1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550
|
"""STRtree spatial index for efficient spatial queries."""
from collections.abc import Iterable
from typing import Any
import numpy as np
from shapely import lib
from shapely._enum import ParamEnum
from shapely.decorators import UnsupportedGEOSVersionError
from shapely.geometry.base import BaseGeometry
from shapely.predicates import is_empty, is_missing
__all__ = ["STRtree"]
class BinaryPredicate(ParamEnum):
"""The enumeration of GEOS binary predicates types."""
intersects = 1
within = 2
contains = 3
overlaps = 4
crosses = 5
touches = 6
covers = 7
covered_by = 8
contains_properly = 9
class STRtree:
"""A query-only R-tree spatial index.
It is created using the Sort-Tile-Recursive (STR) [1]_ algorithm.
The tree indexes the bounding boxes of each geometry. The tree is
constructed directly at initialization and nodes cannot be added or
removed after it has been created.
All operations return indices of the input geometries. These indices
can be used to index into anything associated with the input geometries,
including the input geometries themselves, or custom items stored in
another object of the same length as the geometries.
Bounding boxes limited to two dimensions and are axis-aligned (equivalent to
the ``bounds`` property of a geometry); any Z values present in geometries
are ignored for purposes of indexing within the tree.
Any mixture of geometry types may be stored in the tree.
Note: the tree is more efficient for querying when there are fewer
geometries that have overlapping bounding boxes and where there is greater
similarity between the outer boundary of a geometry and its bounding box.
For example, a MultiPolygon composed of widely-spaced individual Polygons
will have a large overall bounding box compared to the boundaries of its
individual Polygons, and the bounding box may also potentially overlap many
other geometries within the tree. This means that the resulting tree may be
less efficient to query than a tree constructed from individual Polygons.
Parameters
----------
geoms : sequence
A sequence of geometry objects.
node_capacity : int, default 10
The maximum number of child nodes per parent node in the tree.
References
----------
.. [1] Leutenegger, Scott T.; Edgington, Jeffrey M.; Lopez, Mario A.
(February 1997). "STR: A Simple and Efficient Algorithm for
R-Tree Packing".
https://ia600900.us.archive.org/27/items/nasa_techdoc_19970016975/19970016975.pdf
"""
def __init__(self, geoms: Iterable[BaseGeometry], node_capacity: int = 10):
"""Create a new STRtree spatial index."""
# Keep references to geoms in a copied array so that this array is not
# modified while the tree depends on it remaining the same
self._geometries = np.array(geoms, dtype=np.object_, copy=True)
# initialize GEOS STRtree
self._tree = lib.STRtree(self.geometries, node_capacity)
def __len__(self):
"""Return the number of geometries in the tree."""
return self._tree.count
def __reduce__(self):
"""Pickle support."""
return (STRtree, (self.geometries,))
@property
def geometries(self):
"""Geometries stored in the tree in the order used to construct the tree.
The order of this array corresponds to the tree indices returned by
other STRtree methods.
Do not attempt to modify items in the returned array.
Returns
-------
ndarray of Geometry objects
"""
return self._geometries
def query(self, geometry, predicate=None, distance=None):
"""Get the index combinations of all possibly intersecting geometries.
Returns the integer indices of all combinations of each input geometry
and tree geometries where the bounding box of each input geometry
intersects the bounding box of a tree geometry.
If the input geometry is a scalar, this returns an array of shape (n, ) with
the indices of the matching tree geometries. If the input geometry is an
array_like, this returns an array with shape (2,n) where the subarrays
correspond to the indices of the input geometries and indices of the
tree geometries associated with each. To generate an array of pairs of
input geometry index and tree geometry index, simply transpose the
result.
If a predicate is provided, the tree geometries are first queried based
on the bounding box of the input geometry and then are further filtered
to those that meet the predicate when comparing the input geometry to
the tree geometry:
predicate(geometry, tree_geometry)
The 'dwithin' predicate requires GEOS >= 3.10.
Bounding boxes are limited to two dimensions and are axis-aligned
(equivalent to the ``bounds`` property of a geometry); any Z values
present in input geometries are ignored when querying the tree.
Any input geometry that is None or empty will never match geometries in
the tree.
Parameters
----------
geometry : Geometry or array_like
Input geometries to query the tree and filter results using the
optional predicate.
predicate : {None, 'intersects', 'within', 'contains', 'overlaps', 'crosses',\
'touches', 'covers', 'covered_by', 'contains_properly', 'dwithin'}, optional
The predicate to use for testing geometries from the tree
that are within the input geometry's bounding box.
distance : number or array_like, optional
Distances around each input geometry within which to query the tree
for the 'dwithin' predicate. If array_like, shape must be
broadcastable to shape of geometry. Required if predicate='dwithin'.
Returns
-------
ndarray with shape (n,) if geometry is a scalar
Contains tree geometry indices.
OR
ndarray with shape (2, n) if geometry is an array_like
The first subarray contains input geometry indices.
The second subarray contains tree geometry indices.
Examples
--------
>>> from shapely import box, Point, STRtree
>>> import numpy as np
>>> points = [Point(0, 0), Point(1, 1), Point(2,2), Point(3, 3)]
>>> tree = STRtree(points)
Query the tree using a scalar geometry:
>>> indices = tree.query(box(0, 0, 1, 1))
>>> indices.tolist()
[0, 1]
Query using an array of geometries:
>>> boxes = np.array([box(0, 0, 1, 1), box(2, 2, 3, 3)])
>>> arr_indices = tree.query(boxes)
>>> arr_indices.tolist()
[[0, 0, 1, 1], [0, 1, 2, 3]]
Or transpose to get all pairs of input and tree indices:
>>> arr_indices.T.tolist()
[[0, 0], [0, 1], [1, 2], [1, 3]]
Retrieve the tree geometries by results of query:
>>> tree.geometries.take(indices).tolist()
[<POINT (0 0)>, <POINT (1 1)>]
Retrieve all pairs of input and tree geometries:
>>> np.array([boxes.take(arr_indices[0]),\
tree.geometries.take(arr_indices[1])]).T.tolist()
[[<POLYGON ((1 0, 1 1, 0 1, 0 0, 1 0))>, <POINT (0 0)>],
[<POLYGON ((1 0, 1 1, 0 1, 0 0, 1 0))>, <POINT (1 1)>],
[<POLYGON ((3 2, 3 3, 2 3, 2 2, 3 2))>, <POINT (2 2)>],
[<POLYGON ((3 2, 3 3, 2 3, 2 2, 3 2))>, <POINT (3 3)>]]
Query using a predicate:
>>> tree = STRtree([box(0, 0, 0.5, 0.5), box(0.5, 0.5, 1, 1), box(1, 1, 2, 2)])
>>> tree.query(box(0, 0, 1, 1), predicate="contains").tolist()
[0, 1]
>>> tree.query(Point(0.75, 0.75), predicate="dwithin", distance=0.5).tolist()
[0, 1, 2]
>>> tree.query(boxes, predicate="contains").tolist()
[[0, 0], [0, 1]]
>>> tree.query(boxes, predicate="dwithin", distance=0.5).tolist()
[[0, 0, 0, 1], [0, 1, 2, 2]]
Retrieve custom items associated with tree geometries (records can
be in whatever data structure so long as geometries and custom data
can be extracted into arrays of the same length and order):
>>> records = [
... {"geometry": Point(0, 0), "value": "A"},
... {"geometry": Point(2, 2), "value": "B"}
... ]
>>> tree = STRtree([record["geometry"] for record in records])
>>> items = np.array([record["value"] for record in records])
>>> items.take(tree.query(box(0, 0, 1, 1))).tolist()
['A']
Notes
-----
In the context of a spatial join, input geometries are the "left"
geometries that determine the order of the results, and tree geometries
are "right" geometries that are joined against the left geometries. This
effectively performs an inner join, where only those combinations of
geometries that can be joined based on overlapping bounding boxes or
optional predicate are returned.
"""
geometry = np.asarray(geometry)
is_scalar = False
if geometry.ndim == 0:
geometry = np.expand_dims(geometry, 0)
is_scalar = True
if predicate is None:
indices = self._tree.query(geometry, 0)
return indices[1] if is_scalar else indices
# Requires GEOS >= 3.10
elif predicate == "dwithin":
if lib.geos_version < (3, 10, 0):
raise UnsupportedGEOSVersionError(
"dwithin predicate requires GEOS >= 3.10"
)
if distance is None:
raise ValueError(
"distance parameter must be provided for dwithin predicate"
)
distance = np.asarray(distance, dtype="float64")
if distance.ndim > 1:
raise ValueError("Distance array should be one dimensional")
try:
distance = np.broadcast_to(distance, geometry.shape)
except ValueError:
raise ValueError("Could not broadcast distance to match geometry")
indices = self._tree.dwithin(geometry, distance)
return indices[1] if is_scalar else indices
predicate = BinaryPredicate.get_value(predicate)
indices = self._tree.query(geometry, predicate)
return indices[1] if is_scalar else indices
def nearest(self, geometry) -> Any | None:
"""Return the index of the nearest geometry in the tree.
This is determined for each input geometry based on distance within
two-dimensional Cartesian space.
This distance will be 0 when input geometries intersect tree geometries.
If there are multiple equidistant or intersected geometries in the tree,
only a single result is returned for each input geometry, based on the
order that tree geometries are visited; this order may be
nondeterministic.
If any input geometry is None or empty, an error is raised. Any Z
values present in input geometries are ignored when finding nearest
tree geometries.
Parameters
----------
geometry : Geometry or array_like
Input geometries to query the tree.
Returns
-------
scalar or ndarray
Indices of geometries in tree. Return value will have the same shape
as the input.
None is returned if this index is empty. This may change in
version 2.0.
See Also
--------
query_nearest: returns all equidistant geometries, exclusive geometries, \
and optional distances
Examples
--------
>>> from shapely import Point, STRtree
>>> tree = STRtree([Point(i, i) for i in range(10)])
Query the tree for nearest using a scalar geometry:
>>> index = tree.nearest(Point(2.2, 2.2))
>>> index
2
>>> tree.geometries.take(index)
<POINT (2 2)>
Query the tree for nearest using an array of geometries:
>>> indices = tree.nearest([Point(2.2, 2.2), Point(4.4, 4.4)])
>>> indices.tolist()
[2, 4]
>>> tree.geometries.take(indices).tolist()
[<POINT (2 2)>, <POINT (4 4)>]
Nearest only return one object if there are multiple equidistant results:
>>> tree = STRtree ([Point(0, 0), Point(0, 0)])
>>> tree.nearest(Point(0, 0))
0
"""
if self._tree.count == 0:
return None
geometry_arr = np.asarray(geometry, dtype=object)
if is_missing(geometry_arr).any() or is_empty(geometry_arr).any():
raise ValueError(
"Cannot determine nearest geometry for empty geometry or "
"missing value (None)."
)
# _tree.nearest returns ndarray with shape (2, 1) -> index in input
# geometries and index into tree geometries
indices = self._tree.nearest(np.atleast_1d(geometry_arr))[1]
if geometry_arr.ndim == 0:
return indices[0]
else:
return indices
def query_nearest(
self,
geometry,
max_distance=None,
return_distance=False,
exclusive=False,
all_matches=True,
):
"""Return the index of the nearest geometries in the tree.
This is determined for each input geometry based on distance within
two-dimensional Cartesian space.
This distance will be 0 when input geometries intersect tree geometries.
If there are multiple equidistant or intersected geometries in tree and
`all_matches` is True (the default), all matching tree geometries are
returned; otherwise only the first matching tree geometry is returned.
Tree indices are returned in the order they are visited for each input
geometry and may not be in ascending index order; no meaningful order is
implied.
The max_distance used to search for nearest items in the tree may have a
significant impact on performance by reducing the number of input
geometries that are evaluated for nearest items in the tree. Only those
input geometries with at least one tree geometry within +/- max_distance
beyond their envelope will be evaluated. However, using a large
max_distance may have a negative performance impact because many tree
geometries will be queried for each input geometry.
The distance, if returned, will be 0 for any intersected geometries in
the tree.
Any geometry that is None or empty in the input geometries is omitted
from the output. Any Z values present in input geometries are ignored
when finding nearest tree geometries.
Parameters
----------
geometry : Geometry or array_like
Input geometries to query the tree.
max_distance : float, optional
Maximum distance within which to query for nearest items in tree.
Must be greater than 0.
return_distance : bool, default False
If True, will return distances in addition to indices.
exclusive : bool, default False
If True, the nearest tree geometries that are equal to the input
geometry will not be returned.
all_matches : bool, default True
If True, all equidistant and intersected geometries will be returned
for each input geometry.
If False, only the first nearest geometry will be returned.
Returns
-------
tree indices or tuple of (tree indices, distances) if geometry is a scalar
indices is an ndarray of shape (n, ) and distances (if present) an
ndarray of shape (n, )
OR
indices or tuple of (indices, distances)
indices is an ndarray of shape (2,n) and distances (if present) an
ndarray of shape (n).
The first subarray of indices contains input geometry indices.
The second subarray of indices contains tree geometry indices.
See Also
--------
nearest: returns singular nearest geometry for each input
Examples
--------
>>> import numpy as np
>>> from shapely import box, Point, STRtree
>>> points = [Point(0, 0), Point(1, 1), Point(2,2), Point(3, 3)]
>>> tree = STRtree(points)
Find the nearest tree geometries to a scalar geometry:
>>> indices = tree.query_nearest(Point(0.25, 0.25))
>>> indices.tolist()
[0]
Retrieve the tree geometries by results of query:
>>> tree.geometries.take(indices).tolist()
[<POINT (0 0)>]
Find the nearest tree geometries to an array of geometries:
>>> query_points = np.array([Point(2.25, 2.25), Point(1, 1)])
>>> arr_indices = tree.query_nearest(query_points)
>>> arr_indices.tolist()
[[0, 1], [2, 1]]
Or transpose to get all pairs of input and tree indices:
>>> arr_indices.T.tolist()
[[0, 2], [1, 1]]
Retrieve all pairs of input and tree geometries:
>>> list(zip(query_points.take(arr_indices[0]), tree.geometries.take(arr_indices[1])))
[(<POINT (2.25 2.25)>, <POINT (2 2)>), (<POINT (1 1)>, <POINT (1 1)>)]
All intersecting geometries in the tree are returned by default:
>>> tree.query_nearest(box(1,1,3,3)).tolist()
[1, 2, 3]
Set all_matches to False to to return a single match per input geometry:
>>> tree.query_nearest(box(1,1,3,3), all_matches=False).tolist()
[1]
Return the distance to each nearest tree geometry:
>>> index, distance = tree.query_nearest(Point(0.5, 0.5), return_distance=True)
>>> index.tolist()
[0, 1]
>>> distance.round(4).tolist()
[0.7071, 0.7071]
Return the distance for each input and nearest tree geometry for an array
of geometries:
>>> indices, distance = tree.query_nearest([Point(0.5, 0.5), Point(1, 1)], return_distance=True)
>>> indices.tolist()
[[0, 0, 1], [0, 1, 1]]
>>> distance.round(4).tolist()
[0.7071, 0.7071, 0.0]
Retrieve custom items associated with tree geometries (records can
be in whatever data structure so long as geometries and custom data
can be extracted into arrays of the same length and order):
>>> records = [
... {"geometry": Point(0, 0), "value": "A"},
... {"geometry": Point(2, 2), "value": "B"}
... ]
>>> tree = STRtree([record["geometry"] for record in records])
>>> items = np.array([record["value"] for record in records])
>>> items.take(tree.query_nearest(Point(0.5, 0.5))).tolist()
['A']
""" # noqa: E501
geometry = np.asarray(geometry, dtype=object)
is_scalar = False
if geometry.ndim == 0:
geometry = np.expand_dims(geometry, 0)
is_scalar = True
if max_distance is not None:
if not np.isscalar(max_distance):
raise ValueError("max_distance parameter only accepts scalar values")
if max_distance <= 0:
raise ValueError("max_distance must be greater than 0")
# a distance of 0 means no max_distance is used
max_distance = max_distance or 0
if not np.isscalar(exclusive):
raise ValueError("exclusive parameter only accepts scalar values")
if exclusive not in {True, False}:
raise ValueError("exclusive parameter must be boolean")
if not np.isscalar(all_matches):
raise ValueError("all_matches parameter only accepts scalar values")
if all_matches not in {True, False}:
raise ValueError("all_matches parameter must be boolean")
results = self._tree.query_nearest(
geometry, max_distance, exclusive, all_matches
)
# output indices are shape (n, )
if is_scalar:
if not return_distance:
return results[0][1]
else:
return (results[0][1], results[1])
# output indices are shape (2, n)
if not return_distance:
return results[0]
return results
|