1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394
|
# -*- coding: utf-8 -*-
"""
Tools for tracking provenance within HDF5 files
Created on Tue Nov 3 21:14:25 2015
@author: Suhas Somnath, Chris Smith
"""
from __future__ import division, print_function, absolute_import, \
unicode_literals
import sys
from warnings import warn
import h5py
import numpy as np
if sys.version_info.major == 3:
from collections.abc import Iterable
unicode = str
else:
from collections import Iterable
from sidpy.base.string_utils import validate_single_string_arg
from sidpy.hdf.hdf_utils import get_attr, write_book_keeping_attrs, \
write_simple_attrs
def assign_group_index(h5_parent_group, base_name, verbose=False):
"""
Searches the parent h5 group to find the next available index for the group
Parameters
----------
h5_parent_group : :class:`h5py.Group` object
Parent group under which the new group object will be created
base_name : str or unicode
Base name of the new group without index
verbose : bool, optional. Default=False
Whether or not to print debugging statements
Returns
-------
base_name : str or unicode
Base name of the new group with the next available index as a suffix
"""
if not isinstance(h5_parent_group, h5py.Group):
raise TypeError('h5_parent_group should be a h5py.Group object')
base_name = validate_single_string_arg(base_name, 'base_name')
if len(base_name) == 0:
raise ValueError('base_name should not be an empty string')
if not base_name.endswith('_'):
base_name += '_'
temp = [key for key in h5_parent_group.keys()]
if verbose:
print('Looking for group names starting with {} in parent containing items: '
'{}'.format(base_name, temp))
previous_indices = []
for item_name in temp:
if isinstance(h5_parent_group[item_name], h5py.Group) and item_name.startswith(base_name):
previous_indices.append(int(item_name.replace(base_name, '')))
previous_indices = np.sort(previous_indices)
if verbose:
print('indices of existing groups with the same prefix: {}'.format(previous_indices))
if len(previous_indices) == 0:
index = 0
else:
index = previous_indices[-1] + 1
return base_name + '{:03d}'.format(index)
def create_indexed_group(h5_parent_group, base_name):
"""
Creates a group with an indexed name (eg - 'Measurement_012') under
``h5_parent_group`` using the provided ``base_name`` as a prefix for the
group's name
Parameters
----------
h5_parent_group : :class:`h5py.Group` or :class:`h5py.File`
File or group within which the new group will be created
base_name : str or unicode
Prefix for the group name. This need not end with a '_'. It will be
added automatically
"""
if not isinstance(h5_parent_group, (h5py.Group, h5py.File)):
raise TypeError('h5_parent_group should be a h5py.File or Group object')
base_name = validate_single_string_arg(base_name, 'base_name')
group_name = assign_group_index(h5_parent_group, base_name)
h5_new_group = h5_parent_group.create_group(group_name)
write_book_keeping_attrs(h5_new_group)
return h5_new_group
def create_results_group(h5_main, tool_name, h5_parent_group=None):
"""
Creates a h5py.Group object auto-indexed and named as
'DatasetName-ToolName_00x'
Parameters
----------
h5_main : h5py.Dataset object
Reference to the dataset based on which the process / analysis is being
performed
tool_name : string / unicode
Name of the Process / Analysis applied to h5_main
h5_parent_group : h5py.Group, optional. Default = None
Parent group under which the results group will be created. Use this
option to write results into a new HDF5 file. By default, results will
be written into the same group containing `h5_main`
Returns
-------
h5_group : :class:`h5py.Group`
Results group which can now house the results datasets
"""
# TODO: Revise significantly. Avoid parent dataset name
# Consider embedding refs to source datasets as attributes of group
warn('The behavior of create_results_group is very likely to change soon '
'and significantly. Use this function with caution', FutureWarning)
if not isinstance(h5_main, h5py.Dataset):
raise TypeError('h5_main should be a h5py.Dataset object')
if h5_parent_group is not None:
if not isinstance(h5_parent_group, (h5py.File, h5py.Group)):
raise TypeError("'h5_parent_group' should either be a h5py.File "
"or h5py.Group object")
else:
h5_parent_group = h5_main.parent
tool_name = validate_single_string_arg(tool_name, 'tool_name')
if '-' in tool_name:
warn('tool_name should not contain the "-" character. Reformatted name from:{} to '
'{}'.format(tool_name, tool_name.replace('-', '_')))
tool_name = tool_name.replace('-', '_')
group_name = h5_main.name.split('/')[-1] + '-' + tool_name + '_'
group_name = assign_group_index(h5_parent_group, group_name)
h5_group = h5_parent_group.create_group(group_name)
write_book_keeping_attrs(h5_group)
# Also add some basic attributes like source and tool name. This will allow relaxation of nomenclature restrictions:
# this are NOT being used right now but will be in the subsequent versions of pyNSID
write_simple_attrs(h5_group, {'tool': tool_name, 'num_source_dsets': 1})
# in this case, there is only one source
if h5_parent_group.file == h5_main.file:
for dset_ind, dset in enumerate([h5_main]):
h5_group.attrs['source_' + '{:03d}'.format(dset_ind)] = dset.ref
return h5_group
def find_results_groups(h5_main, tool_name, h5_parent_group=None):
"""
Finds a list of all groups containing results of the process of name
``tool_name`` being applied to the dataset
Parameters
----------
h5_main : h5 dataset reference
Reference to the target dataset to which the tool was applied
tool_name : String / unicode
Name of the tool applied to the target dataset
h5_parent_group : h5py.Group, optional. Default = None
Parent group under which the results group will be searched for. Use
this option when the results groups are contained in different HDF5
file compared to `h5_main`. BY default, this function will search
within the same group that contains `h5_main`
Returns
-------
groups : list of references to :class:`h5py.Group` objects
groups whose name contains the tool name and the dataset name
"""
warn('The behavior of find_results_group is very likely to change soon '
'and significantly. Use this function with caution', FutureWarning)
if not isinstance(h5_main, h5py.Dataset):
raise TypeError('h5_main should be a h5py.Dataset object')
tool_name = validate_single_string_arg(tool_name, 'tool_name')
if h5_parent_group is not None:
if not isinstance(h5_parent_group, (h5py.File, h5py.Group)):
raise TypeError("'h5_parent_group' should either be a h5py.File "
"or h5py.Group object")
else:
h5_parent_group = h5_main.parent
dset_name = h5_main.name.split('/')[-1]
groups = []
for key in h5_parent_group.keys():
if dset_name in key and tool_name in key and isinstance(h5_parent_group[key], h5py.Group):
groups.append(h5_parent_group[key])
return groups
def check_for_old(h5_base, tool_name, new_parms=None, target_dset=None,
h5_parent_goup=None, verbose=False):
"""
Check to see if the results of a tool already exist and if they
were performed with the same parameters.
Parameters
----------
h5_base : h5py.Dataset object
Dataset on which the tool is being applied to
tool_name : str
process or analysis name
new_parms : dict, optional
Parameters with which this tool will be performed.
target_dset : str, optional, default = None
Name of the dataset whose attributes will be compared against new_parms.
Default - checking against the group
h5_parent_goup : h5py.Group, optional. Default = None
The group to search under. Use this option when `h5_base` and
the potential results groups (within `h5_parent_goup` are located
in different HDF5 files. Default - search within h5_base.parent
verbose : bool, optional, default = False
Whether or not to print debugging statements
Returns
-------
group : list
List of all :class:`h5py.Group` objects with parameters matching
those in `new_parms`
"""
warn('The behavior of check_for_old is very likely to change soon '
'. Use this function with caution', FutureWarning)
if not isinstance(h5_base, h5py.Dataset):
raise TypeError('h5_base should be a h5py.Dataset object')
tool_name = validate_single_string_arg(tool_name, 'tool_name')
if h5_parent_goup is not None:
if not isinstance(h5_parent_goup, (h5py.File, h5py.Group)):
raise TypeError("'h5_parent_group' should either be a h5py.File "
"or h5py.Group object")
else:
h5_parent_goup = h5_base.parent
if new_parms is None:
new_parms = dict()
else:
if not isinstance(new_parms, dict):
raise TypeError('new_parms should be a dict')
if target_dset is not None:
target_dset = validate_single_string_arg(target_dset, 'target_dset')
matching_groups = []
groups = find_results_groups(h5_base, tool_name,
h5_parent_group=h5_parent_goup)
for group in groups:
if verbose:
print('Looking at group - {}'.format(group.name.split('/')[-1]))
h5_obj = group
if target_dset is not None:
if target_dset in group.keys():
h5_obj = group[target_dset]
else:
if verbose:
print('{} did not contain the target dataset: {}'.format(group.name.split('/')[-1],
target_dset))
continue
if check_for_matching_attrs(h5_obj, new_parms=new_parms, verbose=verbose):
# return group
matching_groups.append(group)
return matching_groups
def check_for_matching_attrs(h5_obj, new_parms=None, verbose=False):
"""
Compares attributes in the given H5 object against those in the provided
dictionary and returns True if the parameters match, and False otherwise
Parameters
----------
h5_obj : h5py object (Dataset or :class:`h5py.Group`)
Object whose attributes will be compared against ``new_parms``
new_parms : dict, optional. default = empty dictionary
Parameters to compare against the attributes present in h5_obj
verbose : bool, optional, default = False
Whether or not to print debugging statements
Returns
-------
tests: bool
Whether or not all paramters in new_parms matched with those in h5_obj's attributes
"""
if not isinstance(h5_obj, (h5py.Dataset, h5py.Group, h5py.File)):
raise TypeError('h5_obj should be a h5py.Dataset, h5py.Group, or h5py.File object')
if new_parms is None:
new_parms = dict()
else:
if not isinstance(new_parms, dict):
raise TypeError('new_parms should be a dictionary')
tests = []
for key in new_parms.keys():
if verbose:
print('Looking for new attribute named: {}'.format(key))
# HDF5 cannot store None as an attribute anyway. ignore
if new_parms[key] is None:
continue
try:
old_value = get_attr(h5_obj, key)
except KeyError:
# if parameter was not found assume that something has changed
if verbose:
print('New parm: {} \t- new parm not in group *****'.format(key))
tests.append(False)
break
if isinstance(old_value, np.ndarray):
if not isinstance(new_parms[key], Iterable):
if verbose:
print('New parm: {} \t- new parm not iterable unlike old parm *****'.format(key))
tests.append(False)
break
new_array = np.array(new_parms[key])
if old_value.size != new_array.size:
if verbose:
print('New parm: {} \t- are of different sizes ****'.format(key))
tests.append(False)
else:
try:
answer = np.allclose(old_value, new_array)
except TypeError:
# comes here when comparing string arrays
# Not sure of a better way
answer = []
for old_val, new_val in zip(old_value, new_array):
answer.append(old_val == new_val)
answer = np.all(answer)
if verbose:
print('New parm: {} \t- match: {}'.format(key, answer))
tests.append(answer)
else:
"""if isinstance(new_parms[key], collections.Iterable):
if verbose:
print('New parm: {} \t- new parm is iterable unlike old parm *****'.format(key))
tests.append(False)
break"""
answer = np.all(new_parms[key] == old_value)
if verbose:
print('New parm: {} \t- match: {}'.format(key, answer))
tests.append(answer)
if verbose:
print('')
return all(tests)
def get_source_dataset(h5_group):
"""
Find the name of the source dataset used to create the input `h5_group`,
so long as the source dataset is in the same HDF5 file
Parameters
----------
h5_group : :class:`h5py.Group`
Child group whose source dataset will be returned
Returns
-------
h5_source : NSIDataset object
Main dataset from which this group was generated
"""
if not isinstance(h5_group, h5py.Group):
raise TypeError('h5_group should be a h5py.Group object')
h5_parent_group = h5_group.parent
group_name = h5_group.name.split('/')[-1]
# What if the group name was not formatted according to Pycroscopy rules?
name_split = group_name.split('-')
if len(name_split) != 2:
raise ValueError("The provided group's name could not be split by '-' as expected in "
"SourceDataset-ProcessName_000")
h5_source = h5_parent_group[name_split[0]]
if not isinstance(h5_source, h5py.Dataset):
raise ValueError('Source object was not a dataset!')
return h5_source
|