File: _ragged_array.py

package info (click to toggle)
python-shapely 2.1.1-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 2,528 kB
  • sloc: python: 18,648; ansic: 6,615; makefile: 88; sh: 62
file content (475 lines) | stat: -rw-r--r-- 17,445 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
"""Provides a conversion to / from a ragged array representation of geometries.

A ragged (or "jagged") array is an irregular array of arrays of which each
element can have a different length. As a result, such an array cannot be
represented as a standard, rectangular nD array.
The coordinates of geometries can be represented as arrays of arrays of
coordinate pairs (possibly multiple levels of nesting, depending on the
geometry type).

Geometries, as a ragged array of coordinates, can be efficiently represented
as contiguous arrays of coordinates provided that there is another data
structure that keeps track of which range of coordinate values corresponds
to a given geometry. This can be done using offsets, counts, or indices.

This module currently implements offsets into the coordinates array. This
is the ragged array representation defined by the the Apache Arrow project
as "variable size list array" (https://arrow.apache.org/docs/format/Columnar.html#variable-size-list-layout).
See for example https://cfconventions.org/Data/cf-conventions/cf-conventions-1.9/cf-conventions.html#representations-features
for different options.

The exact usage of the Arrow list array with varying degrees of nesting for the
different geometry types is defined by the GeoArrow project:
https://github.com/geoarrow/geoarrow

"""

import numpy as np

from shapely import creation, geos_version
from shapely._geometry import (
    GeometryType,
    get_parts,
    get_rings,
    get_type_id,
)
from shapely._geometry_helpers import (
    _from_ragged_array_multi_linear,
    _from_ragged_array_multipolygon,
)
from shapely.coordinates import get_coordinates
from shapely.predicates import is_empty, is_missing

__all__ = ["from_ragged_array", "to_ragged_array"]

_geos_ge_312 = geos_version >= (3, 12, 0)


# # GEOS -> coords/offset arrays (to_ragged_array)


def _get_arrays_point(arr, include_z, include_m):
    # only one array of coordinates
    coords = get_coordinates(arr, include_z=include_z, include_m=include_m)

    # empty points are represented by NaNs
    # + missing geometries should also be present with some value
    empties = is_empty(arr) | is_missing(arr)
    if empties.any():
        indices = np.nonzero(empties)[0]
        indices = indices - np.arange(len(indices))
        coords = np.insert(coords, indices, np.nan, axis=0)

    return coords, ()


def _indices_to_offsets(indices, n):
    # default to int32 offsets if possible (to prefer the non-large arrow list variants)
    # n_coords is the length of the array the indices are poin
    if len(indices) > 2147483647:
        dtype = np.int64
    else:
        dtype = np.int32

    offsets = np.insert(np.bincount(indices).cumsum(dtype=dtype), 0, 0)

    if len(offsets) != n + 1:
        # last geometries might be empty or missing
        offsets = np.pad(
            offsets,
            (0, n + 1 - len(offsets)),
            "constant",
            constant_values=offsets[-1],
        )
    return offsets


def _get_arrays_multipoint(arr, include_z, include_m):
    # explode/flatten the MultiPoints
    _, part_indices = get_parts(arr, return_index=True)
    # the offsets into the multipoint parts
    offsets = _indices_to_offsets(part_indices, len(arr))

    # only one array of coordinates
    coords = get_coordinates(arr, include_z=include_z, include_m=include_m)

    return coords, (offsets,)


def _get_arrays_linestring(arr, include_z, include_m):
    # the coords and offsets into the coordinates of the linestrings
    coords, indices = get_coordinates(
        arr, return_index=True, include_z=include_z, include_m=include_m
    )
    offsets = _indices_to_offsets(indices, len(arr))

    return coords, (offsets,)


def _get_arrays_multilinestring(arr, include_z, include_m):
    # explode/flatten the MultiLineStrings
    arr_flat, part_indices = get_parts(arr, return_index=True)
    # the offsets into the multilinestring parts
    offsets2 = _indices_to_offsets(part_indices, len(arr))

    # the coords and offsets into the coordinates of the linestrings
    coords, indices = get_coordinates(
        arr_flat, return_index=True, include_z=include_z, include_m=include_m
    )
    offsets1 = _indices_to_offsets(indices, len(arr_flat))

    return coords, (offsets1, offsets2)


def _get_arrays_polygon(arr, include_z, include_m):
    # explode/flatten the Polygons into Rings
    arr_flat, ring_indices = get_rings(arr, return_index=True)
    # the offsets into the exterior/interior rings of the multipolygon parts
    offsets2 = _indices_to_offsets(ring_indices, len(arr))

    # the coords and offsets into the coordinates of the rings
    coords, indices = get_coordinates(
        arr_flat, return_index=True, include_z=include_z, include_m=include_m
    )
    offsets1 = _indices_to_offsets(indices, len(arr_flat))

    return coords, (offsets1, offsets2)


def _get_arrays_multipolygon(arr, include_z, include_m):
    # explode/flatten the MultiPolygons
    arr_flat, part_indices = get_parts(arr, return_index=True)
    # the offsets into the multipolygon parts
    offsets3 = _indices_to_offsets(part_indices, len(arr))

    # explode/flatten the Polygons into Rings
    arr_flat2, ring_indices = get_rings(arr_flat, return_index=True)
    # the offsets into the exterior/interior rings of the multipolygon parts
    offsets2 = _indices_to_offsets(ring_indices, len(arr_flat))

    # the coords and offsets into the coordinates of the rings
    coords, indices = get_coordinates(
        arr_flat2, return_index=True, include_z=include_z, include_m=include_m
    )
    offsets1 = _indices_to_offsets(indices, len(arr_flat2))

    return coords, (offsets1, offsets2, offsets3)


def to_ragged_array(geometries, include_z=None, include_m=None):
    """Convert geometries to a ragged array representation.

    This function converts an array of geometries to a ragged array
    (i.e. irregular array of arrays) of coordinates, represented in memory
    using a single contiguous array of the coordinates, and
    up to 3 offset arrays that keep track where each sub-array
    starts and ends.

    This follows the in-memory layout of the variable size list arrays defined
    by Apache Arrow, as specified for geometries by the GeoArrow project:
    https://github.com/geoarrow/geoarrow.

    Parameters
    ----------
    geometries : array_like
        Array of geometries (1-dimensional).
    include_z, include_m : bool, default None
        If both are False, return XY (2D) geometries.
        If both are True, return XYZM (4D) geometries.
        If either is True, return either XYZ or XYM (3D) geometries.
        If a geometry has no Z or M dimension, extra coordinate data will be NaN.
        By default, will infer the dimensionality from the
        input geometries. Note that this inference can be unreliable with
        empty geometries (for a guaranteed result, it is recommended to
        specify the keyword).

        .. versionadded:: 2.1.0
            The ``include_m`` parameter was added to support XYM (3D) and
            XYZM (4D) geometries available with GEOS 3.12.0 or later.
            With older GEOS versions, M dimension coordinates will be NaN.

    Returns
    -------
    tuple of (geometry_type, coords, offsets)
        geometry_type : GeometryType
            The type of the input geometries (required information for
            roundtrip).
        coords : np.ndarray
            Contiguous array of shape (n, 2), (n, 3), or (n, 4) of all
            coordinates of all input geometries.
        offsets: tuple of np.ndarray
            Offset arrays that make it possible to reconstruct the
            geometries from the flat coordinates array. The number of
            offset arrays depends on the geometry type. See
            https://github.com/geoarrow/geoarrow/blob/main/format.md
            for details.
            Uses int32 dtype offsets if possible, otherwise int64 for
            large inputs (coordinates > 32GB).

    Notes
    -----
    Mixed singular and multi geometry types of the same basic type are
    allowed (e.g., Point and MultiPoint) and all singular types will be
    treated as multi types.
    GeometryCollections and other mixed geometry types are not supported.

    See Also
    --------
    from_ragged_array

    Examples
    --------
    Consider a Polygon with one hole (interior ring):

    >>> import shapely
    >>> from shapely import Polygon
    >>> polygon = Polygon(
    ...     [(0, 0), (10, 0), (10, 10), (0, 10)],
    ...     holes=[[(2, 2), (3, 2), (2, 3)]]
    ... )
    >>> polygon
    <POLYGON ((0 0, 10 0, 10 10, 0 10, 0 0), (2 2, 3 2, 2 3, 2 2))>

    This polygon can be thought of as a list of rings (first ring is the
    exterior ring, subsequent rings are the interior rings), and each ring
    as a list of coordinate pairs. This is very similar to how GeoJSON
    represents the coordinates:

    >>> import json
    >>> json.loads(shapely.to_geojson(polygon))["coordinates"]
    [[[0.0, 0.0], [10.0, 0.0], [10.0, 10.0], [0.0, 10.0], [0.0, 0.0]],
     [[2.0, 2.0], [3.0, 2.0], [2.0, 3.0], [2.0, 2.0]]]

    This function will return a similar list of lists of lists, but
    using a single contiguous array of coordinates, and multiple arrays of
    offsets:

    >>> geometry_type, coords, offsets = shapely.to_ragged_array([polygon])
    >>> geometry_type
    <GeometryType.POLYGON: 3>
    >>> coords
    array([[ 0.,  0.],
           [10.,  0.],
           [10., 10.],
           [ 0., 10.],
           [ 0.,  0.],
           [ 2.,  2.],
           [ 3.,  2.],
           [ 2.,  3.],
           [ 2.,  2.]])

    >>> offsets
    (array([0, 5, 9], dtype=int32), array([0, 2], dtype=int32))

    As an example how to interpret the offsets: the i-th ring in the
    coordinates is represented by ``offsets[0][i]`` to ``offsets[0][i+1]``:

    >>> exterior_ring_start, exterior_ring_end = offsets[0][0], offsets[0][1]
    >>> coords[exterior_ring_start:exterior_ring_end]
    array([[ 0.,  0.],
           [10.,  0.],
           [10., 10.],
           [ 0., 10.],
           [ 0.,  0.]])

    """
    from shapely import has_m, has_z  # avoid circular import

    geometries = np.asarray(geometries)
    if include_z is None:
        include_z = np.any(has_z(geometries[~is_empty(geometries)]))
    if include_m is None:
        if _geos_ge_312:
            include_m = np.any(has_m(geometries[~is_empty(geometries)]))
        else:
            include_m = False

    geom_types = np.unique(get_type_id(geometries))
    # ignore missing values (type of -1)
    geom_types = geom_types[geom_types >= 0]

    get_arrays_args = geometries, include_z, include_m
    if len(geom_types) == 1:
        typ = GeometryType(geom_types[0])
        if typ == GeometryType.POINT:
            coords, offsets = _get_arrays_point(*get_arrays_args)
        elif typ == GeometryType.LINESTRING:
            coords, offsets = _get_arrays_linestring(*get_arrays_args)
        elif typ == GeometryType.POLYGON:
            coords, offsets = _get_arrays_polygon(*get_arrays_args)
        elif typ == GeometryType.MULTIPOINT:
            coords, offsets = _get_arrays_multipoint(*get_arrays_args)
        elif typ == GeometryType.MULTILINESTRING:
            coords, offsets = _get_arrays_multilinestring(*get_arrays_args)
        elif typ == GeometryType.MULTIPOLYGON:
            coords, offsets = _get_arrays_multipolygon(*get_arrays_args)
        else:
            raise ValueError(f"Geometry type {typ.name} is not supported")

    elif len(geom_types) == 2:
        if set(geom_types) == {GeometryType.POINT, GeometryType.MULTIPOINT}:
            typ = GeometryType.MULTIPOINT
            coords, offsets = _get_arrays_multipoint(*get_arrays_args)
        elif set(geom_types) == {GeometryType.LINESTRING, GeometryType.MULTILINESTRING}:
            typ = GeometryType.MULTILINESTRING
            coords, offsets = _get_arrays_multilinestring(*get_arrays_args)
        elif set(geom_types) == {GeometryType.POLYGON, GeometryType.MULTIPOLYGON}:
            typ = GeometryType.MULTIPOLYGON
            coords, offsets = _get_arrays_multipolygon(*get_arrays_args)
        else:
            raise ValueError(
                "Geometry type combination is not supported "
                f"({[GeometryType(t).name for t in geom_types]})"
            )
    else:
        raise ValueError(
            "Geometry type combination is not supported "
            f"({[GeometryType(t).name for t in geom_types]})"
        )

    return typ, coords, offsets


# # coords/offset arrays -> GEOS (from_ragged_array)


def _point_from_flatcoords(coords):
    result = creation.points(coords)

    # Older versions of GEOS (<= 3.9) don't automatically convert NaNs
    # to empty points -> do manually
    empties = np.isnan(coords).all(axis=1)
    if empties.any():
        result[empties] = creation.empty(1, geom_type=GeometryType.POINT).item()

    return result


def _multipoint_from_flatcoords(coords, offsets):
    # recreate points
    if len(offsets):
        coords = coords[offsets[0] :]
    points = creation.points(coords)

    # recreate multipoints
    multipoint_parts = np.diff(offsets)
    multipoint_indices = np.repeat(np.arange(len(multipoint_parts)), multipoint_parts)

    result = np.empty(len(offsets) - 1, dtype=object)
    result = creation.multipoints(points, indices=multipoint_indices, out=result)
    result[multipoint_parts == 0] = creation.empty(
        1, geom_type=GeometryType.MULTIPOINT
    ).item()

    return result


def _linestring_from_flatcoords(coords, offsets):
    # recreate linestrings
    if len(offsets):
        coords = coords[offsets[0] :]
    linestring_n = np.diff(offsets)
    linestring_indices = np.repeat(np.arange(len(linestring_n)), linestring_n)

    result = np.empty(len(offsets) - 1, dtype=object)
    result = creation.linestrings(coords, indices=linestring_indices, out=result)
    result[linestring_n == 0] = creation.empty(
        1, geom_type=GeometryType.LINESTRING
    ).item()
    return result


def _multilinestrings_from_flatcoords(coords, offsets1, offsets2):
    # ensure correct dtypes
    offsets1 = np.asarray(offsets1, dtype="int64")
    offsets2 = np.asarray(offsets2, dtype="int64")

    # recreate multilinestrings
    result = _from_ragged_array_multi_linear(
        coords, offsets1, offsets2, geometry_type=GeometryType.MULTILINESTRING
    )
    return result


def _polygon_from_flatcoords(coords, offsets1, offsets2):
    # ensure correct dtypes
    offsets1 = np.asarray(offsets1, dtype="int64")
    offsets2 = np.asarray(offsets2, dtype="int64")

    # recreate polygons
    result = _from_ragged_array_multi_linear(
        coords, offsets1, offsets2, geometry_type=GeometryType.POLYGON
    )
    return result


def _multipolygons_from_flatcoords(coords, offsets1, offsets2, offsets3):
    # ensure correct dtypes
    offsets1 = np.asarray(offsets1, dtype="int64")
    offsets2 = np.asarray(offsets2, dtype="int64")
    offsets3 = np.asarray(offsets3, dtype="int64")

    # recreate multipolygons
    result = _from_ragged_array_multipolygon(coords, offsets1, offsets2, offsets3)
    return result


def from_ragged_array(geometry_type, coords, offsets=None):
    """Create geometries from a contiguous array of coordinates and offset arrays.

    This function creates geometries from the ragged array representation
    as returned by ``to_ragged_array``.

    This follows the in-memory layout of the variable size list arrays defined
    by Apache Arrow, as specified for geometries by the GeoArrow project:
    https://github.com/geoarrow/geoarrow.

    See :func:`to_ragged_array` for more details.

    Parameters
    ----------
    geometry_type : GeometryType
        The type of geometry to create.
    coords : np.ndarray
        Contiguous array of shape (n, 2) or (n, 3) of all coordinates
        for the geometries.
    offsets: tuple of np.ndarray
        Offset arrays that allow to reconstruct the geometries based on the
        flat coordinates array. The number of offset arrays depends on the
        geometry type. See
        https://github.com/geoarrow/geoarrow/blob/main/format.md for details.

    Returns
    -------
    np.ndarray
        Array of geometries (1-dimensional).

    See Also
    --------
    to_ragged_array

    """
    coords = np.asarray(coords, dtype="float64")

    if geometry_type == GeometryType.POINT:
        if not (offsets is None or len(offsets) == 0):
            raise ValueError("'offsets' should not be provided for geometry type Point")
        return _point_from_flatcoords(coords)

    if offsets is None:
        raise ValueError(
            "'offsets' must be provided for any geometry type except for Point"
        )

    if geometry_type == GeometryType.LINESTRING:
        return _linestring_from_flatcoords(coords, *offsets)
    elif geometry_type == GeometryType.POLYGON:
        return _polygon_from_flatcoords(coords, *offsets)
    elif geometry_type == GeometryType.MULTIPOINT:
        return _multipoint_from_flatcoords(coords, *offsets)
    elif geometry_type == GeometryType.MULTILINESTRING:
        return _multilinestrings_from_flatcoords(coords, *offsets)
    elif geometry_type == GeometryType.MULTIPOLYGON:
        return _multipolygons_from_flatcoords(coords, *offsets)
    else:
        raise ValueError(f"Geometry type {geometry_type.name} is not supported")