1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558
|
# -*- coding: utf-8 -*-
"""
Created on Tue Nov 3 21:14:25 2015
@author: Chris Smith, Suhas Somnath
"""
from __future__ import division, print_function, absolute_import, \
unicode_literals
import sys
from warnings import warn
import h5py
import numpy as np
from sidpy.base.string_utils import clean_string_att
if sys.version_info.major == 3:
from collections.abc import Iterable
unicode = str
else:
from collections import Iterable
__all__ = ['get_region', 'clean_reg_ref', 'attempt_reg_ref_build',
'copy_reg_ref_reduced_dim','create_region_reference',
'get_indices_for_region_ref', 'simple_region_ref_copy',
'write_region_references']
def get_region(h5_dset, reg_ref_name):
"""
Gets the region in a dataset specified by a region reference
Parameters
----------
h5_dset : h5py.Dataset
Dataset containing the region reference
reg_ref_name : str / unicode
Name of the region reference
Returns
-------
value : np.ndarray
Data specified by the region reference. Note that a squeeze is applied
by default.
"""
if not isinstance(reg_ref_name, (str, unicode)):
raise TypeError('reg_ref_name should be a string')
if not isinstance(h5_dset, h5py.Dataset):
raise TypeError('h5_dset should be of type h5py.Dataset')
# this may raise KeyErrors. Let it
reg_ref = h5_dset.attrs[reg_ref_name]
return np.squeeze(h5_dset[reg_ref])
def clean_reg_ref(h5_dset, reg_ref_tuple, verbose=False):
"""
Makes sure that the provided instructions for a region reference are indeed
valid. This method has become necessary since h5py allows the writing of
region references larger than the maxshape
Parameters
----------
h5_dset : h5.Dataset instance
Dataset to which region references will be added as attributes
reg_ref_tuple : list / tuple
The slicing information formatted using tuples of slice objects.
verbose : Boolean (Optional. Default = False)
Whether or not to print status messages
Returns
-------
new_reg_refs : tuple
Instructions for the corrected region reference
"""
if not isinstance(reg_ref_tuple, (tuple, dict, slice)):
raise TypeError('slices should be a tuple, list, or slice but is '
'instead of type {}'.format(type(reg_ref_tuple)))
if not isinstance(h5_dset, h5py.Dataset):
raise TypeError('h5_dset should be a h5py.Dataset object but is '
'instead of type {}'.format(type(h5_dset)))
if isinstance(reg_ref_tuple, slice):
# 1D dataset
reg_ref_tuple = [reg_ref_tuple]
if len(reg_ref_tuple) != len(h5_dset.shape):
raise ValueError('Region reference tuple did not have the same '
'dimensions as the h5 dataset')
if verbose:
print('Comparing {} with h5 dataset maxshape of {}'
''.format(reg_ref_tuple, h5_dset.maxshape))
new_reg_refs = list()
for reg_ref_slice, max_size in zip(reg_ref_tuple, h5_dset.maxshape):
if not isinstance(reg_ref_slice, slice):
raise TypeError('slices should be a tuple or a list but is instead'
' of type {}'.format(type(reg_ref_slice)))
# For now we will simply make sure that the end of the slice is
# <= maxshape
if max_size is not None and reg_ref_slice.stop is not None:
reg_ref_slice = slice(reg_ref_slice.start,
min(reg_ref_slice.stop, max_size),
reg_ref_slice.step)
new_reg_refs.append(reg_ref_slice)
if verbose:
print('Region reference tuple now: {}'.format(new_reg_refs))
return tuple(new_reg_refs)
def attempt_reg_ref_build(h5_dset, dim_names, verbose=False):
"""
Attempts to build region references
Parameters
----------
h5_dset : h5.Dataset instance
Dataset to which region references need to be added as attributes
dim_names : list or tuple
List of the names of the region references (typically names of
dimensions)
verbose : bool, optional. Default=False
Whether or not to print debugging statements
Returns
-------
labels_dict : dict
The slicing information must be formatted using tuples of slice objects
For example {'region_1':(slice(None, None), slice (0,1))}
"""
if not isinstance(h5_dset, h5py.Dataset):
raise TypeError('h5_dset should be a h5py.Dataset object but is '
'instead of type {}.'.format(type(h5_dset)))
if not isinstance(dim_names, (list, tuple)):
raise TypeError('slices should be a list or tuple but is instead of '
'type {}'.format(type(dim_names)))
if len(h5_dset.shape) != 2:
return dict()
if not np.all([isinstance(obj, (str, unicode)) for obj in dim_names]):
raise TypeError('Unable to automatically generate region references '
'for dataset: {} since one or more names of the region'
' references was not a string'.format(h5_dset.name))
labels_dict = dict()
if len(dim_names) == h5_dset.shape[0]:
if verbose:
print('Most likely a spectroscopic indices / values dataset')
for dim_index, curr_name in enumerate(dim_names):
labels_dict[curr_name] = (slice(dim_index, dim_index + 1),
slice(None))
elif len(dim_names) == h5_dset.shape[1]:
if verbose:
print('Most likely a position indices / values dataset')
for dim_index, curr_name in enumerate(dim_names):
labels_dict[curr_name] = (slice(None), slice(dim_index,
dim_index + 1))
if len(labels_dict) > 0:
warn('Attempted to automatically build region reference dictionary for'
' dataset: {}.\nPlease specify region references as a tuple of '
'slice objects for each attribute'.format(h5_dset.name))
else:
if verbose:
print('Could not build region references since dataset had shape:'
'{} and number of region references is {}'
''.format(h5_dset.shape, len(dim_names)))
return labels_dict
def get_indices_for_region_ref(h5_main, ref, return_method='slices'):
"""
Given an hdf5 region reference and the dataset it refers to,
return an array of indices within that dataset that
correspond to the reference.
Parameters
----------
h5_main : HDF5 Dataset
dataset that the reference can be returned from
ref : HDF5 Region Reference
Region reference object
return_method : {'slices', 'corners', 'points'}
slices : the reference is return as pairs of slices
corners : the reference is returned as pairs of corners representing
the starting and ending indices of each block
points : the reference is returns as a list of tuples of points
Returns
-------
ref_inds : Numpy Array
array of indices in the source dataset that ref accesses
"""
if not isinstance(h5_main, h5py.Dataset):
raise TypeError('h5_main should be a h5py.Dataset object')
if not isinstance(ref, h5py.RegionReference):
raise TypeError('ref should be a h5py.RegionReference object')
if return_method is not None:
if not isinstance(return_method, (str, unicode)):
raise TypeError('return_method should be a string')
if return_method == 'points':
def __corners_to_point_array(start, stop):
"""
Convert a pair of tuples representing two opposite corners of an
HDF5 region reference
into a list of arrays for each dimension.
Parameters
----------
start : Tuple
the starting indices of the region
stop : Tuple
the final indices of the region
Returns
-------
inds : Tuple of arrays
the list of points in each dimension
"""
ranges = []
for i in range(len(start)):
if start[i] == stop[i]:
ranges.append([stop[i]])
else:
ranges.append(np.arange(start[i], stop[i] + 1,
dtype=np.uint))
grid = np.meshgrid(*ranges, indexing='ij')
ref_inds = np.asarray(zip(*(x.flat for x in grid)))
return ref_inds
return_func = __corners_to_point_array
elif return_method == 'corners':
def __corners_to_corners(start, stop):
return start, stop
return_func = __corners_to_corners
elif return_method == 'slices':
def __corners_to_slices(start, stop):
"""
Convert a pair of tuples representing two opposite corners of an
HDF5 region reference
into a pair of slices.
Parameters
----------
start : Tuple
the starting indices of the region
stop : Tuple
the final indices of the region
Returns
-------
slices : list
pair of slices representing the region
"""
slices = []
for idim in range(len(start)):
slices.append(slice(start[idim], stop[idim]))
return slices
return_func = __corners_to_slices
region = h5py.h5r.get_region(ref, h5_main.id)
reg_type = region.get_select_type()
if reg_type == 2:
"""
Reference is hyperslabs
"""
ref_inds = []
for start, end in region.get_select_hyper_blocklist():
ref_inds.append(return_func(start, end))
ref_inds = np.array(ref_inds).reshape(-1, len(start))
elif reg_type == 3:
"""
Reference is single block
"""
start, end = region.get_select_bounds()
ref_inds = return_func(start, end)
else:
warn('No method exists for converting this type of reference')
ref_inds = np.empty(0)
return ref_inds
def copy_reg_ref_reduced_dim(h5_source, h5_target, h5_source_inds,
h5_target_inds, key):
"""
Copies a region reference from one dataset to another taking into account
that a dimension has been lost from source to target
Parameters
----------
h5_source : HDF5 Dataset
source dataset for region reference copy
h5_target : HDF5 Dataset
target dataset for region reference copy
h5_source_inds : HDF5 Dataset
indices of each dimension of the h5_source dataset
h5_target_inds : HDF5 Dataset
indices of each dimension of the h5_target dataset
key : String
Name of attribute in h5_source that contains
the Region Reference to copy
Returns
-------
ref_inds : Nx2x2 array of unsigned integers
Array containing pairs of points that define
the corners of each hyperslab in the region
reference
"""
for param, param_name in zip([h5_source, h5_target, h5_source_inds,
h5_target_inds],
['h5_source', 'h5_target', 'h5_source_inds',
'h5_target_inds']):
if not isinstance(param, h5py.Dataset):
raise TypeError(param_name + ' should be a h5py.Dataset object')
if not isinstance(key, (str, unicode)):
raise TypeError('key should be a string')
key = key.strip()
'''
Determine which dimension is missing from the target
'''
lost_dim = []
for dim in h5_source_inds.attrs['labels']:
if dim not in h5_target_inds.attrs['labels']:
lost_dim.append(np.where(h5_source_inds.attrs['labels'] == dim)[0])
ref = h5_source.attrs[key]
ref_inds = get_indices_for_region_ref(h5_source, ref,
return_method='corners')
'''
Convert to proper spectroscopic dimensions
First is special case for a region reference that spans the entire dataset
'''
if len(ref_inds.shape) == 2 and all(ref_inds[0] == [0, 0]) and all(ref_inds[1] + 1 == h5_source.shape):
ref_inds[1, 1] = h5_target.shape[1] - 1
ref_inds = np.expand_dims(ref_inds, 0)
else:
'''
More common case of reference made of hyperslabs
'''
spec_ind_zeroes = np.where(h5_source_inds[lost_dim] == 0)[1]
ref_inds = ref_inds.reshape([-1, 2, 2])
for start, stop in ref_inds[:-1]:
start[1] = np.where(start[1] == spec_ind_zeroes)[0]
stop[1] = np.where(stop[1] == spec_ind_zeroes - 1)[0] - 1
ref_inds[-1, 0, 1] = np.where(ref_inds[-1, 0, 1] == spec_ind_zeroes)[0]
stop = np.where(ref_inds[-1, 1, 1] == spec_ind_zeroes - 1)[0]
if stop.size == 0:
stop = len(spec_ind_zeroes)
ref_inds[-1, 1, 1] = stop - 1
'''
Create the new reference from the indices
'''
h5_target.attrs[key] = create_region_reference(h5_target, ref_inds)
return ref_inds
def create_region_reference(h5_main, ref_inds):
"""
Create a region reference in the destination dataset using an iterable of
pairs of indices representing the start and end points of a hyperslab block
Parameters
----------
h5_main : HDF5 dataset
dataset the region will be created in
ref_inds : Iterable
index pairs, [start indices, final indices] for each block in the
hyperslab
Returns
-------
new_ref : HDF5 Region reference
reference in `h5_main` for the blocks of points defined by `ref_inds`
"""
if not isinstance(h5_main, h5py.Dataset):
raise TypeError('h5_main should be a h5py.Dataset object')
if not isinstance(ref_inds, Iterable):
raise TypeError('ref_inds should be a list or tuple')
h5_space = h5_main.id.get_space()
h5_space.select_none()
for start, stop in ref_inds:
block = stop - start + 1
h5_space.select_hyperslab(tuple(start), (1, 1),
block=tuple(block), op=1)
if not h5_space.select_valid():
warn('Could not create new region reference.')
return None
new_ref = h5py.h5r.create(h5_main.id, b'.', h5py.h5r.DATASET_REGION,
space=h5_space)
return new_ref
def simple_region_ref_copy(h5_source, h5_target, key):
"""
Copies a region reference from one dataset to another
without alteration
Parameters
----------
h5_source : HDF5 Dataset
source dataset for region reference copy
h5_target : HDF5 Dataset
target dataset for region reference copy
key : String
Name of attribute in h5_source that contains
the Region Reference to copy
Returns
-------
ref_inds : Nx2x2 array of unsigned integers
Array containing pairs of points that define
the corners of each hyperslab in the region
reference
"""
for param, param_name in zip([h5_source, h5_target],
['h5_source', 'h5_target']):
if not isinstance(param, h5py.Dataset):
raise TypeError(param_name + ' should be a h5py.Dataset object')
if not isinstance(key, (str, unicode)):
raise TypeError('key should be a string')
ref = h5_source.attrs[key]
ref_inds = get_indices_for_region_ref(h5_source, ref,
return_method='corners')
ref_inds = ref_inds.reshape([-1, 2, 2])
ref_inds[:, 1, 1] = h5_target.shape[1] - 1
target_ref = create_region_reference(h5_target, ref_inds)
h5_target.attrs[key] = target_ref
return ref_inds
def copy_all_region_refs(h5_source, h5_target):
"""
Copies only region references from the source dataset to the target dataset
Parameters
----------
h5_source : h5py.Dataset
Dataset from which to copy region references
h5_target : h5py.Dataset
Dataset to which to copy region references to
"""
if not isinstance(h5_source, h5py.Dataset):
raise TypeError("'h5_source' should be a h5py.Dataset object")
if not isinstance(h5_target, h5py.Dataset):
raise TypeError("'h5_target' should be a h5py.Dataset object")
for key in h5_source.attrs.keys():
if not isinstance(h5_source.attrs[key], h5py.RegionReference):
continue
simple_region_ref_copy(h5_source, h5_target, key)
def write_region_references(h5_dset, reg_ref_dict, add_labels_attr=True,
verbose=False):
"""
Creates attributes of a h5py.Dataset that refer to regions in the dataset
Parameters
----------
h5_dset : h5.Dataset instance
Dataset to which region references will be added as attributes
reg_ref_dict : dict
The slicing information must be formatted using tuples of slice objects
. For example {'region_1':(slice(None, None), slice (0,1))}
add_labels_attr : bool, optional, default = True
Whether or not to write an attribute named 'labels' with the
verbose : Boolean (Optional. Default = False)
Whether or not to print status messages
"""
if not isinstance(reg_ref_dict, dict):
raise TypeError('slices should be a dictionary but is instead of type '
'{}'.format(type(reg_ref_dict)))
if not isinstance(h5_dset, h5py.Dataset):
raise TypeError('h5_dset should be a h5py.Dataset object but is '
'instead of type {}'.format(type(h5_dset)))
if verbose:
print('Starting to write Region References to Dataset', h5_dset.name,
'of shape:', h5_dset.shape)
for reg_ref_name, reg_ref_tuple in reg_ref_dict.items():
if verbose:
print('About to write region reference:', reg_ref_name, ':',
reg_ref_tuple)
reg_ref_tuple = clean_reg_ref(h5_dset, reg_ref_tuple, verbose=verbose)
h5_dset.attrs[reg_ref_name] = h5_dset.regionref[reg_ref_tuple]
if verbose:
print('Wrote Region Reference:%s' % reg_ref_name)
'''
Next, write these label names as an attribute called labels
Now make an attribute called 'labels' that is a list of strings
First ascertain the dimension of the slicing:
'''
if add_labels_attr:
found_dim = False
dimen_index = None
for key, val in reg_ref_dict.items():
if not isinstance(val, (list, tuple)):
reg_ref_dict[key] = [val]
for dimen_index, slice_obj in enumerate(list(reg_ref_dict.values())[0]):
# We make the assumption that checking the start is sufficient
if slice_obj.start is not None:
found_dim = True
break
if found_dim:
headers = [None] * len(reg_ref_dict)
# The list that will hold all the names
for col_name in reg_ref_dict.keys():
headers[reg_ref_dict[col_name][dimen_index].start] = col_name
if verbose:
print('Writing header attributes: {}'.format('labels'))
# Now write the list of col / row names as an attribute:
h5_dset.attrs['labels'] = clean_string_att(headers)
else:
warn('Unable to write region references for {}'
''.format(h5_dset.name.split('/')[-1]))
if verbose:
print('Wrote Region References of Dataset {}'
''.format(h5_dset.name.split('/')[-1]))
|