File: sdm.py

package info (click to toggle)
python-shelxfile 21-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 6,640 kB
  • sloc: python: 6,331; sh: 11; makefile: 5
file content (406 lines) | stat: -rw-r--r-- 16,291 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
# -*- encoding: utf-8 -*-
# möp
#
# ----------------------------------------------------------------------------
# "THE BEER-WARE LICENSE" (Revision 42):
# <dkratzert@gmx.de> wrote this file. As long as you retain
# this notice you can do whatever you want with this stuff. If we meet some day,
# and you think this stuff is worth it, you can buy me a beer in return.
# Daniel Kratzert
# ----------------------------------------------------------------------------
#
import time
from math import sqrt, radians, sin
from pathlib import Path
from string import ascii_letters

from shelxfile.atoms.atom import Atom
from shelxfile.misc.dsrmath import Array, Matrix, vol_unitcell
from shelxfile.misc.misc import wrap_line
from shelxfile.shelx.cards import AFIX, RESI


class SDMItem(object):
    __slots__ = ['dist', 'atom1', 'atom2', 'a1', 'a2', 'symmetry_number', 'covalent', 'dddd']

    def __init__(self):
        self.dist = 0.0
        self.atom1 = None
        self.a1 = 0
        self.atom2 = None
        self.a2 = 0
        self.symmetry_number = 0
        self.covalent = True
        self.dddd = 0

    def __lt__(self, a2):
        return True if self.dist < a2.dist else False

    def __eq__(self, other: 'SDMItem'):
        if other.a1 == self.a2 and other.a2 == self.a1:
            return True
        return False

    def __repr__(self):
        return '{} {} dist: {:.6} coval: {} sn: {}  {}\n'.format(self.a1, self.a2,
                                                                 self.dist, self.covalent,
                                                                 self.symmetry_number, self.dddd)


class SDM():
    """
    This class calculates the shortest distance matrix and creates a completed (grown) structure by crystal symmetry.
    """

    def __init__(self, shx: 'Shelxfile'):
        self.shx = shx
        self.cell = (
            self.shx.cell.a, self.shx.cell.b, self.shx.cell.c, self.shx.cell.alpha, self.shx.cell.beta, self.shx.cell.gamma)
        self.aga = self.shx.cell.a * self.shx.cell.b * self.shx.cell.cosga
        self.bbe = self.shx.cell.a * self.shx.cell.c * self.shx.cell.cosbe
        self.cal = self.shx.cell.b * self.shx.cell.c * self.shx.cell.cosal
        self.sdm_list = []  # list of sdmitems
        self.maxmol = 1
        self.sdmtime = 0
        self.bondlist = []
        self.asq = self.shx.cell[0] ** 2
        self.bsq = self.shx.cell[1] ** 2
        self.csq = self.shx.cell[2] ** 2
        # calculate reciprocal lattice vectors:
        self.astar = (self.shx.cell.b * self.shx.cell.c * sin(radians(self.shx.cell.alpha))) / self.shx.cell.V
        self.bstar = (self.shx.cell.c * self.shx.cell.a * sin(radians(self.shx.cell.beta))) / self.shx.cell.V
        self.cstar = (self.shx.cell.a * self.shx.cell.b * sin(radians(self.shx.cell.gamma))) / self.shx.cell.V

    def calc_sdm(self) -> list:
        t1 = time.perf_counter()
        all_atoms = self.shx.atoms.all_atoms
        self.bondlist.clear()
        for i, at1 in enumerate(all_atoms):
            prime_array = [Array(at1.frac_coords) * symop.matrix + symop.trans for symop in self.shx.symmcards]
            for j, at2 in enumerate(all_atoms):
                mind = 1000000
                hma = False
                sdm_item = SDMItem()
                for n, symop in enumerate(self.shx.symmcards):
                    D = prime_array[n] - Array(at2.frac_coords) + 0.5
                    dp = [v - 0.5 for v in D - D.floor]
                    dk = self.vector_length(*dp)
                    if dk > 5.3:
                        continue
                    if n:
                        dk += 0.0001
                    if (dk > 0.01) and (mind >= dk):
                        mind = min(dk, mind)
                        sdm_item.dist = mind
                        sdm_item.atom1 = at1
                        sdm_item.atom2 = at2
                        sdm_item.a1 = i
                        sdm_item.a2 = j
                        sdm_item.symmetry_number = n
                        hma = True
                if not sdm_item.atom1:
                    # Do not grow grown atoms:
                    continue
                if (not sdm_item.atom1.ishydrogen and not sdm_item.atom2.ishydrogen) and \
                        sdm_item.atom1.part.n * sdm_item.atom2.part.n == 0 \
                        or sdm_item.atom1.part.n == sdm_item.atom2.part.n:
                    dddd = (at1.radius + at2.radius) * 1.2
                    sdm_item.dddd = dddd
                else:
                    dddd = 0.0
                if sdm_item.dist < dddd:
                    if hma:
                        # self.bondlist.append((i, j, sdm_item.atom1.name, sdm_item.atom2.name, sdm_item.dist))
                        sdm_item.covalent = True
                else:
                    sdm_item.covalent = False
                if hma:
                    self.sdm_list.append(sdm_item)
        t2 = time.perf_counter()
        self.sdmtime = t2 - t1
        if self.shx.debug:
            print('Zeit sdm_calc:', self.sdmtime)
        self.sdm_list.sort()
        print(len(self.sdm_list))
        self.calc_molindex(all_atoms)
        need_symm = self.collect_needed_symmetry()
        if self.shx.debug:
            print("The asymmetric unit contains {} fragments.".format(self.maxmol))
        return need_symm

    def collect_needed_symmetry(self) -> list:
        need_symm = []
        # Collect needsymm list:
        for sdm_item in self.sdm_list:
            if sdm_item.covalent:
                # all_atoms[sdm_item.a1].molindex < 1 ...
                if sdm_item.atom1.molindex < 1 or sdm_item.atom1.molindex > 6:
                    continue
                for n, symop in enumerate(self.shx.symmcards):
                    if sdm_item.atom1.part.n != 0 and sdm_item.atom2.part.n != 0 \
                            and sdm_item.atom1.part.n != sdm_item.atom2.part.n:
                        # both not part 0 and different part numbers
                        continue
                    # Both the same atomic number and number hydrogen:
                    if sdm_item.atom1.an == sdm_item.atom2.an and sdm_item.atom1.ishydrogen:
                        continue
                    prime = Array(sdm_item.atom1.frac_coords) * symop.matrix + symop.trans
                    D = prime - Array(sdm_item.atom2.frac_coords) + Array([0.5, 0.5, 0.5])
                    floor_d = D.floor
                    dp = D - floor_d - Array([0.5, 0.5, 0.5])
                    if n == 0 and Array([0, 0, 0]) == floor_d:
                        continue
                    dk = self.vector_length(*dp)
                    dddd = sdm_item.dist + 0.2
                    if sdm_item.atom1.ishydrogen and sdm_item.atom2.ishydrogen:
                        dddd = 1.8
                    if (dk > 0.001) and (dddd >= dk):
                        bs = [n + 1, (5 - floor_d[0]), (5 - floor_d[1]), (5 - floor_d[2]), sdm_item.atom1.molindex]
                        if bs not in need_symm:
                            need_symm.append(bs)
        return need_symm

    def calc_molindex(self, all_atoms):
        # Start for George's "bring atoms together algorithm":
        someleft = 1
        nextmol = 1
        for at in all_atoms:
            at.molindex = -1
        all_atoms[0].molindex = 1
        while nextmol:
            someleft = 1
            nextmol = 0
            while someleft:
                someleft = 0
                for sdm_item in self.sdm_list:
                    if sdm_item.covalent and sdm_item.atom1.molindex * sdm_item.atom2.molindex < 0:
                        sdm_item.atom1.molindex = self.maxmol
                        sdm_item.atom2.molindex = self.maxmol
                        someleft += 1
            for ni, at in enumerate(all_atoms):
                if not at.ishydrogen and at.molindex < 0:
                    nextmol = ni
                    break
            if nextmol:
                self.maxmol += 1
                all_atoms[nextmol].molindex = self.maxmol

    def vector_length(self, x: float, y: float, z: float) -> float:
        """
        Calculates the vector length given in fractional coordinates.
        """
        A = 2.0 * (x * y * self.aga + x * z * self.bbe + y * z * self.cal)
        return sqrt(x ** 2 * self.asq + y ** 2 * self.bsq + z ** 2 * self.csq + A)

    def packer(self, sdm: 'SDM', need_symm: list, with_qpeaks=False):
        """
        Packs atoms of the asymmetric unit to real molecules.
        """
        # t1 = time.perf_counter()
        asymm = self.shx.atoms.all_atoms
        if with_qpeaks:
            showatoms = asymm[:]
        else:
            showatoms = [at for at in asymm if not at.qpeak]
        for symm in need_symm:
            symm_num, h, k, l, symmgroup = symm
            h -= 5
            k -= 5
            l -= 5
            symm_num -= 1
            for atom in asymm:
                if not with_qpeaks and atom.qpeak:
                    continue
                # Essential to have hydrogen atoms grown:
                # if not atom.ishydrogen and atom.molindex == symmgroup:
                if atom.molindex == symmgroup:
                    new_atom = Atom(self.shx)
                    if atom.qpeak:
                        continue
                    else:
                        pass
                        uvals = atom.uvals
                        # TODO: Transform u values according to symmetry:
                        # currently, the adps are directed in wrong directions after after applying symmetry to atoms.
                        # uvals = self.transform_uvalues(uvals, symm_num)
                    new_atom.set_atom_parameters(
                        name=atom.name[:3] + ">>" + str(symm_num) + '_' + ascii_letters[atom.part.n],
                        sfac_num=atom.sfac_num,
                        coords=Array(atom.frac_coords) * self.shx.symmcards[symm_num].matrix
                               + Array(self.shx.symmcards[symm_num].trans) + Array([h, k, l]),
                        part=atom.part,
                        afix=AFIX(self.shx, (atom.afix).split()) if atom.afix else None,
                        resi=RESI(self.shx, (f'RESI {atom.resinum} {atom.resiclass}').split()) if atom.resi else None,
                        site_occupation=atom.sof,
                        uvals=uvals,
                        symmgen=True
                    )
                    isthere = False
                    if new_atom.part.n >= 0:
                        for atom in showatoms:
                            if atom.part.n != new_atom.part.n:
                                continue
                            length = sdm.vector_length(new_atom.x - atom.x,
                                                       new_atom.y - atom.y,
                                                       new_atom.z - atom.z)
                            if length < 0.2:
                                isthere = True
                    if not isthere:
                        showatoms.append(new_atom)
                # elif grow_qpeaks:
                #    add q-peaks here
        # t2 = time.perf_counter()
        # print('packzeit:', t2-t1) # 0.04s
        return showatoms

    def transform_uvalues(self, uvals: (list, tuple), symm_num: int):
        """
        Transforms the Uij values according to local symmetry.
        R. W. Grosse-Kunstleve, P. D. Adams (2002). J. Appl. Cryst. 35, 477–480.
        http://dx.doi.org/10.1107/S0021889802008580

        U(star) = N * U(cif) * N.T
        U(star) = R * U(star) * R^t
        U(cif) = N^-1 * U(star) * (N^-1).T

        U(cart) = A * U(star) * A.T
        U(frac) = A^1 * U(cart) * (A^1).t
        U(star) = A^-1 * U(cart) * A^-1.t

        R is the rotation part of a given symmetry operation

        [ [U11, U12, U13]
          [U12, U22, U23]
          [U13, U23, U33]
        ]
        # Shelxl uses U* with a*,b*c*-parameterization
        atomname sfac x y z sof[11] U[0.05] or U11 U22 U33 U23 U13 U12

        Read:
        X-Ray Analysis and the Structure of Organic Molecules Second Edition, Dunitz, P240

        """
        U11, U22, U33, U23, U13, U12 = uvals
        U21 = U12
        U32 = U23
        U31 = U13
        Ucif = Matrix([[U11, U12, U13], [U21, U22, U23], [U31, U32, U33]])
        # matrix with the reciprocal lattice vectors:
        N = Matrix([[self.astar, 0, 0],
                    [0, self.bstar, 0],
                    [0, 0, self.cstar]])
        R = self.shx.symmcards[symm_num].matrix
        R_t = self.shx.symmcards[symm_num].matrix.transposed
        A = self.shx.orthogonal_matrix
        # U(star) = N * U(cif) * N.T
        # U(cart) = A * U(star) * A.T
        # U(star) = R * U(star) * R^t
        # U(cif) = N^-1 * U(star) * (N^-1).T
        # U(star) = A^-1 * U(cart) * A^-1.T
        Ustar = N * Ucif * N.T
        Ustar = R * Ustar * R_t
        Ucif = N.inversed * Ustar * N.inversed.T
        uvals = Ucif
        upper_diagonal = uvals.values[0][0], uvals.values[1][1], uvals.values[2][2], \
                         uvals.values[1][2], uvals.values[0][2], \
                         uvals.values[0][1]
        return upper_diagonal


def ufrac_to_ucart(A, cell, uvals):
    """
    #>>> uvals = [0.07243, 0.03058, 0.03216, -0.01057, -0.01708, 0.03014]
    #>>> Ucart = Matrix([[ 0.0754483395556807,  0.030981701122469,  -0.0194466522033868], [  0.030981701122469,  0.03058, -0.01057], [-0.0194466522033868, -0.01057, 0.03216] ])
    #>>> cell = (10.5086, 20.9035, 20.5072, 90, 94.13, 90)
    #>>> from shelxfile.dsrmath import OrthogonalMatrix
    #>>> A = OrthogonalMatrix(*cell)
    #>>> ufrac_to_ucart(A, cell, uvals)
    #TODO: test if this is right:
    | 0.0740  0.0310 -0.0299|
    | 0.0302  0.0306 -0.0148|
    |-0.0171 -0.0106  0.0346|
    <BLANKLINE>
    """
    U11, U22, U33, U23, U13, U12 = uvals
    U21 = U12
    U32 = U23
    U31 = U13
    Uij = Matrix([[U11, U12, U13], [U21, U22, U23], [U31, U32, U33]])
    a, b, c, alpha, beta, gamma = cell
    V = vol_unitcell(*cell)
    # calculate reciprocal lattice vectors:
    astar = (b * c * sin(radians(alpha))) / V
    bstar = (c * a * sin(radians(beta))) / V
    cstar = (a * b * sin(radians(gamma))) / V
    # matrix with the reciprocal lattice vectors:
    N = Matrix([[astar, 0, 0],
                [0, bstar, 0],
                [0, 0, cstar]])
    # Finally transform Uij values from fractional to cartesian axis system:
    Ucart = A * N * Uij * N.T * A.T
    return Ucart


if __name__ == "__main__":
    from shelxfile.shelx.shelx import Shelxfile

    shx = Shelxfile()
    shx.read_file('tests/resources/p-31c.res')
    t1 = time.perf_counter()
    sdm = SDM(shx)
    needsymm = sdm.calc_sdm()
    print('sdmlist:', len(sdm.sdm_list))
    print(needsymm)
    packed_atoms = sdm.packer(sdm, needsymm)
    print('Zeit für sdm:', round(time.perf_counter() - t1, 3), 's')
    # p-31c: [[2, 6, 5, 5, 5], [3, 6, 6, 5, 5], [2, 6, 6, 5, 3], [3, 5, 6, 5, 3], [2, 5, 5, 5, 4], [3, 5, 5, 5, 4]]
    # print(len(shx.atoms))
    # print(len(packed_atoms))

    head = """
REM Solution 1  R1  0.081,  Alpha = 0.0146  in P31c
REM Flack x = -0.072 ( 0.041 ) from Parsons' quotients
REM C19.667 N2.667 P4
TITL p-31c-neu in P-31c
CELL  0.71073  12.5067  12.5067  24.5615   90.000   90.000  120.000
ZERR   2   0.0043   0.0043   0.0085   0.000   0.000   0.000
LATT -1
SFAC C H N P Cl
UNIT 120 186 14 12 12
TEMP -173.000
OMIT 0   0   2
L.S. 10
BOND $H
ACTA
CONF

LIST 4
FMAP 2
PLAN 40
WGHT    0.034600    0.643600
FVAR       0.22604   0.76052   0.85152\n"""

    tail = """\n
HKLF 4
 
REM  p-31c-neu in P-31c
REM R1 =  0.0308 for    4999 Fo > 4sig(Fo)  and  0.0343 for all    5352 data
REM    287 parameters refined using    365 restraints
 
END 
 
WGHT      0.0348      0.6278 
"""
    for at in packed_atoms:
        if at.qpeak:
            continue
        # print(wrap_line(str(at)))
        head += wrap_line(str(at)) + '\n'
    head += tail
    p = Path('./test.res')
    p.write_text(head)
    print(len(shx.atoms))
    print(len(packed_atoms))
    print('Zeit für sdm:', round(sdm.sdmtime, 3), 's')
    # print(sdm.bondlist)
    # print(len(sdm.bondlist), '(170) Atome in p-31c.res, (208) in I-43d.res')