1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860
|
# -*- encoding: utf-8 -*-
# möp
#
# ----------------------------------------------------------------------------
# "THE BEER-WARE LICENSE" (Revision 42):
# <dkratzert@gmx.de> wrote this file. As long as you retain
# this notice you can do whatever you want with this stuff. If we meet some day,
# and you think this stuff is worth it, you can buy me a beer in return.
# Daniel Kratzert
# ----------------------------------------------------------------------------
#
import random
import string
from math import sqrt, radians, cos, sin, acos, degrees, floor
from operator import sub, add
from typing import List, Union, Optional, Iterable
from shelxfile.misc.misc import flatten, determinante
class Array(object):
"""
MIT License
Copyright (c) 2018 Jens Luebben
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
"""
__slots__ = ['values']
def __init__(self, values: Union[list, tuple]):
self.values = values
def __iter__(self) -> Iterable[Union[int, float]]:
for v in self.values:
yield v
def __len__(self) -> int:
return len(self.values)
def __hash__(self):
return hash(self.values)
def __add__(self, other: (list, 'Array')) -> 'Array':
"""
This method is optimized for speed.
"""
if isinstance(other, Array):
return Array(list(map(add, self.values, other)))
elif type(other) == float or type(other) == int:
# return Array( list(map(lambda x: x - other, self.values)) )
return Array([i + other for i in self.values])
else:
raise TypeError('Cannot add type Array to type {}.'.format(str(type(other))))
def __iadd__(self, other):
return self.__add__(other)
def __eq__(self, other):
"""
Test for equality.
"""
return all([a == b for (a, b) in zip(self.values, other.values)])
def __sub__(self, other):
"""
Subtracts eiter an Array or a value from the self Array.
This method is optimized for speed.
"""
if isinstance(other, Array):
return Array(list(map(sub, self.values, other))) # slightly faster
elif isinstance(other, float) or isinstance(other, int):
return Array([i - other for i in self.values])
else:
raise TypeError('Cannot add type Array to type {}.'.format(str(type(other))))
def __imul__(self, other):
"""
Currently supports multiplication by a number.
__imul__ means a *= b
"""
if isinstance(other, (int, float)):
self.values = [v * other for v in self.values]
return self
else:
raise TypeError('Unsupported operation.')
def __mul__(self, other: ('Array', 'Matrix')) -> (float, 'Array'):
"""
Calculates: a * b = axbx + ayby + azbz
"""
if isinstance(other, Matrix):
# Array() * Matrix()
a = other[0]
b = other[1]
c = other[2]
x = self.values[0] * a[0] + self.values[1] * b[0] + self.values[2] * c[0]
y = self.values[0] * a[1] + self.values[1] * b[1] + self.values[2] * c[1]
z = self.values[0] * a[2] + self.values[1] * b[2] + self.values[2] * c[2]
return Array([x, y, z])
else:
return self.dot(other)
def __repr__(self):
return 'Array({})'.format(str(self.values))
def __getitem__(self, val):
"""
Get one item from the array.
"""
return self.values[val]
def __setitem__(self, pos, val):
"""
Get one item from the array.
"""
self.values[pos] = val
def norm(self):
"""
The squared lenght of an array
"""
return sum([n ** 2 for n in self.values])
def normalized(self):
"""
Euclidean norm (straight-line distance) of a vector array.
"""
return sqrt(self.norm())
@staticmethod
def zero(m: int) -> 'Array':
"""
Create zero Array of dimension m
"""
return Array([0.0 for _ in range(m)])
@staticmethod
def randarray(m: int) -> 'Array':
"""
Create random Array of dimension m
"""
return Array([random.randint(1, 99) for _ in range(m)])
@property
def floor(self):
return Array(list(map(floor, self.values)))
def dot(self, other: 'Array') -> float:
"""
Dot product of an array in kartesian space.
"""
if len(self) != len(other):
raise ValueError('Vector sizes must match')
return sum([i * j for i, j in zip(self, other)])
def cross(self, other: 'Array') -> 'Array':
"""
Cross product of the Array (currently only for 3D vectors).
"""
if len(self) != len(other) != 3:
raise ValueError('For 3D vectors only')
a1, a2, a3 = self
b1, b2, b3 = other
return Array([(a2 * b3 - a3 * b2), (a3 * b1 - a1 * b3), (a1 * b2 - a2 * b1)])
def angle(self, other: 'Array') -> float:
"""
Calculates the angle between two vectors.
"""
return round(degrees(acos(self.dot(other) / (self.normalized() * other.normalized()))), 9)
class Matrix(object):
"""
MIT License
Copyright (c) 2018 Jens Luebben
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
DK: Missing: inverse, eigenvalues
"""
__slots__ = ['values', 'shape', 'rows', 'columns']
def __init__(self, values):
self.shape = (len(values[0]), len(values))
self.rows = len(values[0])
self.columns = len(values)
self.values = values
def __getitem__(self, val):
"""
"""
if isinstance(val, (tuple, list)):
if len(val) == 1:
return self.values[val[0]]
return self.values[val[1]][val[0]]
else:
return self.values[val]
def __repr__(self):
rows = ''
for row in self.values:
rows += '|' + ' '.join(['{:>7.4f}'.format(float(x)) for x in row]) + '|' + '\n'
return rows
def __add__(self, other: (list, 'Matrix')) -> 'Matrix':
"""
Matrix addition
"""
if isinstance(other, Array):
if len(self) != len(other):
raise ValueError('Matrix and Array are not of equal length.')
return Matrix(
[[sum(e1, e2) for e1, e2 in zip(row1, row2)] for row1, row2 in zip(self.values, other.values)])
elif isinstance(other, (float, int)):
return Matrix([[x + other for x in i] for i in self.values])
elif isinstance(other, Matrix):
return Matrix([[e1 + e2 for e1, e2 in zip(row1, row2)] for row1, row2 in zip(self.values, other.values)])
else:
raise TypeError('Cannot add type {} Array to Matrix.'.format(str(type(other))))
def __mul__(self, other: ('Matrix', 'Array', int, float)) -> ('Matrix', 'Array'):
"""
a * b operation
"""
if isinstance(other, (int, float)):
return Matrix([[v * other for v in row] for row in self.values])
elif isinstance(other, (Matrix, OrthogonalMatrix)):
return Matrix([[sum(ea * eb for ea, eb in zip(a, b)) for b in other.values] for a in self.values])
elif isinstance(other, Array):
return Array([sum([b * x for (b, x) in zip(other.values, row)]) for row in self.values])
else:
raise TypeError('Cannot add type {} to Matrix.'.format(str(type(other))))
def __len__(self):
return self.shape[1]
def __iter__(self) -> Iterable[List[float]]:
for n in self.values:
yield n
def __eq__(self, other):
"""
Test for equality.
"""
return all([b == x for (b, x) in zip(other.values, self.values)])
def __sub__(self, other):
"""
Substract two matrices.
"""
output = []
for idx in range(len(self)):
tmp = []
for val_a, val_b in zip(self[idx], other[idx]):
tmp.append(val_a - val_b)
output.append(tmp[:])
return output[:]
def __truediv__(self, other: Union['Matrix', float, int]):
"""
#>>> Matrix([[1, 2, 3], [1, 2, 3], [1, 2, 3]]) / Matrix([[1, 2, 3], [1, 2, 3], [1, 2, 3]])
A / B = A * B^-1
"""
if isinstance(other, Matrix):
return self * other.inversed
elif isinstance(other, (int, float)):
return Matrix([[v / other for v in row] for row in self.values])
else:
raise NotImplementedError
def __setitem__(self, key, value):
# TODO: Implement setitem
pass
@property
def T(self):
return self.transposed
@property
def transposed(self) -> 'Matrix':
"""
transposes a matrix
"""
return Matrix(list(zip(*self.values)))
@property
def transposed_alt(self) -> 'Matrix':
"""
Transposes the current matrix.
"""
rows = []
for i in range(self.shape[0]):
rows.append([r[i] for r in self.values])
return Matrix(rows)
@property
def trace(self):
return self.values[0][0] + self.values[1][1] + self.values[2][2]
def dot(self, other):
"""
Dot product of two matrices.
"""
result = [[sum(a * b for a, b in zip(x_row, y_col)) for y_col in zip(*other)] for x_row in self]
return Matrix(result)
@staticmethod
def zero(m: int, n: int) -> 'Matrix':
"""
Create zero matrix of dimension m,n
"""
return Matrix([[0.0 for _ in range(n)] for _ in range(m)])
@staticmethod
def randmat(m: int, n: int) -> 'Matrix':
"""
Create random matrix of dimension m, n (rows, columns)
#>>> Matrix.randmat(5, 3)
| 2.000 1.000 2.000|
| 8.000 1.000 2.000|
| 3.000 5.000 1.000|
| 4.000 1.000 9.000|
| 2.000 8.000 4.000|
<BLANKLINE>
"""
return Matrix([[random.randint(1, 99) for _ in range(n)] for _ in range(m)])
def cholesky(self) -> 'Matrix':
"""
"""
L = Matrix.zero(*self.shape)
for i, (ai, li) in enumerate(zip(self.values, L.values)):
for j, lj in enumerate(L.values[:i + 1]):
s = sum(li[k] * lj[k] for k in range(j))
li[j] = sqrt(ai[i] - s) if (i == j) else (1.0 / lj[j] * (ai[j] - s))
return L
@property
def inversed(self) -> 'Matrix':
"""
Inversion of 3 × 3 matrices
"""
if self.shape != (3, 3):
raise ValueError('Inversion is only valid for 3x3 Matrix.')
d = self.det
m1, m2, m3, m4, m5, m6, m7, m8, m9 = flatten(self.values)
inv = Matrix([[(m5 * m9 - m6 * m8) / d, (m3 * m8 - m2 * m9) / d, (m2 * m6 - m3 * m5) / d],
[(m6 * m7 - m4 * m9) / d, (m1 * m9 - m3 * m7) / d, (m3 * m4 - m1 * m6) / d],
[(m4 * m8 - m5 * m7) / d, (m2 * m7 - m1 * m8) / d, (m1 * m5 - m2 * m4) / d]])
return inv
@property
def det(self):
"""
Return determinant of 3x3 matrix.
"""
return determinante(self.values)
@property
def norm(self):
return self.frobenius_norm()
def frobenius_norm(self):
# To store the sum of squares of the
# elements of the given matrix
sumSq = 0
for i in range(self.rows):
for j in range(self.columns):
sumSq += pow(self[i][j], 2)
# Return the square root of
# the sum of squares
return sqrt(sumSq)
def power_iteration(self, num_simulations=10):
"""
Eigenvalue algorythm from https://en.wikipedia.org/wiki/Power_iteration
This does not work. DK
"""
# Ideally choose a random vector
# To decrease the chance that our vector
# Is orthogonal to the eigenvector
b_k = Matrix.randmat(self.rows, self.columns)
for _ in range(num_simulations):
# calculate the matrix-by-vector product Ab
b_k1 = self.dot(b_k)
# calculate the norm
b_k1_norm = b_k1.norm
# re normalize the vector
b_k = b_k1 / b_k1_norm
return b_k
class SymmetryElement(object):
"""
Class representing a symmetry operation.
"""
symm_id = 1
__slots__ = ['centric', 'symms', 'ID', 'matrix', 'trans']
def __init__(self, symms, centric=False):
"""
Constructor.
"""
self.centric = centric
self.symms = symms
self.ID = SymmetryElement.symm_id
SymmetryElement.symm_id += 1
lines = []
trans = []
for symm in self.symms:
line, t = self._parse_line(symm)
lines.append(line)
trans.append(t)
self.matrix = Matrix(lines).transposed
self.trans = Array(trans)
if centric:
self.matrix *= -1
self.trans *= -1
def __str__(self):
string = "|{aa:2} {ab:2} {ac:2}| |{v:>4.2}|\n" \
"|{ba:2} {bb:2} {bc:2}| + |{vv:>4.2}|\n" \
"|{ca:2} {cb:2} {cc:2}| |{vvv:>4.2}|\n".format(aa=self.matrix[0, 0],
ab=self.matrix[0, 1],
ac=self.matrix[0, 2],
ba=self.matrix[1, 0],
bb=self.matrix[1, 1],
bc=self.matrix[1, 2],
ca=self.matrix[2, 0],
cb=self.matrix[2, 1],
cc=self.matrix[2, 2],
v=float(self.trans[0]),
vv=float(self.trans[1]),
vvv=float(self.trans[2]))
return string
def __repr__(self):
return self.to_shelxl()
def __eq__(self, other):
"""
Check two SymmetryElement instances for equivalence.
Note that differences in lattice translation are ignored.
:param other: SymmetryElement instance
:return: True/False
"""
m = (self.matrix == other.matrix)
t1 = Array([v % 1 for v in self.trans])
t2 = Array([v % 1 for v in other.trans])
t = (t1 == t2)
return m and t
def __sub__(self, other):
"""
Computes and returns the translational difference between two SymmetryElements. Returns 999.0 if the elements
cannot be superimposed via an integer shift of the translational parts.
:param other: SymmetryElement instance
:return: float
"""
if self != other:
return 999.0
return self.trans - other.trans
def apply_latt_symm(self, latt_symm):
"""
Copies SymmetryElement instance and returns the copy after applying the translational part of 'lattSymm'.
:param latt_symm: SymmetryElement.
:return: SymmetryElement.
"""
new_symm = SymmetryElement(self.to_shelxl().split(','))
new_symm.trans = Array([(self.trans[0] + latt_symm.trans[0]) / 1,
(self.trans[1] + latt_symm.trans[1]) / 1,
(self.trans[2] + latt_symm.trans[2]) / 1])
new_symm.centric = self.centric
return new_symm
def to_shelxl(self):
"""
Generate and return string representation of Symmetry Operation in Shelxl syntax.
:return: string.
"""
axes = ['X', 'Y', 'Z']
lines = []
for i in range(3):
text = str(self.trans[i]) if self.trans[i] else ''
for j in range(3):
s = '' if not self.matrix[i, j] else axes[j]
if self.matrix[i, j] < 0:
s = '-' + s
elif s:
s = '+' + s
text += s
lines.append(text)
return ', '.join(lines)
def _parse_line(self, symm):
symm = symm.upper().replace(' ', '')
chars = ['X', 'Y', 'Z']
line = []
for char in chars:
element, symm = self._partition(symm, char)
line.append(element)
if symm:
trans = self._float(symm)
else:
trans = 0
return line, trans
def _float(self, string):
try:
return float(string)
except ValueError:
if '/' in string:
string = string.replace('/', './') + '.'
return eval('{}'.format(string))
def _partition(self, symm, char):
parts = symm.partition(char)
if parts[1]:
if parts[0]:
sign = parts[0][-1]
else:
sign = '+'
if sign == '-':
return -1, ''.join((parts[0][:-1], parts[2]))
else:
return 1, ''.join((parts[0], parts[2])).replace('+', '')
else:
return 0, symm
# End of work by Jens Lübben #############
def my_isnumeric(value: str):
"""
Determines if a string can be converted to a number.
"""
try:
float(value)
except ValueError:
return False
return True
def mean(values):
"""
returns mean value of a list of numbers
"""
return sum(values) / float(len(values))
def median(nums):
"""
calculates the median of a list of numbers
"""
ls = sorted(nums)
n = len(ls)
if n == 0:
raise ValueError("Need a non-empty iterable")
# for uneven list length:
elif n % 2 == 1:
# // is floordiv:
return ls[n // 2]
else:
return sum(ls[int(int(n) / 2 - 1):int(int(n) / 2 + 1)]) / 2.0
def std_dev(data: List) -> float:
"""
returns standard deviation of values rounded to pl decimal places
S = sqrt( (sum(x-xm)^2) / n-1 )
xm = sum(x)/n
:param data: list with integer or float values
"""
if len(data) == 0:
return 0
K = data[0]
n = 0
summ = 0
sum_sqr = 0
for x in data:
n += 1
summ += x - K
sum_sqr += (x - K) * (x - K)
variance = (sum_sqr - (summ * summ) / n) / (n - 1)
# use n instead of (n-1) if want to compute the exact variance of the given data
# use (n-1) if data are samples of a larger population
return sqrt(variance)
def nalimov_test(data):
"""
returns a index list of outliers base on the Nalimov test for data.
Modified implementation of:
"R. Kaiser, G. Gottschalk, Elementare Tests zur Beurteilung von Messdaten
Bibliographisches Institut, Mannheim 1972."
"""
# q-values for degrees of freedom:
f = {1 : 1.409, 2: 1.645, 3: 1.757, 4: 1.814, 5: 1.848, 6: 1.870, 7: 1.885, 8: 1.895,
9 : 1.903, 10: 1.910, 11: 1.916, 12: 1.920, 13: 1.923, 14: 1.926, 15: 1.928,
16: 1.931, 17: 1.933, 18: 1.935, 19: 1.936, 20: 1.937, 30: 1.945}
fact = sqrt(float(len(data)) / (len(data) - 1))
fval = len(data) - 2
if fval < 2:
return []
outliers = []
if fval in f:
# less strict than the original:
q_crit = f[fval]
else:
q_crit = 1.95
for num, i in enumerate(data):
q = abs(((i - median(data)) / std_dev(data)) * fact)
if q > q_crit:
outliers.append(num)
return outliers
def id_generator(size=6, chars=string.ascii_uppercase + string.digits):
"""
returns a random ID like 'L5J74W'
:param size: length of the string
:type size: integer
:param chars: characters used for the ID
:type chars: string
"""
return ''.join(random.choice(chars) for _ in range(size))
def atomic_distance(p1: List, p2: List, cell=None, shortest_dist=False):
"""
p1 and p2 are x, y , z coordinates as list ['x', 'y', 'z']
cell are the cell parameters as list: ['a', 'b', 'c', 'alpha', 'beta', 'gamma']
Returns the distance between the two points (Atoms). If shortest_dist is True, the
shortest distance ignoring translation is computed.
"""
a, b, c, al, be, ga = 1, 1, 1, 1, 1, 1
if cell:
a, b, c = cell[:3]
al = radians(cell[3])
be = radians(cell[4])
ga = radians(cell[5])
if shortest_dist:
x1, y1, z1 = [x + 99.5 for x in p1]
x2, y2, z2 = [x + 99.5 for x in p2]
dx = (x1 - x2) % 1 - 0.5
dy = (y1 - y2) % 1 - 0.5
dz = (z1 - z2) % 1 - 0.5
else:
x1, y1, z1 = p1
x2, y2, z2 = p2
dx = (x1 - x2)
dy = (y1 - y2)
dz = (z1 - z2)
if cell:
return sqrt((a * dx) ** 2 + (b * dy) ** 2 + (c * dz) ** 2 + 2 * b * c * cos(al) * dy * dz +
2 * dx * dz * a * c * cos(be) + 2 * dx * dy * a * b * cos(ga))
else:
return sqrt(dx ** 2 + dy ** 2 + dz ** 2)
def dice_coefficient(a, b, case_insens=True):
"""
:type a: str
:type b: str
:type case_insens: bool
dice coefficient 2nt/na + nb.
https://en.wikibooks.org/wiki/Algorithm_Implementation/Strings/Dice%27s_coefficient#Python
"""
if case_insens:
a = a.lower()
b = b.lower()
if not len(a) or not len(b):
return 0.0
if len(a) == 1:
a = a + u'.'
if len(b) == 1:
b = b + u'.'
a_bigram_list = []
for i in range(len(a) - 1):
a_bigram_list.append(a[i:i + 2])
b_bigram_list = []
for i in range(len(b) - 1):
b_bigram_list.append(b[i:i + 2])
a_bigrams = set(a_bigram_list)
b_bigrams = set(b_bigram_list)
overlap = len(a_bigrams & b_bigrams)
dice_coeff = overlap * 2.0 / (len(a_bigrams) + len(b_bigrams))
return round(dice_coeff, 6)
def dice_coefficient2(a, b, case_insens=True):
"""
:type a: str
:type b: str
:type case_insens: bool
duplicate bigrams in a word should be counted distinctly
(per discussion), otherwise 'AA' and 'AAAA' would have a
dice coefficient of 1...
https://en.wikibooks.org/wiki/Algorithm_Implementation/Strings/Dice%27s_coefficient#Python
This implementation is reverse. 1 means not hit, 0 means best match
"""
if case_insens:
a = a.lower()
b = b.lower()
if not len(a) or not len(b):
return 1.0
# quick case for true duplicates
if a == b:
return 0.0
# if a != b, and a or b are single chars, then they can't possibly match
if len(a) == 1 or len(b) == 1:
return 1.0
# use python list comprehension, preferred over list.append()
a_bigram_list = [a[i:i + 2] for i in range(len(a) - 1)]
b_bigram_list = [b[i:i + 2] for i in range(len(b) - 1)]
a_bigram_list.sort()
b_bigram_list.sort()
# assignments to save function calls
lena = len(a_bigram_list)
lenb = len(b_bigram_list)
# initialize match counters
matches = i = j = 0
while i < lena and j < lenb:
if a_bigram_list[i] == b_bigram_list[j]:
matches += 2
i += 1
j += 1
elif a_bigram_list[i] < b_bigram_list[j]:
i += 1
else:
j += 1
score = float(matches) / float(lena + lenb)
score = 1 - score
return round(score, 6)
def levenshtein(s1, s2):
"""
The levensteins distance of two strings.
"""
s1 = s1.lower()
s2 = s2.lower()
if len(s1) < len(s2):
return levenshtein(s2, s1)
if len(s2) == 0:
return len(s1)
previous_row = list(range(len(s2) + 1))
for i, c1 in enumerate(s1):
current_row = [i + 1]
for j, c2 in enumerate(s2):
# j+1 instead of j since previous_row and current_row are one character longer:
insertions = previous_row[j + 1] + 1
deletions = current_row[j] + 1 # than s2
substitutions = previous_row[j] + (c1 != c2)
current_row.append(min(insertions, deletions, substitutions))
previous_row = current_row
return previous_row[-1]
def distance(x1, y1, z1, x2, y2, z2, round_out=False):
"""
distance between two points in space for orthogonal axes.
"""
import math as m
d = m.sqrt((x1 - x2) ** 2 + (y1 - y2) ** 2 + (z1 - z2) ** 2)
if round_out:
return round(d, round_out)
else:
return d
def vol_unitcell(a, b, c, al, be, ga):
"""
calculates the volume of a unit cell
"""
ca, cb, cg = cos(radians(al)), cos(radians(be)), cos(radians(ga))
v = a * b * c * sqrt(1 + 2 * ca * cb * cg - ca ** 2 - cb ** 2 - cg ** 2)
return v
class OrthogonalMatrix():
"""
Orthogonalization matrix used to convert fractional coordinates to cartesian.
"""
def __init__(self, a, b, c, alpha, beta, gamma):
self.a, self.b, self.c = a, b, c
self.V = vol_unitcell(a, b, c, alpha, beta, gamma)
self.alpha = radians(alpha)
self.beta = radians(beta)
self.gamma = radians(gamma)
self.m = Matrix(((self.a, self.b * cos(self.gamma), self.c * cos(self.beta)),
(0, self.b * sin(self.gamma),
(self.c * (cos(self.alpha) - cos(self.beta) * cos(self.gamma)) / sin(self.gamma))),
(0, 0, self.V / (self.a * self.b * sin(self.gamma)))))
self.metric_matrix = self.transposed.dot(self.m)
self._inversed: Optional[Matrix] = None
def __mul__(self, other: Array) -> Array:
"""
To convert from fractional to cartesian.
"""
return self.m * other
@property
def inversed(self):
"""
To convert from cartesian to fractional.
"""
if not self._inversed:
self._inversed = self.m.inversed
return self._inversed
else:
return self._inversed
@property
def transposed(self):
return self.m.transposed
# noinspection PyPep8Naming
@property
def T(self):
return self.m.transposed
@property
def values(self):
return self.m.values
def almost_equal(a: Union[int, float], b: Union[int, float], places=3) -> float:
"""
Returns True or False if the numbers a and b are equal inside the
decimal places "places".
"""
return round(abs(a - b), places) == 0
|