1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552
|
"""Methods that yield new objects not derived from set-theoretic analysis."""
import numpy as np
from shapely import lib
from shapely._enum import ParamEnum
from shapely.algorithms._oriented_envelope import _oriented_envelope_min_area_vectorized
from shapely.algorithms.cga import _orient_polygons_vectorized
from shapely.decorators import (
deprecate_positional,
multithreading_enabled,
requires_geos,
)
from shapely.errors import UnsupportedGEOSVersionError
__all__ = [
"BufferCapStyle",
"BufferJoinStyle",
"boundary",
"buffer",
"build_area",
"centroid",
"clip_by_rect",
"concave_hull",
"constrained_delaunay_triangles",
"convex_hull",
"delaunay_triangles",
"envelope",
"extract_unique_points",
"make_valid",
"maximum_inscribed_circle",
"minimum_bounding_circle",
"minimum_clearance_line",
"minimum_rotated_rectangle",
"node",
"normalize",
"offset_curve",
"orient_polygons",
"oriented_envelope",
"point_on_surface",
"polygonize",
"polygonize_full",
"remove_repeated_points",
"reverse",
"segmentize",
"simplify",
"snap",
"voronoi_polygons",
]
class BufferCapStyle(ParamEnum):
"""Enumeration of buffer cap styles.
Attributes
----------
round : int
Represents a round cap style.
flat : int
Represents a flat cap style.
square : int
Represents a square cap style.
"""
round = 1
flat = 2
square = 3
class BufferJoinStyle(ParamEnum):
"""Enumeration of buffer join styles.
Attributes
----------
round : int
Specifies a round join style.
mitre : int
Specifies a mitre join style.
bevel : int
Specifies a bevel join style.
"""
round = 1
mitre = 2
bevel = 3
@multithreading_enabled
def boundary(geometry, **kwargs):
"""Return the topological boundary of a geometry.
This function will return None for geometrycollections.
Parameters
----------
geometry : Geometry or array_like
Geometry for which to return the boundary.
**kwargs
See :ref:`NumPy ufunc docs <ufuncs.kwargs>` for other keyword arguments.
Examples
--------
>>> import shapely
>>> from shapely import GeometryCollection, LinearRing, LineString, \
MultiLineString, MultiPoint, Point, Polygon
>>> shapely.boundary(Point(0, 0))
<GEOMETRYCOLLECTION EMPTY>
>>> shapely.boundary(LineString([(0, 0), (1, 1), (1, 2)]))
<MULTIPOINT ((0 0), (1 2))>
>>> shapely.boundary(LinearRing([(0, 0), (1, 0), (1, 1), (0, 1), (0, 0)]))
<MULTIPOINT EMPTY>
>>> shapely.boundary(Polygon([(0, 0), (1, 0), (1, 1), (0, 1), (0, 0)]))
<LINESTRING (0 0, 1 0, 1 1, 0 1, 0 0)>
>>> shapely.boundary(MultiPoint([(0, 0), (1, 2)]))
<GEOMETRYCOLLECTION EMPTY>
>>> shapely.boundary(MultiLineString([[(0, 0), (1, 1)], [(0, 1), (1, 0)]]))
<MULTIPOINT ((0 0), (0 1), (1 0), (1 1))>
>>> shapely.boundary(GeometryCollection([Point(0, 0)])) is None
True
"""
return lib.boundary(geometry, **kwargs)
# Note: future plan is to change this signature over a few releases:
# shapely 2.0:
# buffer(geometry, distance, quad_segs=8, ...)
# shapely 2.1: shows deprecation warning about positional 'quad_segs', etc.
# same signature as 2.0
# shapely 2.2(?): enforce keyword-only arguments after 'distance'
# buffer(geometry, distance, *, quad_segs=8, ...)
@deprecate_positional(
["quad_segs", "cap_style", "join_style", "mitre_limit", "single_sided"],
category=DeprecationWarning,
)
@multithreading_enabled
def buffer(
geometry,
distance,
quad_segs=8,
cap_style="round",
join_style="round",
mitre_limit=5.0,
single_sided=False,
**kwargs,
):
"""Compute the buffer of a geometry for positive and negative buffer distance.
The buffer of a geometry is defined as the Minkowski sum (or difference,
for negative distance) of the geometry with a circle with radius equal
to the absolute value of the buffer distance.
The buffer operation always returns a polygonal result. The negative
or zero-distance buffer of lines and points is always empty.
Parameters
----------
geometry : Geometry or array_like
Geometry or geometries for which to compute the buffer.
distance : float or array_like
Specifies the circle radius in the Minkowski sum (or difference).
quad_segs : int, default 8
Specifies the number of linear segments in a quarter circle in the
approximation of circular arcs.
cap_style : shapely.BufferCapStyle or {'round', 'square', 'flat'}, default 'round'
Specifies the shape of buffered line endings. BufferCapStyle.round ('round')
results in circular line endings (see ``quad_segs``). Both BufferCapStyle.square
('square') and BufferCapStyle.flat ('flat') result in rectangular line endings,
only BufferCapStyle.flat ('flat') will end at the original vertex,
while BufferCapStyle.square ('square') involves adding the buffer width.
join_style : shapely.BufferJoinStyle or {'round', 'mitre', 'bevel'}, default 'round'
Specifies the shape of buffered line midpoints. BufferJoinStyle.round ('round')
results in rounded shapes. BufferJoinStyle.bevel ('bevel') results in a beveled
edge that touches the original vertex. BufferJoinStyle.mitre ('mitre') results
in a single vertex that is beveled depending on the ``mitre_limit`` parameter.
mitre_limit : float, default 5.0
Crops of 'mitre'-style joins if the point is displaced from the
buffered vertex by more than this limit.
single_sided : bool, default False
Only buffer at one side of the geometry.
**kwargs
See :ref:`NumPy ufunc docs <ufuncs.kwargs>` for other keyword arguments.
Notes
-----
.. deprecated:: 2.1.0
A deprecation warning is shown if ``quad_segs``, ``cap_style``,
``join_style``, ``mitre_limit`` or ``single_sided`` are
specified as positional arguments. In a future release, these will
need to be specified as keyword arguments.
Examples
--------
>>> import shapely
>>> from shapely import LineString, Point, Polygon, BufferCapStyle, BufferJoinStyle
>>> shapely.buffer(Point(10, 10), 2, quad_segs=1)
<POLYGON ((12 10, 10 8, 8 10, 10 12, 12 10))>
>>> shapely.buffer(Point(10, 10), 2, quad_segs=2)
<POLYGON ((12 10, 11.414 8.586, 10 8, 8.586 8.586, 8 10, 8.5...>
>>> shapely.buffer(Point(10, 10), -2, quad_segs=1)
<POLYGON EMPTY>
>>> line = LineString([(10, 10), (20, 10)])
>>> shapely.buffer(line, 2, cap_style="square")
<POLYGON ((20 12, 22 12, 22 8, 10 8, 8 8, 8 12, 20 12))>
>>> shapely.buffer(line, 2, cap_style="flat")
<POLYGON ((20 12, 20 8, 10 8, 10 12, 20 12))>
>>> shapely.buffer(line, 2, single_sided=True, cap_style="flat")
<POLYGON ((20 10, 10 10, 10 12, 20 12, 20 10))>
>>> line2 = LineString([(10, 10), (20, 10), (20, 20)])
>>> shapely.buffer(line2, 2, cap_style="flat", join_style="bevel")
<POLYGON ((18 12, 18 20, 22 20, 22 10, 20 8, 10 8, 10 12, 18 12))>
>>> shapely.buffer(line2, 2, cap_style="flat", join_style="mitre")
<POLYGON ((18 12, 18 20, 22 20, 22 8, 10 8, 10 12, 18 12))>
>>> shapely.buffer(line2, 2, cap_style="flat", join_style="mitre", mitre_limit=1)
<POLYGON ((18 12, 18 20, 22 20, 22 9.172, 20.828 8, 10 8, 10 12, 18 12))>
>>> square = Polygon([(0, 0), (10, 0), (10, 10), (0, 10), (0, 0)])
>>> shapely.buffer(square, 2, join_style="mitre")
<POLYGON ((-2 -2, -2 12, 12 12, 12 -2, -2 -2))>
>>> shapely.buffer(square, -2, join_style="mitre")
<POLYGON ((2 2, 2 8, 8 8, 8 2, 2 2))>
>>> shapely.buffer(square, -5, join_style="mitre")
<POLYGON EMPTY>
>>> shapely.buffer(line, float("nan")) is None
True
"""
if isinstance(cap_style, str):
cap_style = BufferCapStyle.get_value(cap_style)
if isinstance(join_style, str):
join_style = BufferJoinStyle.get_value(join_style)
if not np.isscalar(quad_segs):
raise TypeError("quad_segs only accepts scalar values")
if not np.isscalar(cap_style):
raise TypeError("cap_style only accepts scalar values")
if not np.isscalar(join_style):
raise TypeError("join_style only accepts scalar values")
if not np.isscalar(mitre_limit):
raise TypeError("mitre_limit only accepts scalar values")
if not np.isscalar(single_sided):
raise TypeError("single_sided only accepts scalar values")
return lib.buffer(
geometry,
distance,
np.intc(quad_segs),
np.intc(cap_style),
np.intc(join_style),
mitre_limit,
np.bool_(single_sided),
**kwargs,
)
# Note: future plan is to change this signature over a few releases:
# shapely 2.0:
# offset_curve(geometry, distance, quad_segs=8, ...)
# shapely 2.1: shows deprecation warning about positional 'quad_segs', etc.
# same signature as 2.0
# shapely 2.2(?): enforce keyword-only arguments after 'distance'
# offset_curve(geometry, distance, *, quad_segs=8, ...)
@deprecate_positional(
["quad_segs", "join_style", "mitre_limit"], category=DeprecationWarning
)
@multithreading_enabled
def offset_curve(
geometry, distance, quad_segs=8, join_style="round", mitre_limit=5.0, **kwargs
):
"""Return a (Multi)LineString at a distance from the object.
For positive distance the offset will be at the left side of the input
line. For a negative distance it will be at the right side. In general,
this function tries to preserve the direction of the input.
Note: the behaviour regarding orientation of the resulting line depends
on the GEOS version. With GEOS < 3.11, the line retains the same
direction for a left offset (positive distance) or has opposite direction
for a right offset (negative distance), and this behaviour was documented
as such in previous Shapely versions. Starting with GEOS 3.11, the
function tries to preserve the orientation of the original line.
Parameters
----------
geometry : Geometry or array_like
Geometry or geometries for which to compute the offset.
distance : float or array_like
Specifies the offset distance from the input geometry. Negative
for right side offset, positive for left side offset.
quad_segs : int, default 8
Specifies the number of linear segments in a quarter circle in the
approximation of circular arcs.
join_style : {'round', 'bevel', 'mitre'}, default 'round'
Specifies the shape of outside corners. 'round' results in
rounded shapes. 'bevel' results in a beveled edge that touches the
original vertex. 'mitre' results in a single vertex that is beveled
depending on the ``mitre_limit`` parameter.
mitre_limit : float, default 5.0
Crops of 'mitre'-style joins if the point is displaced from the
buffered vertex by more than this limit.
**kwargs
See :ref:`NumPy ufunc docs <ufuncs.kwargs>` for other keyword arguments.
Notes
-----
.. deprecated:: 2.1.0
A deprecation warning is shown if ``quad_segs``, ``join_style`` or
``mitre_limit`` are specified as positional arguments. In a future
release, these will need to be specified as keyword arguments.
Examples
--------
>>> import shapely
>>> from shapely import LineString
>>> line = LineString([(0, 0), (0, 2)])
>>> shapely.offset_curve(line, 2)
<LINESTRING (-2 0, -2 2)>
>>> shapely.offset_curve(line, -2)
<LINESTRING (2 0, 2 2)>
"""
if isinstance(join_style, str):
join_style = BufferJoinStyle.get_value(join_style)
if not np.isscalar(quad_segs):
raise TypeError("quad_segs only accepts scalar values")
if not np.isscalar(join_style):
raise TypeError("join_style only accepts scalar values")
if not np.isscalar(mitre_limit):
raise TypeError("mitre_limit only accepts scalar values")
return lib.offset_curve(
geometry,
distance,
np.intc(quad_segs),
np.intc(join_style),
np.double(mitre_limit),
**kwargs,
)
@multithreading_enabled
def centroid(geometry, **kwargs):
"""Compute the geometric center (center-of-mass) of a geometry.
For multipoints this is computed as the mean of the input coordinates.
For multilinestrings the centroid is weighted by the length of each
line segment. For multipolygons the centroid is weighted by the area of
each polygon.
Parameters
----------
geometry : Geometry or array_like
Geometry or geometries for which to compute the centroid.
**kwargs
See :ref:`NumPy ufunc docs <ufuncs.kwargs>` for other keyword arguments.
Examples
--------
>>> import shapely
>>> from shapely import LineString, MultiPoint, Polygon
>>> shapely.centroid(Polygon([(0, 0), (10, 0), (10, 10), (0, 10), (0, 0)]))
<POINT (5 5)>
>>> shapely.centroid(LineString([(0, 0), (2, 2), (10, 10)]))
<POINT (5 5)>
>>> shapely.centroid(MultiPoint([(0, 0), (10, 10)]))
<POINT (5 5)>
>>> shapely.centroid(Polygon())
<POINT EMPTY>
"""
return lib.centroid(geometry, **kwargs)
@multithreading_enabled
def clip_by_rect(geometry, xmin, ymin, xmax, ymax, **kwargs):
"""Return the portion of a geometry within a rectangle.
The geometry is clipped in a fast but possibly dirty way. The output is
not guaranteed to be valid. No exceptions will be raised for topological
errors.
Note: empty geometries or geometries that do not overlap with the
specified bounds will result in GEOMETRYCOLLECTION EMPTY.
Parameters
----------
geometry : Geometry or array_like
The geometry to be clipped.
xmin : float
Minimum x value of the rectangle.
ymin : float
Minimum y value of the rectangle.
xmax : float
Maximum x value of the rectangle.
ymax : float
Maximum y value of the rectangle.
**kwargs
See :ref:`NumPy ufunc docs <ufuncs.kwargs>` for other keyword arguments.
Examples
--------
>>> import shapely
>>> from shapely import LineString, Polygon
>>> line = LineString([(0, 0), (10, 10)])
>>> shapely.clip_by_rect(line, 0., 0., 1., 1.)
<LINESTRING (0 0, 1 1)>
>>> polygon = Polygon([(0, 0), (10, 0), (10, 10), (0, 10), (0, 0)])
>>> shapely.clip_by_rect(polygon, 0., 0., 1., 1.)
<POLYGON ((0 0, 0 1, 1 1, 1 0, 0 0))>
"""
if not all(np.isscalar(val) for val in [xmin, ymin, xmax, ymax]):
raise TypeError("xmin/ymin/xmax/ymax only accepts scalar values")
return lib.clip_by_rect(
geometry,
np.double(xmin),
np.double(ymin),
np.double(xmax),
np.double(ymax),
**kwargs,
)
@requires_geos("3.11.0")
@multithreading_enabled
def concave_hull(geometry, ratio=0.0, allow_holes=False, **kwargs):
"""Compute a concave geometry that encloses an input geometry.
Parameters
----------
geometry : Geometry or array_like
Geometry or geometries for which to compute the concave hull.
ratio : float, default 0.0
Number in the range [0, 1]. Higher numbers will include fewer vertices
in the hull.
allow_holes : bool, default False
If set to True, the concave hull may have holes.
**kwargs
See :ref:`NumPy ufunc docs <ufuncs.kwargs>` for other keyword arguments.
Examples
--------
>>> import shapely
>>> from shapely import MultiPoint, Polygon
>>> multi_point = MultiPoint([(0, 0), (0, 3), (1, 1), (3, 0), (3, 3)])
>>> shapely.concave_hull(multi_point, ratio=0.1)
<POLYGON ((0 0, 0 3, 1 1, 3 3, 3 0, 0 0))>
>>> shapely.concave_hull(multi_point, ratio=1.0)
<POLYGON ((0 0, 0 3, 3 3, 3 0, 0 0))>
>>> shapely.concave_hull(Polygon())
<POLYGON EMPTY>
"""
if not np.isscalar(ratio):
raise TypeError("ratio must be scalar")
if not np.isscalar(allow_holes):
raise TypeError("allow_holes must be scalar")
return lib.concave_hull(geometry, np.double(ratio), np.bool_(allow_holes), **kwargs)
@multithreading_enabled
def convex_hull(geometry, **kwargs):
"""Compute the minimum convex geometry that encloses an input geometry.
Parameters
----------
geometry : Geometry or array_like
Geometry or geometries for which to compute the convex hull.
**kwargs
See :ref:`NumPy ufunc docs <ufuncs.kwargs>` for other keyword arguments.
Examples
--------
>>> import shapely
>>> from shapely import MultiPoint, Polygon
>>> shapely.convex_hull(MultiPoint([(0, 0), (10, 0), (10, 10)]))
<POLYGON ((0 0, 10 10, 10 0, 0 0))>
>>> shapely.convex_hull(Polygon())
<GEOMETRYCOLLECTION EMPTY>
"""
return lib.convex_hull(geometry, **kwargs)
@multithreading_enabled
def delaunay_triangles(geometry, tolerance=0.0, only_edges=False, **kwargs):
"""Compute a Delaunay triangulation around the vertices of an input geometry.
The output is a geometrycollection containing polygons (default)
or linestrings (see ``only_edges``). Returns an empty geometry for input
geometries that contain less than 3 vertices.
Parameters
----------
geometry : Geometry or array_like
Geometry or geometries for which to compute the Delaunay triangulation.
tolerance : float or array_like, default 0.0
Snap input vertices together if their distance is less than this value.
only_edges : bool or array_like, default False
If set to True, the triangulation will return a collection of
linestrings instead of polygons.
**kwargs
See :ref:`NumPy ufunc docs <ufuncs.kwargs>` for other keyword arguments.
Returns
-------
GeometryCollection or array of GeometryCollections
See Also
--------
constrained_delaunay_triangles
Examples
--------
>>> import shapely
>>> from shapely import GeometryCollection, LineString, MultiPoint, Polygon
>>> points = MultiPoint([(50, 30), (60, 30), (100, 100)])
>>> shapely.delaunay_triangles(points).normalize()
<GEOMETRYCOLLECTION (POLYGON ((50 30, 100 100, 60 30, 50 30)))>
>>> shapely.delaunay_triangles(points, only_edges=True)
<MULTILINESTRING ((50 30, 100 100), (50 30, 60 30), ...>
>>> shapely.delaunay_triangles(
... MultiPoint([(50, 30), (51, 30), (60, 30), (100, 100)]),
... tolerance=2
... ).normalize()
<GEOMETRYCOLLECTION (POLYGON ((50 30, 100 100, 60 30, 50 30)))>
>>> shapely.delaunay_triangles(Polygon([(50, 30), (60, 30), (100, 100), (50, 30)]))\
.normalize()
<GEOMETRYCOLLECTION (POLYGON ((50 30, 100 100, 60 30, 50 30)))>
>>> shapely.delaunay_triangles(LineString([(50, 30), (60, 30), (100, 100)]))\
.normalize()
<GEOMETRYCOLLECTION (POLYGON ((50 30, 100 100, 60 30, 50 30)))>
>>> shapely.delaunay_triangles(GeometryCollection([]))
<GEOMETRYCOLLECTION EMPTY>
"""
return lib.delaunay_triangles(geometry, tolerance, only_edges, **kwargs)
@requires_geos("3.10.0")
@multithreading_enabled
def constrained_delaunay_triangles(geometry, **kwargs):
"""Compute the constrained Delaunay triangulation of polygons.
A constrained Delaunay triangulation requires the edges of the input
polygon(s) to be in the set of resulting triangle edges. An unconstrained
delaunay triangulation only triangulates based on the vertices, hence
triangle edges could cross polygon boundaries.
.. versionadded:: 2.1.0
Parameters
----------
geometry : Geometry or array_like
**kwargs
For other keyword-only arguments, see the
`NumPy ufunc docs <https://numpy.org/doc/stable/reference/ufuncs.html#ufuncs-kwargs>`_.
Returns
-------
GeometryCollection or array of GeometryCollections
* GeometryCollection of polygons, given polygonal input
* Empty GeometryCollection, given non-polygonal input
See Also
--------
delaunay_triangles
Examples
--------
>>> import shapely
>>> from shapely import MultiPoint, MultiPolygon, Polygon
>>> shapely.constrained_delaunay_triangles(Polygon([(10, 10), (20, 40), (90, 90), (90, 10), (10, 10)]))
<GEOMETRYCOLLECTION (POLYGON ((90 10, 20 40, 90 90, 90 10)), POLYGON ((20 40...>
>>> shapely.constrained_delaunay_triangles(Polygon())
<GEOMETRYCOLLECTION EMPTY>
>>> shapely.constrained_delaunay_triangles(MultiPolygon([Polygon(((50, 30), (60, 30), (100, 100), (50, 30))), Polygon(((10, 10), (20, 40), (90, 90), (90, 10), (10, 10)))]))
<GEOMETRYCOLLECTION (POLYGON ((50 30, 100 100, 60 30, 50 30)), POLYGON ((90 ...>
>>> shapely.constrained_delaunay_triangles(MultiPolygon())
<GEOMETRYCOLLECTION EMPTY>
>>> shapely.constrained_delaunay_triangles(MultiPoint([(50, 30), (51, 30), (60, 30), (100, 100)]))
<GEOMETRYCOLLECTION EMPTY>
""" # noqa: E501
return lib.constrained_delaunay_triangles(geometry, **kwargs)
@multithreading_enabled
def envelope(geometry, **kwargs):
"""Compute the minimum bounding box that encloses an input geometry.
Parameters
----------
geometry : Geometry or array_like
Geometry or geometries for which to compute the envelope.
**kwargs
See :ref:`NumPy ufunc docs <ufuncs.kwargs>` for other keyword arguments.
Examples
--------
>>> import shapely
>>> from shapely import GeometryCollection, LineString, MultiPoint, Point
>>> shapely.envelope(LineString([(0, 0), (10, 10)]))
<POLYGON ((0 0, 10 0, 10 10, 0 10, 0 0))>
>>> shapely.envelope(MultiPoint([(0, 0), (10, 10)]))
<POLYGON ((0 0, 10 0, 10 10, 0 10, 0 0))>
>>> shapely.envelope(Point(0, 0))
<POINT (0 0)>
>>> shapely.envelope(GeometryCollection([]))
<POINT EMPTY>
"""
return lib.envelope(geometry, **kwargs)
@multithreading_enabled
def extract_unique_points(geometry, **kwargs):
"""Return all distinct vertices of an input geometry as a multipoint.
Note that only 2 dimensions of the vertices are considered when testing
for equality.
Parameters
----------
geometry : Geometry or array_like
Geometry or geometries for which to extract unique points.
**kwargs
See :ref:`NumPy ufunc docs <ufuncs.kwargs>` for other keyword arguments.
Examples
--------
>>> import shapely
>>> from shapely import LineString, MultiPoint, Point, Polygon
>>> shapely.extract_unique_points(Point(0, 0))
<MULTIPOINT ((0 0))>
>>> shapely.extract_unique_points(LineString([(0, 0), (1, 1), (1, 1)]))
<MULTIPOINT ((0 0), (1 1))>
>>> shapely.extract_unique_points(Polygon([(0, 0), (1, 0), (1, 1), (0, 1), (0, 0)]))
<MULTIPOINT ((0 0), (1 0), (1 1), (0 1))>
>>> shapely.extract_unique_points(MultiPoint([(0, 0), (1, 1), (0, 0)]))
<MULTIPOINT ((0 0), (1 1))>
>>> shapely.extract_unique_points(LineString())
<MULTIPOINT EMPTY>
"""
return lib.extract_unique_points(geometry, **kwargs)
@multithreading_enabled
def build_area(geometry, **kwargs):
"""Create an areal geometry formed by the constituent linework of given geometry.
Equivalent of the PostGIS ST_BuildArea() function.
Parameters
----------
geometry : Geometry or array_like
Geometry or geometries for which to build an area.
**kwargs
See :ref:`NumPy ufunc docs <ufuncs.kwargs>` for other keyword arguments.
Examples
--------
>>> import shapely
>>> from shapely import GeometryCollection, Polygon
>>> polygon1 = Polygon([(0, 0), (3, 0), (3, 3), (0, 3), (0, 0)])
>>> polygon2 = Polygon([(1, 1), (1, 2), (2, 2), (1, 1)])
>>> shapely.build_area(GeometryCollection([polygon1, polygon2]))
<POLYGON ((0 0, 0 3, 3 3, 3 0, 0 0), (1 1, 2 2, 1 2, 1 1))>
"""
return lib.build_area(geometry, **kwargs)
@multithreading_enabled
def make_valid(geometry, *, method="linework", keep_collapsed=True, **kwargs):
"""Repair invalid geometries.
Two ``methods`` are available:
* the 'linework' algorithm tries to preserve every edge and vertex in the input. It
combines all rings into a set of noded lines and then extracts valid polygons from
that linework. An alternating even-odd strategy is used to assign areas as
interior or exterior. A disadvantage is that for some relatively simple invalid
geometries this produces rather complex results.
* the 'structure' algorithm tries to reason from the structure of the input to find
the 'correct' repair: exterior rings bound area, interior holes exclude area.
It first makes all rings valid, then shells are merged and holes are subtracted
from the shells to generate valid result. It assumes that holes and shells are
correctly categorized in the input geometry.
Example:
.. plot:: code/make_valid_methods.py
When using ``make_valid`` on a Polygon, the result can be a GeometryCollection. For
this example this is the case when the 'linework' ``method`` is used. LineStrings in
the result are drawn in red.
Parameters
----------
geometry : Geometry or array_like
Geometry or geometries to repair.
method : {'linework', 'structure'}, default 'linework'
Algorithm to use when repairing geometry. 'structure'
requires GEOS >= 3.10.
.. versionadded:: 2.1.0
keep_collapsed : bool, default True
For the 'structure' method, True will keep components that have collapsed into a
lower dimensionality. For example, a ring collapsing to a line, or a line
collapsing to a point. Must be True for the 'linework' method.
.. versionadded:: 2.1.0
**kwargs
See :ref:`NumPy ufunc docs <ufuncs.kwargs>` for other keyword arguments.
Examples
--------
>>> import shapely
>>> from shapely import Polygon
>>> polygon = Polygon([(0, 0), (1, 1), (1, 2), (1, 1), (0, 0)])
>>> shapely.is_valid(polygon)
False
>>> shapely.make_valid(polygon)
<MULTILINESTRING ((0 0, 1 1), (1 1, 1 2))>
>>> shapely.make_valid(polygon, method="structure", keep_collapsed=True)
<LINESTRING (0 0, 1 1, 1 2, 1 1, 0 0)>
>>> shapely.make_valid(polygon, method="structure", keep_collapsed=False)
<POLYGON EMPTY>
"""
if not np.isscalar(method):
raise TypeError("method only accepts scalar values")
if not np.isscalar(keep_collapsed):
raise TypeError("keep_collapsed only accepts scalar values")
if method == "linework":
if keep_collapsed is False:
raise ValueError(
"The 'linework' method does not support 'keep_collapsed=False'"
)
# The make_valid code can be removed once support for GEOS < 3.10 is dropped.
# In GEOS >= 3.10, make_valid just calls make_valid_with_params with
# method="linework" and keep_collapsed=True, so there is no advantage to keep
# both code paths in shapely on long term.
return lib.make_valid(geometry, **kwargs)
elif method == "structure":
if lib.geos_version < (3, 10, 0):
raise ValueError(
"The 'structure' method is only available in GEOS >= 3.10.0"
)
return lib.make_valid_with_params(
geometry, np.intc(1), np.bool_(keep_collapsed), **kwargs
)
else:
raise ValueError(f"Unknown method: {method}")
@multithreading_enabled
def minimum_clearance_line(geometry, **kwargs):
"""Return a LineString whose endpoints define the minimum clearance.
A geometry's "minimum clearance" is the smallest distance by which a vertex
of the geometry could be moved to produce an invalid geometry.
If the geometry has no minimum clearance, an empty LineString will be
returned.
.. versionadded:: 2.1.0
Parameters
----------
geometry : Geometry or array_like
Geometry or geometries to determine the minimum clearance line for.
**kwargs
For other keyword-only arguments, see the
`NumPy ufunc docs <https://numpy.org/doc/stable/reference/ufuncs.html#ufuncs-kwargs>`_.
Examples
--------
>>> import shapely
>>> from shapely import Polygon
>>> poly = Polygon([(0, 0), (10, 0), (10, 10), (5, 5), (0, 10), (0, 0)])
>>> shapely.minimum_clearance_line(poly)
<LINESTRING (5 5, 5 0)>
See Also
--------
minimum_clearance
"""
return lib.minimum_clearance_line(geometry, **kwargs)
@multithreading_enabled
def normalize(geometry, **kwargs):
"""Convert Geometry to strict normal form (or canonical form).
In :ref:`strict canonical form <canonical-form>`, the coordinates, rings of
a polygon and parts of multi geometries are ordered consistently. Typically
useful for testing purposes (for example in combination with
``equals_exact``).
Parameters
----------
geometry : Geometry or array_like
Geometry or geometries to normalize.
**kwargs
See :ref:`NumPy ufunc docs <ufuncs.kwargs>` for other keyword arguments.
Examples
--------
>>> import shapely
>>> from shapely import MultiLineString
>>> line = MultiLineString([[(0, 0), (1, 1)], [(2, 2), (3, 3)]])
>>> shapely.normalize(line)
<MULTILINESTRING ((2 2, 3 3), (0 0, 1 1))>
"""
return lib.normalize(geometry, **kwargs)
@multithreading_enabled
def point_on_surface(geometry, **kwargs):
"""Return a point that intersects an input geometry.
Parameters
----------
geometry : Geometry or array_like
Geometry or geometries for which to compute a point on the surface.
**kwargs
See :ref:`NumPy ufunc docs <ufuncs.kwargs>` for other keyword arguments.
Examples
--------
>>> import shapely
>>> from shapely import LineString, MultiPoint, Polygon
>>> shapely.point_on_surface(Polygon([(0, 0), (10, 0), (10, 10), (0, 10), (0, 0)]))
<POINT (5 5)>
>>> shapely.point_on_surface(LineString([(0, 0), (2, 2), (10, 10)]))
<POINT (2 2)>
>>> shapely.point_on_surface(MultiPoint([(0, 0), (10, 10)]))
<POINT (0 0)>
>>> shapely.point_on_surface(Polygon())
<POINT EMPTY>
"""
return lib.point_on_surface(geometry, **kwargs)
@multithreading_enabled
def node(geometry, **kwargs):
"""Return the fully noded version of the linear input as MultiLineString.
Given a linear input geometry, this function returns a new MultiLineString
in which no lines cross each other but only touch at and points. To
obtain this, all intersections between segments are computed and added
to the segments, and duplicate segments are removed.
Non-linear input (points) will result in an empty MultiLineString.
This function can for example be used to create a fully-noded linework
suitable to passed as input to ``polygonize``.
Parameters
----------
geometry : Geometry or array_like
Geometry or geometries for which to compute the noded version.
**kwargs
See :ref:`NumPy ufunc docs <ufuncs.kwargs>` for other keyword arguments.
Examples
--------
>>> import shapely
>>> from shapely import LineString, Point
>>> line = LineString([(0, 0), (1,1), (0, 1), (1, 0)])
>>> shapely.node(line)
<MULTILINESTRING ((0 0, 0.5 0.5), (0.5 0.5, 1 1, 0 1, 0.5 0.5), (0.5 0.5, 1 0))>
>>> shapely.node(Point(1, 1))
<MULTILINESTRING EMPTY>
"""
return lib.node(geometry, **kwargs)
def polygonize(geometries, **kwargs):
"""Create polygons formed from the linework of a set of Geometries.
Polygonizes an array of Geometries that contain linework which
represents the edges of a planar graph. Any type of Geometry may be
provided as input; only the constituent lines and rings will be used to
create the output polygons.
Lines or rings that when combined do not completely close a polygon
will result in an empty GeometryCollection. Duplicate segments are
ignored.
This function returns the polygons within a GeometryCollection.
Individual Polygons can be obtained using ``get_geometry`` to get
a single polygon or ``get_parts`` to get an array of polygons.
MultiPolygons can be constructed from the output using
``shapely.multipolygons(shapely.get_parts(shapely.polygonize(geometries)))``.
Parameters
----------
geometries : array_like
An array of geometries.
axis : int
Axis along which the geometries are polygonized.
The default is to perform a reduction over the last dimension
of the input array. A 1D array results in a scalar geometry.
**kwargs
See :ref:`NumPy ufunc docs <ufuncs.kwargs>` for other keyword arguments.
Returns
-------
GeometryCollection or array of GeometryCollections
See Also
--------
get_parts, get_geometry
polygonize_full
node
Examples
--------
>>> import shapely
>>> from shapely import LineString
>>> lines = [
... LineString([(0, 0), (1, 1)]),
... LineString([(0, 0), (0, 1)]),
... LineString([(0, 1), (1, 1)])
... ]
>>> shapely.polygonize(lines)
<GEOMETRYCOLLECTION (POLYGON ((1 1, 0 0, 0 1, 1 1)))>
"""
return lib.polygonize(geometries, **kwargs)
def polygonize_full(geometries, **kwargs):
"""Create polygons formed from the linework of a set of Geometries.
All extra outputs are returned as well.
Polygonizes an array of Geometries that contain linework which
represents the edges of a planar graph. Any type of Geometry may be
provided as input; only the constituent lines and rings will be used to
create the output polygons.
This function performs the same polygonization as ``polygonize`` but does
not only return the polygonal result but all extra outputs as well. The
return value consists of 4 elements:
* The polygonal valid output
* **Cut edges**: edges connected on both ends but not part of polygonal output
* **dangles**: edges connected on one end but not part of polygonal output
* **invalid rings**: polygons formed but which are not valid
This function returns the geometries within GeometryCollections.
Individual geometries can be obtained using ``get_geometry`` to get
a single geometry or ``get_parts`` to get an array of geometries.
Parameters
----------
geometries : array_like
An array of geometries.
axis : int
Axis along which the geometries are polygonized.
The default is to perform a reduction over the last dimension
of the input array. A 1D array results in a scalar geometry.
**kwargs
See :ref:`NumPy ufunc docs <ufuncs.kwargs>` for other keyword arguments.
Returns
-------
(polygons, cuts, dangles, invalid)
tuple of 4 GeometryCollections or arrays of GeometryCollections
See Also
--------
polygonize
Examples
--------
>>> import shapely
>>> from shapely import LineString
>>> lines = [
... LineString([(0, 0), (1, 1)]),
... LineString([(0, 0), (0, 1), (1, 1)]),
... LineString([(0, 1), (1, 1)])
... ]
>>> shapely.polygonize_full(lines)
(<GEOMETRYCOLLECTION (POLYGON ((1 1, 0 0, 0 1, 1 1)))>,
<GEOMETRYCOLLECTION EMPTY>,
<GEOMETRYCOLLECTION (LINESTRING (0 1, 1 1))>,
<GEOMETRYCOLLECTION EMPTY>)
"""
return lib.polygonize_full(geometries, **kwargs)
@requires_geos("3.11.0")
@multithreading_enabled
def remove_repeated_points(geometry, tolerance=0.0, **kwargs):
"""Return a copy of a Geometry with repeated points removed.
From the start of the coordinate sequence, each next point within the
tolerance is removed.
Removing repeated points with a non-zero tolerance may result in an invalid
geometry being returned.
Parameters
----------
geometry : Geometry or array_like
Geometry or geometries to remove repeated points from.
tolerance : float or array_like, default=0.0
Use 0.0 to remove only exactly repeated points.
**kwargs
See :ref:`NumPy ufunc docs <ufuncs.kwargs>` for other keyword arguments.
Examples
--------
>>> import shapely
>>> from shapely import LineString, Polygon
>>> shapely.remove_repeated_points(LineString([(0,0), (0,0), (1,0)]), tolerance=0)
<LINESTRING (0 0, 1 0)>
>>> shapely.remove_repeated_points(Polygon([(0, 0), (0, .5), (0, 1), (.5, 1), (0,0)]), tolerance=.5)
<POLYGON ((0 0, 0 1, 0 0))>
""" # noqa: E501
return lib.remove_repeated_points(geometry, tolerance, **kwargs)
@multithreading_enabled
def reverse(geometry, **kwargs):
"""Return a copy of a Geometry with the order of coordinates reversed.
If a Geometry is a polygon with interior rings, the interior rings are also
reversed.
Points are unchanged. None is returned where Geometry is None.
Parameters
----------
geometry : Geometry or array_like
Geometry or geometries to reverse the coordinates of.
**kwargs
See :ref:`NumPy ufunc docs <ufuncs.kwargs>` for other keyword arguments.
See Also
--------
is_ccw : Checks if a Geometry is clockwise.
Examples
--------
>>> import shapely
>>> from shapely import LineString, Polygon
>>> shapely.reverse(LineString([(0, 0), (1, 2)]))
<LINESTRING (1 2, 0 0)>
>>> shapely.reverse(Polygon([(0, 0), (1, 0), (1, 1), (0, 1), (0, 0)]))
<POLYGON ((0 0, 0 1, 1 1, 1 0, 0 0))>
>>> shapely.reverse(None) is None
True
"""
return lib.reverse(geometry, **kwargs)
@requires_geos("3.10.0")
@multithreading_enabled
def segmentize(geometry, max_segment_length, **kwargs):
"""Add vertices to line segments based on maximum segment length.
Additional vertices will be added to every line segment in an input geometry
so that segments are no longer than the provided maximum segment length. New
vertices will evenly subdivide each segment.
Only linear components of input geometries are densified; other geometries
are returned unmodified.
Parameters
----------
geometry : Geometry or array_like
Geometry or geometries to segmentize.
max_segment_length : float or array_like
Additional vertices will be added so that all line segments are no
longer than this value. Must be greater than 0.
**kwargs
See :ref:`NumPy ufunc docs <ufuncs.kwargs>` for other keyword arguments.
Examples
--------
>>> import shapely
>>> from shapely import LineString, Polygon
>>> line = LineString([(0, 0), (0, 10)])
>>> shapely.segmentize(line, max_segment_length=5)
<LINESTRING (0 0, 0 5, 0 10)>
>>> polygon = Polygon([(0, 0), (10, 0), (10, 10), (0, 10), (0, 0)])
>>> shapely.segmentize(polygon, max_segment_length=5)
<POLYGON ((0 0, 5 0, 10 0, 10 5, 10 10, 5 10, 0 10, 0 5, 0 0))>
>>> shapely.segmentize(None, max_segment_length=5) is None
True
"""
return lib.segmentize(geometry, max_segment_length, **kwargs)
# Note: future plan is to change this signature over a few releases:
# shapely 2.0:
# simplify(geometry, tolerance, preserve_topology=True, **kwargs)
# shapely 2.1: shows deprecation warning about positional 'preserve_topology'
# same signature as 2.0
# shapely 2.2(?): enforce keyword-only arguments after 'tolerance'
# simplify(geometry, tolerance, *, preserve_topology=True, **kwargs)
@deprecate_positional(["preserve_topology"], category=DeprecationWarning)
@multithreading_enabled
def simplify(geometry, tolerance, preserve_topology=True, **kwargs):
"""Return a simplified version of an input geometry.
The Douglas-Peucker algorithm is used to simplify the geometry.
Parameters
----------
geometry : Geometry or array_like
Geometry or geometries to simplify.
tolerance : float or array_like
The maximum allowed geometry displacement. The higher this value, the
smaller the number of vertices in the resulting geometry.
preserve_topology : bool, default True
By default (True), the operation will avoid creating invalid
geometries (checking for collapses, ring-intersections, etc), but
this is computationally more expensive.
**kwargs
See :ref:`NumPy ufunc docs <ufuncs.kwargs>` for other keyword arguments.
Notes
-----
.. deprecated:: 2.1.0
A deprecation warning is shown if ``preserve_topology`` is specified as
a positional argument. This will need to be specified as a keyword
argument in a future release.
Examples
--------
>>> import shapely
>>> from shapely import LineString, Polygon
>>> line = LineString([(0, 0), (1, 10), (0, 20)])
>>> shapely.simplify(line, tolerance=0.9)
<LINESTRING (0 0, 1 10, 0 20)>
>>> shapely.simplify(line, tolerance=1)
<LINESTRING (0 0, 0 20)>
>>> polygon_with_hole = Polygon(
... [(0, 0), (0, 10), (10, 10), (10, 0), (0, 0)],
... holes=[[(2, 2), (2, 4), (4, 4), (4, 2), (2, 2)]]
... )
>>> shapely.simplify(polygon_with_hole, tolerance=4, preserve_topology=True)
<POLYGON ((0 0, 0 10, 10 10, 10 0, 0 0), (4 2, 2 4, 4 4, 4 2))>
>>> shapely.simplify(polygon_with_hole, tolerance=4, preserve_topology=False)
<POLYGON ((0 0, 0 10, 10 10, 10 0, 0 0))>
"""
if preserve_topology:
return lib.simplify_preserve_topology(geometry, tolerance, **kwargs)
else:
return lib.simplify(geometry, tolerance, **kwargs)
@multithreading_enabled
def snap(geometry, reference, tolerance, **kwargs):
"""Snap the vertices and segments of the geometry to vertices of the reference.
Vertices and segments of the input geometry are snapped to vertices of the
reference geometry, returning a new geometry; the input geometries are not
modified. The result geometry is the input geometry with the vertices and
segments snapped. If no snapping occurs then the input geometry is returned
unchanged. The tolerance is used to control where snapping is performed.
Where possible, this operation tries to avoid creating invalid geometries;
however, it does not guarantee that output geometries will be valid. It is
the responsibility of the caller to check for and handle invalid geometries.
Because too much snapping can result in invalid geometries being created,
heuristics are used to determine the number and location of snapped
vertices that are likely safe to snap. These heuristics may omit
some potential snaps that are otherwise within the tolerance.
Parameters
----------
geometry : Geometry or array_like
Geometry or geometries to snap.
reference : Geometry or array_like
Geometry or geometries to snap to.
tolerance : float or array_like
The maximum distance between the input and reference geometries for
snapping to occur. A value of 0 will snap only identical points.
**kwargs
See :ref:`NumPy ufunc docs <ufuncs.kwargs>` for other keyword arguments.
Examples
--------
>>> import shapely
>>> from shapely import LineString, Point, Polygon, MultiPoint
>>> point = Point(0.5, 2.5)
>>> target_point = Point(0, 2)
>>> shapely.snap(point, target_point, tolerance=1)
<POINT (0 2)>
>>> shapely.snap(point, target_point, tolerance=0.49)
<POINT (0.5 2.5)>
>>> polygon = Polygon([(0, 0), (0, 10), (10, 10), (10, 0), (0, 0)])
>>> shapely.snap(polygon, Point(8, 10), tolerance=5)
<POLYGON ((0 0, 0 10, 8 10, 10 0, 0 0))>
>>> shapely.snap(polygon, LineString([(8, 10), (8, 0)]), tolerance=5)
<POLYGON ((0 0, 0 10, 8 10, 8 0, 0 0))>
You can snap one line to another, for example to clean imprecise coordinates:
>>> line1 = LineString([(0.1, 0.1), (0.49, 0.51), (1.01, 0.89)])
>>> line2 = LineString([(0, 0), (0.5, 0.5), (1.0, 1.0)])
>>> shapely.snap(line1, line2, 0.25)
<LINESTRING (0 0, 0.5 0.5, 1 1)>
Snapping also supports Z coordinates:
>>> point1 = Point(0.1, 0.1, 0.5)
>>> multipoint = MultiPoint([(0, 0, 1), (0, 0, 0)])
>>> shapely.snap(point1, multipoint, 1)
<POINT Z (0 0 1)>
Snapping to an empty geometry has no effect:
>>> shapely.snap(line1, LineString([]), 0.25)
<LINESTRING (0.1 0.1, 0.49 0.51, 1.01 0.89)>
Snapping to a non-geometry (None) will always return None:
>>> shapely.snap(line1, None, 0.25) is None
True
Only one vertex of a polygon is snapped to a target point,
even if all vertices are equidistant to it,
in order to prevent collapse of the polygon:
>>> poly = shapely.box(0, 0, 1, 1)
>>> poly
<POLYGON ((1 0, 1 1, 0 1, 0 0, 1 0))>
>>> shapely.snap(poly, Point(0.5, 0.5), 1)
<POLYGON ((0.5 0.5, 1 1, 0 1, 0 0, 0.5 0.5))>
"""
return lib.snap(geometry, reference, tolerance, **kwargs)
# Note: future plan is to change this signature over a few releases:
# shapely 2.0:
# voronoi_polygons(geometry, tolerance=0.0, extend_to=None, ...)
# shapely 2.1: shows deprecation warning about positional 'extend_to'
# same signature as 2.0
# shapely 2.2(?): enforce keyword-only arguments after 'tolerance'
# voronoi_polygons(geometry, tolerance=0.0, extend_to=None, ...)
@deprecate_positional(
["extend_to", "only_edges", "ordered"], category=DeprecationWarning
)
@multithreading_enabled
def voronoi_polygons(
geometry, tolerance=0.0, extend_to=None, only_edges=False, ordered=False, **kwargs
):
"""Compute a Voronoi diagram from the vertices of an input geometry.
The output is a geometrycollection containing polygons (default)
or linestrings (see only_edges). Returns empty if an input geometry
contains less than 2 vertices or if the provided extent has zero area.
Parameters
----------
geometry : Geometry or array_like
Geometry or geometries for which to compute the Voronoi diagram.
tolerance : float or array_like, default 0.0
Snap input vertices together if their distance is less than this value.
extend_to : Geometry or array_like, optional
If provided, the diagram will be extended to cover the envelope of this
geometry (unless this envelope is smaller than the input geometry).
only_edges : bool or array_like, default False
If set to True, the triangulation will return a collection of
linestrings instead of polygons.
ordered : bool or array_like, default False
If set to True, polygons within the GeometryCollection will be ordered
according to the order of the input vertices. Note that this may slow
down the computation. Requires GEOS >= 3.12.0.
.. versionadded:: 2.1.0
**kwargs
See :ref:`NumPy ufunc docs <ufuncs.kwargs>` for other keyword arguments.
Notes
-----
.. deprecated:: 2.1.0
A deprecation warning is shown if ``extend_to``, ``only_edges`` or
``ordered`` are specified as positional arguments. In a future
release, these will need to be specified as keyword arguments.
Examples
--------
>>> import shapely
>>> from shapely import LineString, MultiPoint, Point
>>> points = MultiPoint([(2, 2), (4, 2)])
>>> shapely.voronoi_polygons(points).normalize()
<GEOMETRYCOLLECTION (POLYGON ((3 0, 3 4, 6 4, 6 0, 3 0)), POLYGON ((0 0, 0 4...>
>>> shapely.voronoi_polygons(points, only_edges=True)
<MULTILINESTRING ((3 4, 3 0))>
>>> shapely.voronoi_polygons(MultiPoint([(2, 2), (4, 2), (4.2, 2)]), 0.5, only_edges=True)
<MULTILINESTRING ((3 4.2, 3 -0.2))>
>>> shapely.voronoi_polygons(points, extend_to=LineString([(0, 0), (10, 10)]), only_edges=True)
<MULTILINESTRING ((3 10, 3 0))>
>>> shapely.voronoi_polygons(LineString([(2, 2), (4, 2)]), only_edges=True)
<MULTILINESTRING ((3 4, 3 0))>
>>> shapely.voronoi_polygons(Point(2, 2))
<GEOMETRYCOLLECTION EMPTY>
>>> shapely.voronoi_polygons(points, ordered=True)
<GEOMETRYCOLLECTION (POLYGON ((0 0, 0 4, 3 4, 3 0, 0 0)), POLYGON ((6 4, 6 0...>
""" # noqa: E501
if ordered is not False and lib.geos_version < (3, 12, 0):
raise UnsupportedGEOSVersionError(
"Ordered Voronoi polygons require GEOS >= 3.12.0, "
f"found {lib.geos_version_string}"
)
return lib.voronoi_polygons(
geometry, tolerance, extend_to, only_edges, ordered, **kwargs
)
@multithreading_enabled
def _oriented_envelope_geos(geometry, **kwargs):
return lib.oriented_envelope(geometry, **kwargs)
def oriented_envelope(geometry, **kwargs):
"""Compute the oriented envelope (minimum rotated rectangle) of the input geometry.
The oriented envelope encloses an input geometry, such that the resulting
rectangle has minimum area.
Unlike envelope this rectangle is not constrained to be parallel to the
coordinate axes. If the convex hull of the object is a degenerate (line
or point) this degenerate is returned.
The starting point of the rectangle is not fixed. You can use
:func:`~shapely.normalize` to reorganize the rectangle to
:ref:`strict canonical form <canonical-form>` so the starting point is
always the lower left point.
``minimum_rotated_rectangle`` is an alias for ``oriented_envelope``.
Parameters
----------
geometry : Geometry or array_like
Geometry or geometries for which to compute the oriented envelope.
**kwargs
See :ref:`NumPy ufunc docs <ufuncs.kwargs>` for other keyword arguments.
Examples
--------
>>> import shapely
>>> from shapely import GeometryCollection, LineString, MultiPoint, Point, Polygon
>>> shapely.oriented_envelope(MultiPoint([(0, 0), (10, 0), (10, 10)])).normalize()
<POLYGON ((0 0, 0 10, 10 10, 10 0, 0 0))>
>>> shapely.oriented_envelope(LineString([(1, 1), (5, 1), (10, 10)])).normalize()
<POLYGON ((1 1, 10 10, 12 8, 3 -1, 1 1))>
>>> shapely.oriented_envelope(Polygon([(1, 1), (15, 1), (5, 10), (1, 1)]))\
.normalize()
<POLYGON ((1 1, 5 10, 16.691 4.804, 12.691 -4.196, 1 1))>
>>> shapely.oriented_envelope(LineString([(1, 1), (10, 1)])).normalize()
<LINESTRING (1 1, 10 1)>
>>> shapely.oriented_envelope(Point(2, 2))
<POINT (2 2)>
>>> shapely.oriented_envelope(GeometryCollection([]))
<POLYGON EMPTY>
"""
if lib.geos_version < (3, 12, 0):
f = _oriented_envelope_min_area_vectorized
else:
f = _oriented_envelope_geos
return f(geometry, **kwargs)
minimum_rotated_rectangle = oriented_envelope
@multithreading_enabled
def minimum_bounding_circle(geometry, **kwargs):
"""Compute the minimum bounding circle that encloses an input geometry.
Parameters
----------
geometry : Geometry or array_like
Geometry or geometries for which to compute the minimum bounding circle.
**kwargs
See :ref:`NumPy ufunc docs <ufuncs.kwargs>` for other keyword arguments.
Examples
--------
>>> import shapely
>>> from shapely import GeometryCollection, LineString, MultiPoint, Point, Polygon
>>> shapely.minimum_bounding_circle(
... Polygon([(0, 0), (0, 10), (10, 10), (10, 0), (0, 0)])
... )
<POLYGON ((12.071 5, 11.935 3.621, 11.533 2.294, 10.879 1.07...>
>>> shapely.minimum_bounding_circle(LineString([(1, 1), (10, 10)]))
<POLYGON ((11.864 5.5, 11.742 4.258, 11.38 3.065, 10.791 1.9...>
>>> shapely.minimum_bounding_circle(MultiPoint([(2, 2), (4, 2)]))
<POLYGON ((4 2, 3.981 1.805, 3.924 1.617, 3.831 1.444, 3.707...>
>>> shapely.minimum_bounding_circle(Point(0, 1))
<POINT (0 1)>
>>> shapely.minimum_bounding_circle(GeometryCollection([]))
<POLYGON EMPTY>
See Also
--------
minimum_bounding_radius, maximum_inscribed_circle
"""
return lib.minimum_bounding_circle(geometry, **kwargs)
@multithreading_enabled
def maximum_inscribed_circle(geometry, tolerance=None, **kwargs):
"""Find the largest circle that is fully contained within the input geometry.
Constructs the "maximum inscribed circle" (MIC) for a polygonal geometry,
up to a specified tolerance. The MIC is determined by a point in the
interior of the area which has the farthest distance from the area
boundary, along with a boundary point at that distance. In the context of
geography the center of the MIC is known as the "pole of inaccessibility".
A cartographic use case is to determine a suitable point to place a map
label within a polygon.
The radius length of the MIC is a measure of how "narrow" a polygon is.
It is the distance at which the negative buffer becomes empty.
The function supports polygons with holes and multipolygons.
Returns a two-point linestring, with the first point at the center of the
inscribed circle and the second on the boundary of the inscribed circle.
.. versionadded:: 2.1.0
Parameters
----------
geometry : Geometry or array_like
tolerance : float or array_like, optional
Stop the algorithm when the search area is smaller than this tolerance.
When not specified, uses `max(width, height) / 1000` per geometry as
the default.
**kwargs
For other keyword-only arguments, see the
`NumPy ufunc docs <https://numpy.org/doc/stable/reference/ufuncs.html#ufuncs-kwargs>`_.
Examples
--------
>>> import shapely
>>> from shapely import Polygon
>>> poly = Polygon([(0, 0), (0, 10), (10, 10), (10, 0), (0, 0)])
>>> shapely.maximum_inscribed_circle(poly)
<LINESTRING (5 5, 0 5)>
See Also
--------
minimum_bounding_circle
"""
if tolerance is None:
tolerance = 0.0
elif np.isscalar(tolerance) and tolerance < 0:
raise ValueError("'tolerance' should be positive")
return lib.maximum_inscribed_circle(geometry, tolerance, **kwargs)
@multithreading_enabled
def _orient_polygons_geos(geometry, exterior_cw=False, **kwargs):
return lib.orient_polygons(geometry, exterior_cw, **kwargs)
@multithreading_enabled
def orient_polygons(geometry, *, exterior_cw=False, **kwargs):
"""Enforce a ring orientation on all polygonal elements in the input geometry.
Forces (Multi)Polygons to use a counter-clockwise orientation for their
exterior ring, and a clockwise orientation for their interior rings (or
the oppposite if ``exterior_cw=True``).
Also processes geometries inside a GeometryCollection in the same way.
Other geometries are returned unchanged.
.. versionadded:: 2.1.0
Parameters
----------
geometry : Geometry or array_like
Geometry or geometries to orient consistently.
exterior_cw : bool, default False
If True, exterior rings will be clockwise and interior rings
will be counter-clockwise.
**kwargs
See :ref:`NumPy ufunc docs <ufuncs.kwargs>` for other keyword arguments.
Examples
--------
A polygon with both shell and hole having clockwise orientation:
>>> from shapely import Polygon, orient_polygons
>>> polygon = Polygon(
... [(0, 0), (0, 10), (10, 10), (10, 0), (0, 0)],
... holes=[[(2, 2), (2, 4), (4, 4), (4, 2), (2, 2)]],
... )
>>> polygon
<POLYGON ((0 0, 0 10, 10 10, 10 0, 0 0), (2 2, 2 4, 4 4, 4 2, 2 2))>
By default, the exterior ring is oriented counter-clockwise and
the holes clockwise:
>>> orient_polygons(polygon)
<POLYGON ((0 0, 10 0, 10 10, 0 10, 0 0), (2 2, 2 4, 4 4, 4 2, 2 2))>
Asking for the opposite orientation:
>>> orient_polygons(polygon, exterior_cw=True)
<POLYGON ((0 0, 0 10, 10 10, 10 0, 0 0), (2 2, 4 2, 4 4, 2 4, 2 2))>
"""
if lib.geos_version < (3, 12, 0):
f = _orient_polygons_vectorized
else:
f = _orient_polygons_geos
return f(geometry, exterior_cw, **kwargs)
|