m.area
    7.684543801837549
    >>> m.is_valid
    False
    >>> unary_union(m).area
    6.610301355116799
    >>> unary_union(m).is_valid
    True

Delaunay triangulation
----------------------

The :func:`~shapely.delaunay_triangles` function calculates a Delaunay
triangulation from a collection of points.

.. plot:: code/triangulate.py

.. function:: shapely.delaunay_triangles(geom, tolerance=0.0, edges=False)

   Returns a Delaunay triangulation of the vertices of the input geometry.

   The source may be any geometry type. All vertices of the geometry will be
   used as the points of the triangulation.

   The `tolerance` keyword argument sets the snapping tolerance used to improve
   the robustness of the triangulation computation. A tolerance of 0.0
   specifies that no snapping will take place.

   If the `edges` keyword argument is `False` a list of `Polygon` triangles
   will be returned. Otherwise a list of `LineString` edges is returned.

   `New in version  1.4.0`

.. code-block:: pycon

  >>> from shapely import delaunay_triangles
  >>> points = MultiPoint([(0, 0), (1, 1), (0, 2), (2, 2), (3, 1), (1, 0)])
  >>> list(delaunay_triangles(points).geoms)
  [<POLYGON ((0 2, 0 0, 1 1, 0 2))>,
   <POLYGON ((0 2, 1 1, 2 2, 0 2))>,
   <POLYGON ((2 2, 1 1, 3 1, 2 2))>,
   <POLYGON ((3 1, 1 1, 1 0, 3 1))>,
   <POLYGON ((1 0, 1 1, 0 0, 1 0))>]


Voronoi Diagram
---------------

The :func:`~shapely.voronoi_polygons` function constructs a Voronoi diagram
from a collection points, or the vertices of any geometry.

.. plot:: code/voronoi_diagram.py

.. function:: shapely.voronoi_polygons(geom, envelope=None, tolerance=0.0, edges=False)

   Constructs a Voronoi diagram from the vertices of the input geometry.

   The source may be any geometry type. All vertices of the geometry will be
   used as the input points to the diagram.

   The `envelope` keyword argument provides an envelope to use to clip the
   resulting diagram. If `None`, it will be calculated automatically.
   The diagram will be clipped to the *larger* of the provided envelope
   or an envelope surrounding the sites.

   The `tolerance` keyword argument sets the snapping tolerance used to improve
   the robustness of the computation. A tolerance of 0.0 specifies
   that no snapping will take place. The tolerance `argument` can be
   finicky and is known to cause the algorithm to fail in several cases.
   If you're using `tolerance` and getting a failure, try removing it.
   The test cases in `tests/test_voronoi_diagram.py` show more details.

   If the `edges` keyword argument is `False` a list of `Polygon`s
   will be returned. Otherwise a list of `LineString` edges is returned.


.. code-block:: pycon

  >>> from shapely import voronoi_polygons
  >>> points = MultiPoint([(0, 0), (1, 1), (0, 2), (2, 2), (3, 1), (1, 0)])
  >>> regions = voronoi_polygons(points)
  >>> list(regions.geoms)
  [<POLYGON ((2 1, 2 0.5, 0.5 0.5, 0 1, 1 2, 2 1))>,
   <POLYGON ((6 -3, 3.75 -3, 2 0.5, 2 1, 6 5, 6 -3))>,
   <POLYGON ((-3 -3, -3 1, 0 1, 0.5 0.5, 0.5 -3, -3 -3))>,
   <POLYGON ((0.5 -3, 0.5 0.5, 2 0.5, 3.75 -3, 0.5 -3))>,
   <POLYGON ((-3 5, 1 5, 1 2, 0 1, -3 1, -3 5))>,
   <POLYGON ((6 5, 2 1, 1 2, 1 5, 6 5))>]


Nearest points/shortest line
----------------------------

The :func:`~shapely.shortest_line` function calculates the shortest line
between a pair of geometries.

.. function:: shapely.shortest_line(geom1, geom2)

   Returns a tuple of the shortest line between the input geometries. The
   points are returned in the same order as the input geometries.

   `New in version 2.0`.

.. code-block:: pycon

  >>> from shapely import shortest_line
  >>> triangle = Polygon([(0, 0), (1, 0), (0.5, 1), (0, 0)])
  >>> square = Polygon([(0, 2), (1, 2), (1, 3), (0, 3), (0, 2)])
  >>> shortest_line(triangle, square)
  <LINESTRING (0.5 1, 0.5 2)>


Note that the shortest line may not connect to vertices of the input
geometries.

Snapping
--------

The :func:`~shapely.snap` snaps the vertices in one geometry to the vertices in
a second geometry with a given tolerance.

.. function:: shapely.snap(geom1, geom2, tolerance)

   Snaps vertices in `geom1` to vertices in the `geom2`. A new instance of type
   `geom1` is returned. The input geometries are not modified.

   The `tolerance` argument specifies the minimum distance between vertices for
   them to be snapped.

   `New in version 1.5.0`

.. code-block:: pycon

  >>> from shapely import snap
  >>> square = Polygon([(1,1), (2, 1), (2, 2), (1, 2), (1, 1)])
  >>> line = LineString([(0,0), (0.8, 0.8), (1.8, 0.95), (2.6, 0.5)])
  >>> result = snap(line, square, 0.5)
  >>> result
  <LINESTRING (0 0, 1 1, 2 1, 2.6 0.5)>

Shared paths
------------

The :func:`~shapely.shared_paths` function finds the shared paths between two
linear geometries.

.. function:: shapely.shared_paths(geom1, geom2)

   Finds the shared paths between `geom1` and `geom2`, where both geometries
   are `LineStrings`.

   A `GeometryCollection` is returned with two elements. The first element is a
   `MultiLineString` containing shared paths with the same direction for both
   inputs. The second element is a MultiLineString containing shared paths with
   the opposite direction for the two inputs.

   `New in version 1.6.0`

.. code-block:: pycon

  >>> from shapely import shared_paths
  >>> g1 = LineString([(0, 0), (10, 0), (10, 5), (20, 5)])
  >>> g2 = LineString([(5, 0), (30, 0), (30, 5), (0, 5)])
  >>> forward, backward = shared_paths(g1, g2).geoms
  >>> forward
  <MULTILINESTRING ((5 0, 10 0))>
  >>> backward
  <MULTILINESTRING ((10 5, 20 5))>

Splitting
---------

The :func:`~shapely.ops.split` function in `shapely.ops` splits a geometry by
another geometry.

.. function:: shapely.ops.split(geom, splitter)

   Splits a geometry by another geometry and returns a collection of
   geometries. This function is the theoretical opposite of the union of the
   split geometry parts. If the splitter does not split the geometry, a
   collection with a single geometry equal to the input geometry is returned.

   The function supports:

   * Splitting a (Multi)LineString by a (Multi)Point or (Multi)LineString or
     (Multi)Polygon boundary

   * Splitting a (Multi)Polygon by a LineString

   It may be convenient to snap the splitter with low tolerance to the
   geometry. For example in the case of splitting a line by a point, the point
   must be exactly on the line, for the line to be correctly split. When
   splitting a line by a polygon, the boundary of the polygon is used for the
   operation. When splitting a line by another line, a ValueError is raised if
   the two overlap at some segment.

.. code-block:: pycon

  >>> from shapely.ops import split
  >>> pt = Point((1, 1))
  >>> line = LineString([(0,0), (2,2)])
  >>> result = split(line, pt)
  >>> result
  <GEOMETRYCOLLECTION (LINESTRING (0 0, 1 1), LINESTRING (1 1, 2 2))>

Substring
---------

The :func:`~shapely.ops.substring` function in :mod:`shapely.ops` returns a
line segment between specified distances along a `LineString`.

.. function:: shapely.ops.substring(geom, start_dist, end_dist[, normalized=False])

  Return the `LineString` between `start_dist` and `end_dist` or a `Point`
  if they are at the same location

  Negative distance values are taken as measured in the reverse
  direction from the end of the geometry. Out-of-range index
  values are handled by clamping them to the valid range of values.

  If the start distance equals the end distance, a point is being returned.

  If the start distance is actually past the end distance, then the
  reversed substring is returned such that the start distance is
  at the first coordinate.

  If the normalized arg is ``True``, the distance will be interpreted as a
  fraction of the geometry's length

  `New in version 1.7.0`

  Here are some examples that return `LineString` geometries.

  .. code-block:: pycon

    >>> from shapely.ops import substring
    >>> ls = LineString((i, 0) for i in range(6))
    >>> ls
    <LINESTRING (0 0, 1 0, 2 0, 3 0, 4 0, 5 0)>
    >>> substring(ls, start_dist=1, end_dist=3)
    <LINESTRING (1 0, 2 0, 3 0)>
    >>> substring(ls, start_dist=3, end_dist=1)
    <LINESTRING (3 0, 2 0, 1 0)>
    >>> substring(ls, start_dist=1, end_dist=-3)
    <LINESTRING (1 0, 2 0)>
    >>> substring(ls, start_dist=0.2, end_dist=-0.6, normalized=True)
    <LINESTRING (1 0, 2 0)>

  And here is an example that returns a `Point`.

  .. code-block:: pycon

    >>> substring(ls, start_dist=2.5, end_dist=-2.5)
    <POINT (2.5 0)>

Prepared Geometry Operations
----------------------------

Shapely geometries can be processed into a state that supports more efficient
batches of operations.

.. function:: prepared.prep(ob)

  Creates and returns a prepared geometric object.

To test one polygon containment against a large batch of points, one should
first use the :func:`prepared.prep` function.

.. code-block:: pycon

  >>> from shapely.prepared import prep
  >>> points = [...] # large list of points
  >>> polygon = Point(0.0, 0.0).buffer(1.0)
  >>> prepared_polygon = prep(polygon)
  >>> prepared_polygon
  <shapely.prepared.PreparedGeometry object at 0x...>
  >>> hits = filter(prepared_polygon.contains, points)

Prepared geometries instances have the following methods: ``contains``,
``contains_properly``, ``covers``, and ``intersects``. All have exactly the
same arguments and usage as their counterparts in non-prepared geometric
objects.

Diagnostics
-----------

.. function:: validation.explain_validity(ob):

  Returns a string explaining the validity or invalidity of the object.

  `New in version 1.2.1`.

The messages may or may not have a representation of a problem point that can
be parsed out.

.. code-block:: pycon

  >>> coords = [(0, 0), (0, 2), (1, 1), (2, 2), (2, 0), (1, 1), (0, 0)]
  >>> p = Polygon(coords)
  >>> from shapely.validation import explain_validity
  >>> explain_validity(p)
  'Ring Self-intersection[1 1]'

.. function:: validation.make_valid(ob)

  Returns a valid representation of the geometry, if it is invalid.
  If it is valid, the input geometry will be returned.

  In many cases, in order to create a valid geometry, the input geometry
  must be split into multiple parts or multiple geometries. If the geometry
  must be split into multiple parts of the same geometry type, then a multi-part
  geometry (e.g. a MultiPolygon) will be returned. if the geometry must be split
  into multiple parts of different types, then a GeometryCollection will be returned.

  For example, this operation on a geometry with a bow-tie structure:

.. code-block:: pycon

  >>> from shapely.validation import make_valid
  >>> coords = [(0, 0), (0, 2), (1, 1), (2, 2), (2, 0), (1, 1), (0, 0)]
  >>> p = Polygon(coords)
  >>> make_valid(p)
  <MULTIPOLYGON (((1 1, 0 0, 0 2, 1 1)), ((2 0, 1 1, 2 2, 2 0)))>

  Yields a MultiPolygon with two parts:

.. plot:: code/make_valid_multipolygon.py

  While this operation:

.. code-block:: pycon

  >>> from shapely.validation import make_valid
  >>> coords = [(0, 2), (0, 1), (2, 0), (0, 0), (0, 2)]
  >>> p = Polygon(coords)
  >>> make_valid(p)
  <GEOMETRYCOLLECTION (POLYGON ((2 0, 0 0, 0 1, 2 0)), LINESTRING (0 2, 0 1))>

  Yields a GeometryCollection with a Polygon and a LineString:

.. plot:: code/make_valid_geometrycollection.py

  `New in version 1.8`

The Shapely version, GEOS library version, and GEOS C API version are
accessible via ``shapely.__version__``, ``shapely.geos_version_string``, and
``shapely.geos_capi_version``.

.. code-block:: pycon

  >>> import shapely
  >>> shapely.__version__  # doctest: +SKIP
  '2.0.0'
  >>> shapely.geos_version  # doctest: +SKIP
  (3, 10, 2)
  >>> shapely.geos_capi_version_string  # doctest: +SKIP
  '3.10.2-CAPI-1.16.0'

Polylabel
---------

.. function:: shapely.ops.polylabel(polygon, tolerance)

  Finds the approximate location of the pole of inaccessibility for a given
  polygon. Based on Vladimir Agafonkin's polylabel_.

  `New in version 1.6.0`

.. note::

  Prior to 1.7 `polylabel` must be imported from `shapely.algorithms.polylabel`
  instead of `shapely.ops`.

.. code-block:: pycon

  >>> from shapely.ops import polylabel
  >>> polygon = LineString([(0, 0), (50, 200), (100, 100), (20, 50),
  ... (-100, -20), (-150, -200)]).buffer(100)
  >>> label = polylabel(polygon, tolerance=0.001)
  >>> label
  <POINT (59.733 111.33)>

STR-packed R-tree
=================

Shapely provides an interface to the query-only GEOS R-tree packed using the
Sort-Tile-Recursive algorithm. Pass a list of geometry objects to the STRtree
constructor to create a spatial index that you can query with another geometric
object. Query-only means that once created, the `STRtree` is immutable. You
cannot add or remove geometries.

.. class:: strtree.STRtree(geometries)
  :noindex:

  The `STRtree` constructor takes a sequence of geometric objects.

  References to these geometric objects are kept and stored in the R-tree.

  `New in version 1.4.0`.

  .. method:: strtree.query(geom)
    :noindex:

    Returns the integer indices of all geometries in the `strtree` whose extents
    intersect the extent of `geom`. This means that a subsequent search through the returned
    subset using the desired binary predicate (eg. intersects, crosses, contains,
    overlaps) may be necessary to further filter the results according to their
    specific spatial relationships.

    .. code-block:: pycon

      >>> from shapely import STRtree
      >>> points = [Point(i, i) for i in range(10)]
      >>> tree = STRtree(points)
      >>> query_geom = Point(2,2).buffer(0.99)
      >>> [points[idx].wkt for idx in tree.query(query_geom)]
      ['POINT (2 2)']
      >>> query_geom = Point(2, 2).buffer(1.0)
      >>> [points[idx].wkt for idx in tree.query(query_geom)]
      ['POINT (1 1)', 'POINT (2 2)', 'POINT (3 3)']
      >>> [points[idx].wkt for idx in tree.query(query_geom, predicate="intersects")]
      ['POINT (2 2)']

  .. method:: strtree.nearest(geom)
    :noindex:

    Returns the nearest geometry in `strtree` to `geom`.

    .. code-block:: pycon

      >>> points = [Point(i, i) for i in range(10)]
      >>> tree = STRtree(points)
      >>> idx = tree.nearest(Point(2.2, 2.2))
      >>> points[idx]
      <POINT (2 2)>

Interoperation
==============

Shapely provides 4 avenues for interoperation with other software.

Well-Known Formats
------------------

A `Well Known Text` (WKT) or `Well Known Binary` (WKB) representation [1]_ of
any geometric object can be had via its ``wkt`` or ``wkb`` attribute.
These representations allow interchange with many GIS programs. PostGIS, for
example, trades in hex-encoded WKB.

.. code-block:: pycon

  >>> Point(0, 0).wkt
  'POINT (0 0)'
  >>> Point(0, 0).wkb
  b'\x01\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00'
  >>> Point(0, 0).wkb_hex
  '010100000000000000000000000000000000000000'

The `shapely.wkt` and `shapely.wkb` modules provide `dumps()` and `loads()`
functions that work almost exactly as their `pickle` and `simplejson` module
counterparts. To serialize a geometric object to a binary or text string, use
``dumps()``. To deserialize a string and get a new geometric object of the
appropriate type, use ``loads()``.

The default settings for the wkt attribute and `shapely.wkt.dumps()` function
are different. By default, the attribute's value is trimmed of excess decimals,
while this is not the case for `dumps()`, though it can be replicated by setting
`trim=True`.

.. function:: shapely.wkb.dumps(ob)

  Returns a WKB representation of `ob`.

.. function:: shapely.wkb.loads(wkb)

  Returns a geometric object from a WKB representation `wkb`.

.. code-block:: pycon

  >>> from shapely import wkb, Point
  >>> pt = Point(0, 0)
  >>> wkb.dumps(pt)
  b'\x01\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00'
  >>> pt.wkb
  b'\x01\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00'
  >>> wkb.loads(pt.wkb).wkt
  'POINT (0 0)'

All of Shapely's geometry types are supported by these functions.

.. function:: shapely.wkt.dumps(ob)

  Returns a WKT representation of `ob`. Several keyword arguments are available
  to alter the WKT which is returned; see the docstrings for more details.

.. function:: shapely.wkt.loads(wkt)

  Returns a geometric object from a WKT representation `wkt`.

.. code-block:: pycon

  >>> from shapely import wkt, Point
  >>> pt = Point(0, 0)
  >>> wkt.dumps(pt)
  'POINT (0.0000000000000000 0.0000000000000000)'
  >>> pt.wkt
  'POINT (0 0)'
  >>> wkt.loads(pt.wkt).wkt
  'POINT (0 0)'

.. _array-interface:

Numpy and Python Arrays
-----------------------

All geometric objects with coordinate sequences (`Point`, `LinearRing`,
`LineString`) provide the Numpy array interface and can thereby be converted or
adapted to Numpy arrays.

.. code-block:: pycon

  >>> import numpy as np
  >>> np.asarray(Point(0, 0).coords)
  array([[0., 0.]])
  >>> np.asarray(LineString([(0, 0), (1, 1)]).coords)
  array([[0., 0.],
         [1., 1.]])

The coordinates of the same types of geometric objects can be had as standard
Python arrays of `x` and `y` values via the ``xy`` attribute.

.. code-block:: pycon

  >>> Point(0, 0).xy
  (array('d', [0.0]), array('d', [0.0]))
  >>> LineString([(0, 0), (1, 1)]).xy
  (array('d', [0.0, 1.0]), array('d', [0.0, 1.0]))

Python Geo Interface
--------------------

Any object that provides the GeoJSON-like `Python geo interface`_ can be
converted to a Shapely geometry using the :func:`shapely.geometry.shape`
function.

.. function:: shapely.geometry.shape(context)

   Returns a new, independent geometry with coordinates `copied` from the
   context.

For example, a dictionary:

.. code-block:: pycon

  >>> from shapely.geometry import shape
  >>> data = {"type": "Point", "coordinates": (0.0, 0.0)}
  >>> geom = shape(data)
  >>> geom.geom_type
  'Point'
  >>> list(geom.coords)
  [(0.0, 0.0)]

Or a simple placemark-type object:

.. code-block:: pycon

  >>> class GeoThing:
  ...     def __init__(self, d):
  ...         self.__geo_interface__ = d
  >>> thing = GeoThing({"type": "Point", "coordinates": (0.0, 0.0)})
  >>> geom = shape(thing)
  >>> geom.geom_type
  'Point'
  >>> list(geom.coords)
  [(0.0, 0.0)]

The GeoJSON-like mapping of a geometric object can be obtained using
:func:`shapely.geometry.mapping`.

.. function:: shapely.geometry.mapping(ob)

  Returns a GeoJSON-like mapping from a Geometry or any object which
  implements ``__geo_interface__``.

  `New in version 1.2.3`.

  For example, using the same `GeoThing` class:

.. code-block:: pycon

  >>> from shapely.geometry import mapping
  >>> thing = GeoThing({"type": "Point", "coordinates": (0.0, 0.0)})
  >>> m = mapping(thing)
  >>> m['type']
  'Point'
  >>> m['coordinates']
  (0.0, 0.0)


Performance
===========

Shapely uses the GEOS_ library for all operations. GEOS is written in C++ and
used in many applications and you can expect that all operations are highly
optimized. The creation of new geometries with many coordinates, however,
involves some overhead that might slow down your code.


Conclusion
==========

We hope that you will enjoy and profit from using Shapely. This manual will
be updated and improved regularly. Its source is available at
https://github.com/shapely/shapely/tree/main/docs/.


References
==========

.. [1] John R. Herring, Ed.,
   “OpenGIS Implementation Specification for Geographic information - Simple
   feature access - Part 1: Common architecture,” Oct. 2006.

.. [2] M.J. Egenhofer and John R. Herring,
   Categorizing Binary Topological Relations Between Regions, Lines, and Points
   in Geographic Databases,  Orono, ME: University of Maine, 1991.

.. [3] E. Clementini, P. Di Felice, and P. van Oosterom,
   “A Small Set of Formal Topological Relationships Suitable for End-User
   Interaction,” Third International Symposium on Large Spatial Databases
   (SSD). Lecture Notes in Computer Science no. 692, David Abel and Beng Chin
   Ooi, Eds.,  Singapore: Springer Verlag, 1993, pp. 277-295.

.. [4] C. Strobl, “Dimensionally Extended Nine-Intersection Model (DE-9IM),”
   Encyclopedia of GIS, S. Shekhar and H. Xiong, Eds.,
   Springer, 2008, pp. 240-245. [|Strobl-PDF|_]

.. [5] Martin Davis, “JTS Technical Specifications,” Mar. 2003. [|JTS-PDF|_]

.. [6] David H. Douglas and Thomas K. Peucker,
   “Algorithms for the Reduction of the Number of Points Required to Represent
   a Digitized Line or its Caricature,” Cartographica: The International
   Journal for Geographic Information and Geovisualization,  vol. 10, Dec.
   1973, pp. 112-122.


.. _GEOS: https://libgeos.org/
.. _Java Topology Suite: https://projects.eclipse.org/projects/locationtech.jts
.. _PostGIS: https://postgis.net
.. _Open Geospatial Consortium: https://www.opengeospatial.org/
.. _Strobl-PDF: https://giswiki.hsr.ch/images/3/3d/9dem_springer.pdf
.. |Strobl-PDF| replace:: PDF
.. _JTS-PDF: https://github.com/locationtech/jts/raw/master/doc/JTS%20Technical%20Specs.pdf
.. |JTS-PDF| replace:: PDF
.. _frozenset: https://docs.python.org/library/stdtypes.html#frozenset
.. _Sorting HowTo: https://wiki.python.org/moin/HowTo/Sorting/
.. _Python geo interface: https://gist.github.com/2217756
.. _polylabel: https://github.com/mapbox/polylabel