1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452
|
# coding=utf-8
from __future__ import print_function
import copy
from math import fabs
from math import sqrt
##############################################################################
# The program to superimpose atoms of two molecules by quaternion method
#
# David J. Heisterberg
# The Ohio Supercomputer Center
# 1224 Kinnear Rd.
# Columbus, OH 43212-1163
# (614)292-6036
# djh@ccl.net djh@ohstpy.bitnet ohstpy::djh
#
# Translated to C from fitest.f program and interfaced with Xmol program
# by Jan Labanowski, jkl@ccl.net jkl@ohstpy.bitnet ohstpy::jkl
#
# Translated to python from quatfit.c
# by Thomas J. L. Mustard, mustardt@onid.orst.edu
#
# Copyright: Ohio Supercomputer Center, David J. Heisterberg, 1990.
# The program can be copied and distributed freely, provided that
# this copyright in not removed. You may acknowledge the use of the
# program in published material as:
# David J. Heisterberg, 1990, unpublished results.
#
# This program was heavily modified by Daniel Kratzert
from typing import List, Tuple
from shelxfile.misc.misc import frac_to_cart, cart_to_frac
def matrix_minus_vect(m: List[List[float]], v: Tuple[float, float, float]):
"""
"""
result = []
for coords in m:
result.append([coords[0] - v[0], coords[1] - v[1], coords[2] - v[2]])
return result
def matrix_plus_vect(m: List[List[float]], v: Tuple[float, float, float]):
"""
"""
result = []
for coords in m:
result.append([coords[0] + v[0], coords[1] + v[1], coords[2] + v[2]])
return result
def transpose(a):
"""
transposes a matrix
"""
return list(zip(*a))
def rotmol(frag_atoms, rotmat):
"""
ROTMOL
rotate a molecule
n - number of atoms
filelol (x) - input coordinates
filelol (y) - rotated coordinates y = u * x
rotmat (u) - left rotation matrix
"""
for i in range(len(frag_atoms)):
yx = rotmat[0][0] * frag_atoms[i][0] + rotmat[1][0] * frag_atoms[i][1] + rotmat[2][0] * frag_atoms[i][2]
yy = rotmat[0][1] * frag_atoms[i][0] + rotmat[1][1] * frag_atoms[i][1] + rotmat[2][1] * frag_atoms[i][2]
yz = rotmat[0][2] * frag_atoms[i][0] + rotmat[1][2] * frag_atoms[i][1] + rotmat[2][2] * frag_atoms[i][2]
frag_atoms[i][0] = yx # x
frag_atoms[i][1] = yy # y
frag_atoms[i][2] = yz # z
return frag_atoms
def jacobi(matrix, maxsweeps):
"""
JACOBI
Jacobi diagonalizer with sorted output. It is only good for 4x4 matrices.
(was too lazy to do pointers...)
matrix (a) - input: matrix to diagonalize
eigenvect (v) - output: eigenvectors
eigenval (d) - output: eigenvalues
maxsweeps (nrot) - input: maximum number of sweeps
"""
eigenvect = [[float(0.0) for x in range(4)] for x in range(4)]
eigenval = [float(0.0) for x in range(4)]
m = 0
for j in range(4):
eigenvect[j][j] = 1.0
eigenval[j] = matrix[j][j]
for m in range(maxsweeps):
dnorm = 0.0
onorm = 0.0
for j in range(4):
dnorm += fabs(eigenval[j])
for i in range(j):
onorm += fabs(matrix[i][j])
if onorm / dnorm <= 1.0e-12:
break # goto Exit_now;
for j in range(1, 4):
for i in range(j):
b = matrix[i][j]
if fabs(b) > 0.0:
dma = eigenval[j] - eigenval[i]
if (fabs(dma) + fabs(b)) <= fabs(dma):
t = b / dma
else:
q = 0.5 * dma / b
t = 1.0 / (fabs(q) + sqrt(1.0 + q * q))
if q < 0.0:
t = -t
c = 1.0 / sqrt(t * t + 1.0)
s = t * c
matrix[i][j] = 0.0
for k in range(i):
atemp = c * matrix[k][i] - s * matrix[k][j]
matrix[k][j] = s * matrix[k][i] + c * matrix[k][j]
matrix[k][i] = atemp
for k in range(i + 1, j):
atemp = c * matrix[i][k] - s * matrix[k][j]
matrix[k][j] = s * matrix[i][k] + c * matrix[k][j]
matrix[i][k] = atemp
for k in range(j + 1, 4):
atemp = c * matrix[i][k] - s * matrix[j][k]
matrix[j][k] = s * matrix[i][k] + c * matrix[j][k]
matrix[i][k] = atemp
for k in range(4):
vtemp = c * eigenvect[k][i] - s * eigenvect[k][j]
eigenvect[k][j] = s * eigenvect[k][i] + c * eigenvect[k][j]
eigenvect[k][i] = vtemp
dtemp = c * c * eigenval[i] + s * s * eigenval[j] - 2.0 * c * s * b
eigenval[j] = s * s * eigenval[i] + c * c * eigenval[j] + 2.0 * c * s * b
eigenval[i] = dtemp
maxsweeps = m
for j in range(3):
k = j
dtemp = eigenval[k]
for i in range(j + 1, 4):
if eigenval[i] < dtemp:
k = i
dtemp = eigenval[k]
if k > j:
eigenval[k] = eigenval[j]
eigenval[j] = dtemp
for i in range(4):
dtemp = eigenvect[i][k]
eigenvect[i][k] = eigenvect[i][j]
eigenvect[i][j] = dtemp
return eigenvect, eigenval, maxsweeps
def q2mat(quaternion):
"""
Q2MAT
Generate a left rotation matrix from a normalized quaternion
INPUT
quaternion (q) - normalized quaternion
OUTPUT
rotmat (u) - the rotation matrix
"""
rotmat = [[float(0.0) for _ in range(3)] for _ in range(3)]
rotmat[0][0] = quaternion[0] * quaternion[0] + quaternion[1] * quaternion[1] - quaternion[2] * quaternion[2] - \
quaternion[3] * quaternion[3]
rotmat[1][0] = 2.0 * (quaternion[1] * quaternion[2] - quaternion[0] * quaternion[3])
rotmat[2][0] = 2.0 * (quaternion[1] * quaternion[3] + quaternion[0] * quaternion[2])
rotmat[0][1] = 2.0 * (quaternion[2] * quaternion[1] + quaternion[0] * quaternion[3])
rotmat[1][1] = quaternion[0] * quaternion[0] - quaternion[1] * quaternion[1] + quaternion[2] * quaternion[2] - \
quaternion[3] * quaternion[3]
rotmat[2][1] = 2.0 * (quaternion[2] * quaternion[3] - quaternion[0] * quaternion[1])
rotmat[0][2] = 2.0 * (quaternion[3] * quaternion[1] - quaternion[0] * quaternion[2])
rotmat[1][2] = 2.0 * (quaternion[3] * quaternion[2] + quaternion[0] * quaternion[1])
rotmat[2][2] = quaternion[0] * quaternion[0] - quaternion[1] * quaternion[1] - quaternion[2] * quaternion[2] + \
quaternion[3] * quaternion[3]
return rotmat
def qtrfit(source_xyz, target_xyz, maxsweeps):
"""
QTRFIT
Find the quaternion, q,[and left rotation matrix, u] that minimizes
|qTXq - Y| ^ 2 [|uX - Y| ^ 2]
This is equivalent to maximizing Re (qTXTqY).
This is equivalent to finding the largest eigenvalue and corresponding
eigenvector of the matrix
[A2 AUx AUy AUz ]
[AUx Ux2 UxUy UzUx]
[AUy UxUy Uy2 UyUz]
[AUz UzUx UyUz Uz2 ]
where
A2 = Xx Yx + Xy Yy + Xz Yz
Ux2 = Xx Yx - Xy Yy - Xz Yz
Uy2 = Xy Yy - Xz Yz - Xx Yx
Uz2 = Xz Yz - Xx Yx - Xy Yy
AUx = Xz Yy - Xy Yz
AUy = Xx Yz - Xz Yx
AUz = Xy Yx - Xx Yy
UxUy = Xx Yy + Xy Yx
UyUz = Xy Yz + Xz Yy
UzUx = Xz Yx + Xx Yz
The left rotation matrix, u, is obtained from q by
u = qT1q
INPUT
n - number of points
fit_xyz (x) - fitted molecule coordinates
ref_xyz (y) - reference molecule coordinates
weights (w) - weights
OUTPUT
quaternion (q) - the best-fit quaternion
rotmat (u) - the best-fit left rotation matrix
maxsweeps (nr) - max number of jacobi sweeps
"""
# Create variables/lists/matrixes
matrix = [[float(0.0) for x in range(4)] for x in range(4)]
quaternion = [float(0.0) for x in range(4)]
# generate the upper triangle of the quadratic form matrix
xxyx = float(0.0)
xxyy = float(0.0)
xxyz = float(0.0)
xyyx = float(0.0)
xyyy = float(0.0)
xyyz = float(0.0)
xzyx = float(0.0)
xzyy = float(0.0)
xzyz = float(0.0)
for i, _ in enumerate(source_xyz):
xxyx = xxyx + source_xyz[i][0] * target_xyz[i][0]
xxyy = xxyy + source_xyz[i][0] * target_xyz[i][1]
xxyz = xxyz + source_xyz[i][0] * target_xyz[i][2]
xyyx = xyyx + source_xyz[i][1] * target_xyz[i][0]
xyyy = xyyy + source_xyz[i][1] * target_xyz[i][1]
xyyz = xyyz + source_xyz[i][1] * target_xyz[i][2]
xzyx = xzyx + source_xyz[i][2] * target_xyz[i][0]
xzyy = xzyy + source_xyz[i][2] * target_xyz[i][1]
xzyz = xzyz + source_xyz[i][2] * target_xyz[i][2]
matrix[0][0] = xxyx + xyyy + xzyz
matrix[0][1] = xzyy - xyyz
matrix[1][1] = xxyx - xyyy - xzyz
matrix[0][2] = xxyz - xzyx
matrix[1][2] = xxyy + xyyx
matrix[2][2] = xyyy - xzyz - xxyx
matrix[0][3] = xyyx - xxyy
matrix[1][3] = xzyx + xxyz
matrix[2][3] = xyyz + xzyy
matrix[3][3] = xzyz - xxyx - xyyy
# diagonalize c
eigenvect, eigenval, maxsweeps = jacobi(matrix, maxsweeps)
# extract the desired quaternion
quaternion[0] = eigenvect[0][3]
quaternion[1] = eigenvect[1][3]
quaternion[2] = eigenvect[2][3]
quaternion[3] = eigenvect[3][3]
# generate the rotation matrix
rotmat = q2mat(quaternion)
return quaternion, transpose(rotmat), maxsweeps
def centroid(vectors: List[List[float]]) -> Tuple[float, float, float]:
"""
Calculate the centroid from a vectorset X.
https://en.wikipedia.org/wiki/Centroid
Centroid is the mean position of all the points in all of the coordinate
directions.
C = sum(X)/len(X)
Parameters
----------
vectors : np.array
(N,D) matrix, where N is points and D is dimension.
Returns
-------
C : float
centeroid
"""
s = [0.0, 0.0, 0.0]
num = 0
for line in vectors:
num += 1
for n, v in enumerate(line):
s[n] += v
return (s[0] / num, s[1] / num, s[2] / num)
def rmsd(vect1, vect2):
"""
Calculate Root-mean-square deviation from two sets of vectors V and W.
Parameters
----------
vect1 : np.array
(N,D) matrix, where N is points and D is dimension.
vect2 : np.array
(N,D) matrix, where N is points and D is dimension.
Returns
-------
fit : float
Root-mean-square deviation
"""
D = len(vect1[0])
N = len(vect1)
rmsd = 0.0
for v, w in zip(vect1, vect2):
rmsd += sum([(v[i] - w[i]) ** 2.0 for i in range(D)])
return sqrt(rmsd / N)
def show_coordinates(atoms, vect):
"""
Print coordinates V with corresponding atoms to stdout in XYZ format.
Parameters
----------
atoms : np.array
List of atomic types
vect : np.array
(N,3) matrix of atomic coordinates
"""
for n, atom in enumerate(atoms):
atom = atom[0].upper() + atom[1:]
print("{0:2s} 1 {1:15.8f} {2:15.8f} {3:15.8f} 11.0 0.04".format(atom, *vect[n]))
def fit_fragment(fragment_atoms, source_atoms, target_atoms):
"""
Takes a list of fragment atoms and fits them to the position of target atoms. source_atoms are a fraction
of the fragment to be fitted on the target_atoms.
Parameters
----------
fragment_atoms: List
complete set of atoms of a fragment
source_atoms: List
subsection of fragment atoms
target_atoms: List
target position for source_atoms
Returns
-------
rotated_fragment: List
list of coordinates from the fitted fragment
rmsd: float
RMSD (root mean square deviation)
"""
p_source = copy.deepcopy(source_atoms)
q_target = copy.deepcopy(target_atoms)
# Create the centroid of P_source and Q_target which is the geometric center of a
# N-dimensional region and translate P_source and Q_target onto that center:
# http://en.wikipedia.org/wiki/Centroid
pcentroid = centroid(p_source)
qcentroid = centroid(q_target)
# Move P_source and Q_target to origin:
p_source = matrix_minus_vect(p_source, pcentroid)
q_target = matrix_minus_vect(q_target, qcentroid)
# get the Kabsch rotation matrix:
quaternion, U, maxsweeps = qtrfit(p_source, q_target, 30)
# translate source_atoms onto center:
source_atoms = matrix_minus_vect(source_atoms, pcentroid)
# rotate fragment_atoms (instead of source_atoms):
rotated_fragment = rotmol(fragment_atoms, U)
# move fragment back from zero (be aware that the translation is still wrong!):
rotated_fragment = matrix_plus_vect(rotated_fragment, qcentroid)
rms = rmsd(q_target, p_source)
return list(rotated_fragment), rms
def mytest():
"""
>>> mytest() # DOCTEST: +REPORT_NDIFF +NORMALIZE_WHITESPACE +ELLIPSIS
Kabsch RMSD: 0.339
C0d 1 0.13342089 0.24130563 0.55100894 11.0 0.04
C1d 1 0.17619888 0.17902262 0.56452914 11.0 0.04
C2d 1 0.08365746 0.12997794 0.52724057 11.0 0.04
C3d 1 -0.02665530 0.12466866 0.55597929 11.0 0.04
C4d 1 0.13521359 0.07155518 0.52290434 11.0 0.04
C5d 1 0.05529952 0.15222482 0.46565980 11.0 0.04
C6d 1 0.31578577 0.17095916 0.54271372 11.0 0.04
C7d 1 0.38815031 0.22093469 0.56283111 11.0 0.04
C8d 1 0.31213535 0.16969488 0.47643097 11.0 0.04
C9d 1 0.37186868 0.11694406 0.56569282 11.0 0.04
C10d 1 0.17345616 0.17029947 0.64030933 11.0 0.04
C11d 1 0.27028472 0.20219330 0.67212698 11.0 0.04
C12d 1 0.18465947 0.10785452 0.65628617 11.0 0.04
C13d 1 0.06399788 0.19258933 0.66104906 11.0 0.04
"""
cell = [10.5086, 20.9035, 20.5072, 90.0, 94.13, 90.0]
target_atoms = [[0.156860, 0.210330, 0.529750], # O1
[0.198400, 0.149690, 0.543840], # C1
[0.1968, 0.1393, 0.6200]] # Q11
# F8: [0.297220, 0.093900, 0.636590]
# Q11: [0.1968, 0.1393, 0.6200] # Q11
target_atoms = [frac_to_cart(x, cell) for x in target_atoms]
fragment_atoms = [[-0.01453, 1.66590, 0.10966], # O1 *0
[-0.00146, 0.26814, 0.06351], # C1 *1
[-1.13341, -0.23247, -0.90730], # C2
[-2.34661, -0.11273, -0.34544], # F1
[-0.96254, -1.50665, -1.29080], # F2
[-1.12263, 0.55028, -2.01763], # F3
[1.40566, -0.23179, -0.43131], # C3
[2.38529, 0.42340, 0.20561], # F4
[1.53256, 0.03843, -1.75538], # F5
[1.57833, -1.55153, -0.25035], # F6
[-0.27813, -0.21605, 1.52795], # C4 *10
[0.80602, -0.03759, 2.30431], # F7
[-0.58910, -1.52859, 1.53460], # F8
[-1.29323, 0.46963, 2.06735]] # F9
target_names = ['O1', 'C1', 'Q11']
# Structure A rotated and translated onto B (p onto q)
fragment_atom_names = []
for n in range(len(fragment_atoms)):
at = "C{}d".format(n)
fragment_atom_names.append(at)
fragment_atom_names = fragment_atom_names
source_atoms = [fragment_atoms[0], fragment_atoms[1], fragment_atoms[10]]
rotated_fragment, rmsd = fit_fragment(fragment_atoms, source_atoms, target_atoms)
rotated_fragment = [cart_to_frac(x, cell) for x in rotated_fragment] # back to fractional coordinates
print('Kabsch RMSD: {0:8.3}'.format(rmsd))
show_coordinates(fragment_atom_names, rotated_fragment)
if __name__ == "__main__":
mytest()
|