File: measurement.py

package info (click to toggle)
python-shapely 2.1.1-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 2,528 kB
  • sloc: python: 18,648; ansic: 6,615; makefile: 88; sh: 62
file content (355 lines) | stat: -rw-r--r-- 10,622 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
"""Methods for measuring (between) geometries."""

import warnings

import numpy as np

from shapely import lib
from shapely.decorators import multithreading_enabled

__all__ = [
    "area",
    "bounds",
    "distance",
    "frechet_distance",
    "hausdorff_distance",
    "length",
    "minimum_bounding_radius",
    "minimum_clearance",
    "total_bounds",
]


@multithreading_enabled
def area(geometry, **kwargs):
    """Compute the area of a (multi)polygon.

    Parameters
    ----------
    geometry : Geometry or array_like
        Geometry or geometries for which to compute the area.
    **kwargs
        See :ref:`NumPy ufunc docs <ufuncs.kwargs>` for other keyword arguments.

    Examples
    --------
    >>> import shapely
    >>> from shapely import MultiPolygon, Polygon
    >>> polygon = Polygon([(0, 0), (0, 10), (10, 10), (10, 0), (0, 0)])
    >>> shapely.area(polygon)
    100.0
    >>> polygon2 = Polygon([(10, 10), (10, 20), (20, 20), (20, 10), (10, 10)])
    >>> shapely.area(MultiPolygon([polygon, polygon2]))
    200.0
    >>> shapely.area(Polygon())
    0.0
    >>> shapely.area(None)
    nan

    """
    return lib.area(geometry, **kwargs)


@multithreading_enabled
def distance(a, b, **kwargs):
    """Compute the Cartesian distance between two geometries.

    Parameters
    ----------
    a, b : Geometry or array_like
        Geometry or geometries to compute the distance between.
    **kwargs
        See :ref:`NumPy ufunc docs <ufuncs.kwargs>` for other keyword arguments.

    Examples
    --------
    >>> import shapely
    >>> from shapely import LineString, Point, Polygon
    >>> point = Point(0, 0)
    >>> shapely.distance(Point(10, 0), point)
    10.0
    >>> shapely.distance(LineString([(1, 1), (1, -1)]), point)
    1.0
    >>> shapely.distance(Polygon([(3, 0), (5, 0), (5, 5), (3, 5), (3, 0)]), point)
    3.0
    >>> shapely.distance(Point(), point)
    nan
    >>> shapely.distance(None, point)
    nan

    """
    return lib.distance(a, b, **kwargs)


@multithreading_enabled
def bounds(geometry, **kwargs):
    """Compute the bounds (extent) of a geometry.

    For each geometry these 4 numbers are returned: min x, min y, max x, max y.

    Parameters
    ----------
    geometry : Geometry or array_like
        Geometry or geometries for which to compute the bounds.
    **kwargs
        See :ref:`NumPy ufunc docs <ufuncs.kwargs>` for other keyword arguments.

    Examples
    --------
    >>> import shapely
    >>> from shapely import LineString, Point, Polygon
    >>> shapely.bounds(Point(2, 3)).tolist()
    [2.0, 3.0, 2.0, 3.0]
    >>> shapely.bounds(LineString([(0, 0), (0, 2), (3, 2)])).tolist()
    [0.0, 0.0, 3.0, 2.0]
    >>> shapely.bounds(Polygon()).tolist()
    [nan, nan, nan, nan]
    >>> shapely.bounds(None).tolist()
    [nan, nan, nan, nan]

    """
    return lib.bounds(geometry, **kwargs)


def total_bounds(geometry, **kwargs):
    """Compute the total bounds (extent) of the geometry.

    Parameters
    ----------
    geometry : Geometry or array_like
        Geometry or geometries for which to compute the total bounds.
    **kwargs
        See :ref:`NumPy ufunc docs <ufuncs.kwargs>` for other keyword arguments.

    Returns
    -------
    numpy ndarray of [xmin, ymin, xmax, ymax]

    Examples
    --------
    >>> import shapely
    >>> from shapely import LineString, Point, Polygon
    >>> shapely.total_bounds(Point(2, 3)).tolist()
    [2.0, 3.0, 2.0, 3.0]
    >>> shapely.total_bounds([Point(2, 3), Point(4, 5)]).tolist()
    [2.0, 3.0, 4.0, 5.0]
    >>> shapely.total_bounds([
    ...     LineString([(0, 1), (0, 2), (3, 2)]),
    ...     LineString([(4, 4), (4, 6), (6, 7)])
    ... ]).tolist()
    [0.0, 1.0, 6.0, 7.0]
    >>> shapely.total_bounds(Polygon()).tolist()
    [nan, nan, nan, nan]
    >>> shapely.total_bounds([Polygon(), Point(2, 3)]).tolist()
    [2.0, 3.0, 2.0, 3.0]
    >>> shapely.total_bounds(None).tolist()
    [nan, nan, nan, nan]

    """
    b = bounds(geometry, **kwargs)
    if b.ndim == 1:
        return b

    with warnings.catch_warnings():
        # ignore 'All-NaN slice encountered' warnings
        warnings.simplefilter("ignore", RuntimeWarning)
        return np.array(
            [
                np.nanmin(b[..., 0]),
                np.nanmin(b[..., 1]),
                np.nanmax(b[..., 2]),
                np.nanmax(b[..., 3]),
            ]
        )


@multithreading_enabled
def length(geometry, **kwargs):
    """Compute the length of a (multi)linestring or polygon perimeter.

    Parameters
    ----------
    geometry : Geometry or array_like
        Geometry or geometries for which to compute the length.
    **kwargs
        See :ref:`NumPy ufunc docs <ufuncs.kwargs>` for other keyword arguments.

    Examples
    --------
    >>> import shapely
    >>> from shapely import LineString, MultiLineString, Polygon
    >>> shapely.length(LineString([(0, 0), (0, 2), (3, 2)]))
    5.0
    >>> shapely.length(MultiLineString([
    ...     LineString([(0, 0), (1, 0)]),
    ...     LineString([(1, 0), (2, 0)])
    ... ]))
    2.0
    >>> shapely.length(Polygon([(0, 0), (0, 10), (10, 10), (10, 0), (0, 0)]))
    40.0
    >>> shapely.length(LineString())
    0.0
    >>> shapely.length(None)
    nan

    """
    return lib.length(geometry, **kwargs)


@multithreading_enabled
def hausdorff_distance(a, b, densify=None, **kwargs):
    """Compute the discrete Hausdorff distance between two geometries.

    The Hausdorff distance is a measure of similarity: it is the greatest
    distance between any point in A and the closest point in B. The discrete
    distance is an approximation of this metric: only vertices are considered.
    The parameter 'densify' makes this approximation less coarse by splitting
    the line segments between vertices before computing the distance.

    Parameters
    ----------
    a, b : Geometry or array_like
        Geometry or geometries to compute the distance between.
    densify : float or array_like, optional
        The value of densify is required to be between 0 and 1.
    **kwargs
        See :ref:`NumPy ufunc docs <ufuncs.kwargs>` for other keyword arguments.

    Examples
    --------
    >>> import shapely
    >>> from shapely import LineString
    >>> line1 = LineString([(130, 0), (0, 0), (0, 150)])
    >>> line2 = LineString([(10, 10), (10, 150), (130, 10)])
    >>> shapely.hausdorff_distance(line1, line2)
    14.142135623730951
    >>> shapely.hausdorff_distance(line1, line2, densify=0.5)
    70.0
    >>> shapely.hausdorff_distance(line1, LineString())
    nan
    >>> shapely.hausdorff_distance(line1, None)
    nan

    """
    if densify is None:
        return lib.hausdorff_distance(a, b, **kwargs)
    else:
        return lib.hausdorff_distance_densify(a, b, densify, **kwargs)


@multithreading_enabled
def frechet_distance(a, b, densify=None, **kwargs):
    """Compute the discrete Fréchet distance between two geometries.

    The Fréchet distance is a measure of similarity: it is the greatest
    distance between any point in A and the closest point in B. The discrete
    distance is an approximation of this metric: only vertices are considered.
    The parameter 'densify' makes this approximation less coarse by splitting
    the line segments between vertices before computing the distance.

    Fréchet distance sweep continuously along their respective curves
    and the direction of curves is significant. This makes it a better measure
    of similarity than Hausdorff distance for curve or surface matching.

    Parameters
    ----------
    a, b : Geometry or array_like
        Geometry or geometries to compute the distance between.
    densify : float or array_like, optional
        The value of densify is required to be between 0 and 1.
    **kwargs
        See :ref:`NumPy ufunc docs <ufuncs.kwargs>` for other keyword arguments.

    Examples
    --------
    >>> import shapely
    >>> from shapely import LineString
    >>> line1 = LineString([(0, 0), (100, 0)])
    >>> line2 = LineString([(0, 0), (50, 50), (100, 0)])
    >>> shapely.frechet_distance(line1, line2)
    70.71067811865476
    >>> shapely.frechet_distance(line1, line2, densify=0.5)
    50.0
    >>> shapely.frechet_distance(line1, LineString())
    nan
    >>> shapely.frechet_distance(line1, None)
    nan

    """
    if densify is None:
        return lib.frechet_distance(a, b, **kwargs)
    return lib.frechet_distance_densify(a, b, densify, **kwargs)


@multithreading_enabled
def minimum_clearance(geometry, **kwargs):
    """Compute the Minimum Clearance distance.

    A geometry's "minimum clearance" is the smallest distance by which
    a vertex of the geometry could be moved to produce an invalid geometry.

    If no minimum clearance exists for a geometry (for example, a single
    point, or an empty geometry), infinity is returned.

    Parameters
    ----------
    geometry : Geometry or array_like
        Geometry or geometries for which to compute the minimum clearance.
    **kwargs
        See :ref:`NumPy ufunc docs <ufuncs.kwargs>` for other keyword arguments.

    Examples
    --------
    >>> import shapely
    >>> from shapely import Polygon
    >>> polygon = Polygon([(0, 0), (0, 10), (5, 6), (10, 10), (10, 0), (5, 4), (0, 0)])
    >>> shapely.minimum_clearance(polygon)
    2.0
    >>> shapely.minimum_clearance(Polygon())
    inf
    >>> shapely.minimum_clearance(None)
    nan

    See Also
    --------
    minimum_clearance_line

    """
    return lib.minimum_clearance(geometry, **kwargs)


@multithreading_enabled
def minimum_bounding_radius(geometry, **kwargs):
    """Compute the radius of the minimum bounding circle of an input geometry.

    Parameters
    ----------
    geometry : Geometry or array_like
        Geometry or geometries for which to compute the minimum bounding radius.
    **kwargs
        See :ref:`NumPy ufunc docs <ufuncs.kwargs>` for other keyword arguments.


    Examples
    --------
    >>> import shapely
    >>> from shapely import GeometryCollection, LineString, MultiPoint, Point, Polygon
    >>> shapely.minimum_bounding_radius(
    ...     Polygon([(0, 5), (5, 10), (10, 5), (5, 0), (0, 5)])
    ... )
    5.0
    >>> shapely.minimum_bounding_radius(LineString([(1, 1), (1, 10)]))
    4.5
    >>> shapely.minimum_bounding_radius(MultiPoint([(2, 2), (4, 2)]))
    1.0
    >>> shapely.minimum_bounding_radius(Point(0, 1))
    0.0
    >>> shapely.minimum_bounding_radius(GeometryCollection())
    0.0

    See Also
    --------
    minimum_bounding_circle

    """
    return lib.minimum_bounding_radius(geometry, **kwargs)