File: dataset.py

package info (click to toggle)
python-sidpy 0.12.3-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 21,988 kB
  • sloc: python: 11,456; makefile: 17
file content (2000 lines) | stat: -rw-r--r-- 78,352 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
# -*- coding: utf-8 -*-
"""
Abstract :class:`~sidpy.io.dataset.Dataset` base-class

Created on Tue Nov  3 15:07:16 2015

@author: Gerd Duscher

Modified by Mani Valleti.

Look up dask source code to understand how numerical functions are implemented

starting code from:
https://scikit-allel.readthedocs.io/en/v0.21.1/_modules/allel/model/dask.html
"""

from __future__ import division, print_function, absolute_import, unicode_literals
from hashlib import new
from functools import wraps
from re import A
import sys
from collections.abc import Iterable, Iterator, Mapping
import warnings

import ase
import dask.array.core
import numpy as np
import matplotlib.pylab as plt
import string
import dask.array as da
import h5py
from enum import Enum
from numbers import Number

from .dimension import Dimension, DimensionType
from ..base.num_utils import get_slope
from ..base.dict_utils import print_nested_dict
from ..viz.dataset_viz import CurveVisualizer, ImageVisualizer, ImageStackVisualizer
from ..viz.dataset_viz import SpectralImageVisualizer, FourDimImageVisualizer, ComplexSpectralImageVisualizer
from ..viz.dataset_viz import PointCloudVisualizer
# from ..hdf.hdf_utils import is_editable_h5
from .dimension import DimensionType
from copy import deepcopy, copy
from sidpy.base.string_utils import validate_single_string_arg
import logging


def is_simple_list(lst):
    if isinstance(lst, list):
        return any(hasattr(item, '__getitem__') for item in lst)
    return False


class DataType(Enum):
    UNKNOWN = -1
    SPECTRUM = 1
    LINE_PLOT = 2
    LINE_PLOT_FAMILY = 3
    IMAGE = 4
    IMAGE_MAP = 5
    IMAGE_STACK = 6  # 3d
    SPECTRAL_IMAGE = 7
    IMAGE_4D = 8
    POINT_CLOUD = 9


def view_subclass(dask_array, cls):
    """
    View a dask Array as an instance of a dask Array sub-class.

    Parameters
    ----------
    dask_array
    cls

    Returns
    -------
    cls: sidpy.Dataset
    """

    return cls(dask_array.dask, name=dask_array.name, chunks=dask_array.chunks,
               dtype=dask_array.dtype, shape=dask_array.shape)


class Dataset(da.Array):
    """
    ..autoclass::Dataset

    To instantiate from an existing array-like object,
    use :func:`Dataset.from_array` - requires numpy array, list or tuple

    This dask array is extended to have the following attributes:
    -data_type: DataTypes ('image', 'image_stack',  spectral_image', ...
    -units: str
    -quantity: str what kind of data ('intensity', 'height', ..)
    -title: title of the data set
    -modality: character of data such as 'STM, 'AFM', 'TEM', 'SEM', 'DFT', 'simulation', ..)
    -source: origin of data such as acquisition instrument ('Nion US100', 'VASP', ..)
    -_axes: dictionary of Dimensions one for each data dimension
                    (the axes are dimension datasets with name, label, units,
                    and 'dimension_type' attributes).

    -metadata: dictionary of additional metadata
    -original_metadata: dictionary of original metadata of file,

    -labels: returns labels of all dimensions.
    -data_descriptor: returns a label for the colorbar in matplotlib and such

    functions:
    -from_array(data, title): constructs the dataset form an array like object (numpy array, dask array, ...)
    -like_data(data,title): constructs the dataset form an array like object and copies attributes and
    metadata from parent dataset
    -copy()
    -plot(): plots dataset dependent on data_type and dimension_types.
    -get_extent(): extent to be used with imshow function of matplotlib
    -set_dimension(axis, dimensions): set a Dimension to a specific axis
    -rename_dimension(dimension, name): renames attribute of dimension
    -view_metadata: pretty plot of metadata dictionary
    -view_original_metadata: pretty plot of original_metadata dictionary
    """

    def __init__(self, *args, **kwargs):
        """
        Initializes Dataset object which is essentially a Dask array
        underneath

        Attributes
        ----------
        self.quantity : str
            Physical quantity. E.g. - current
        self.units : str
            Physical units. E.g. - amperes
        self.data_type : enum
            Type of data such as Image, Spectrum, Spectral Image etc.
        self.title : str
            Title for Dataset
        self._structures : dict
            dictionary of ase.Atoms objects to represent structures, can be given a name
        self.view : Visualizer
            Instance of class appropriate for visualizing this object
        self.data_descriptor : str
            Description of this dataset
        self.modality : str
            character of data such as 'STM', 'TEM', 'DFT'
        self.source : str
            Source of this dataset. Such as instrument, analysis, etc.?
        self.h5_dataset : h5py.Dataset
            Reference to HDF5 Dataset object from which this Dataset was
            created
        self._axes : dict
            Dictionary of Dimension objects per dimension of the Dataset
        self.meta_data : dict
            Metadata to store relevant additional information for the dataset.
        self.original_metadata : dict
            Metadata from the original source of the dataset. This dictionary
            often contains the vendor-specific metadata or internal attributes
            of the analysis algorithm
        """
        # TODO: Consider using python package - pint for quantities
        super().__init__()

        self._units = ''
        self._quantity = ''
        self._title = ''
        self._data_type = DataType.UNKNOWN
        self._modality = ''
        self._source = ''
        self._structures = {}

        self._h5_dataset = None
        self._metadata = {}
        self._original_metadata = {}
        self._axes = {}

        self.view = None  # this will hold the figure and axis reference for a plot

        self.__protected = set()  # a set to keep track of protected attributes

        self.point_cloud = None  # attribute to store coordinates and base_image for point_cloud datatype
        self._variance = None    # to save variance dask.array

    def __repr__(self):
        rep = 'sidpy.Dataset of type {} with:\n '.format(self.data_type.name)
        rep = rep + super(Dataset, self).__repr__()
        rep = rep + '\n data contains: {} ({})'.format(self.quantity, self.units)
        rep = rep + '\n and Dimensions: '

        for key in self._axes:
            rep = rep + '\n' + self._axes[key].__repr__()

        if hasattr(self, 'metadata'):
            if len(self.metadata) > 0:
                rep = rep + '\n with metadata: {}'.format(list(self.metadata.keys()))
        return rep

    def hdf_close(self):
        if self.h5_dataset is not None:
            self.h5_dataset.file.close()
            print(self.h5_dataset)

    def __setattr__(self, key, value):
        if not hasattr(self, '_Dataset__protected'):
            super().__setattr__(key, value)
        else:
            # if key is in __protected, only Dimension and numpy.ndarray instances are allowed to be set
            if key != 'none' and key in self._Dataset__protected:
                if not isinstance(value, Dimension):
                    raise AttributeError('The attribute "{}" is reserved to represent a dimension'.format(key))
                else:
                    if getattr(self, key).name == value.name and len(getattr(self, key)) == len(value):
                        cur_ind = [i for i in self._axes if self._axes[i].name == key][0]
                        self.del_dimension(cur_ind)
                        self._axes[cur_ind] = value
                        self.__dict__[key] = value
                        self.__dict__['dim_{}'.format(cur_ind)] = value
                        self.__protected.add(key)
                        self.__protected.add('dim_{}'.format(cur_ind))
                    else:
                        raise NotImplementedError("The new dimension's name or length does not "
                                                  "match with the existing dimension.")
            else:
                super().__setattr__(key, value)

    @classmethod
    def from_array(cls, x, title='generic', chunks='auto', lock=False,
                   datatype='UNKNOWN', units='generic', quantity='generic',
                   modality='generic', source='generic', coordinates=None,
                   variance=None, **kwargs):
        """
        Initializes a sidpy dataset from an array-like object (i.e. numpy array)
        All meta-data will be set to be generically.

        Parameters
        ----------
        x: array-like object
            the values which will populate this dataset
        chunks: optional integer or list of integers
            the shape of the chunks to be loaded
        title: optional string
            the title of this dataset
        lock: boolean
        datatype: str or sidpy.DataType
            data type of set: i.e.: 'image', spectrum', ..
        units: str
            units of dataset i.e. counts, A
        quantity: str
            quantity of dataset like intensity
        modality: str
            modality of dataset like
        source: str
            source of dataset like what kind of microscope or function
        coordinates: numpy array, optional
            coordinates for point cloud
        point_cloud: dict or None
            dict with coordinates and base_image for point_cloud data_type
        variance: array-like object
             the variance values of the x array
        Returns
        -------
        sidpy dataset

        """

        # create vanilla dask array
        if isinstance(x, da.Array) and not np.any(np.isnan(x.shape)):
            dask_array = x
        else:
            dask_array = da.from_array(np.array(x), chunks=chunks, lock=lock)
        # view as subclass
        sid_dataset = view_subclass(dask_array, cls)
        sid_dataset.data_type = datatype
        sid_dataset.units = units
        sid_dataset.title = title
        sid_dataset.quantity = quantity

        sid_dataset.modality = modality
        sid_dataset.source = source

        sid_dataset._axes = {}
        for dim in range(sid_dataset.ndim):
            # TODO: add parent to dimension to set attribute if name changes
            sid_dataset.set_dimension(dim,
                                      Dimension(np.arange(sid_dataset.shape[dim]), string.ascii_lowercase[dim]))
        sid_dataset.metadata = {}
        sid_dataset.original_metadata = {}
        sid_dataset.variance = variance

        # add coordinates for point_cloud datatype
        if coordinates is not None:
            sid_dataset.point_cloud = {'coordinates': coordinates}
        else:
            sid_dataset.point_cloud = None
        return sid_dataset

    def like_data(self, data, title=None, chunks='auto', lock=False,
                  coordinates=None, variance=None, **kwargs):
        """
        Returns sidpy.Dataset of new values but with metadata of this dataset
        - if dimension of new dataset is different from this dataset and the scale is linear,
            then this scale will be applied to the new dataset (naming and units will stay the same),
            otherwise the dimension will be generic.
        -Additional functionality to override numeric functions
        Parameters
        ----------
        data: array like
            values of new sidpy dataset
        title: optional string
            title of new sidpy dataset
        chunks: optional list of integers
            size of chunks for dask array
        lock: optional boolean
            for dask array
        coordinates: array like
            coordinates for point cloud
        variance: numpy array, optional
            variance of dataset

        Returns
        -------
        sidpy dataset
        """
        title_suffix = kwargs.get('title_suffix', '')
        title_prefix = kwargs.get('title_prefix', '')
        reset_quantity = kwargs.get('reset_quantity', False)
        reset_units = kwargs.get('reset_units', False)
        checkdims = kwargs.get('checkdims', True)

        # if coordinates is None:
        #     coordinates = self.point_cloud['coordinates']

        new_data = self.from_array(data, chunks=chunks, lock=lock, variance =variance)

        new_data.data_type = self.data_type

        # if variance is None:
        #     if new_data.shape == self.shape:
        #         new_data.variance = self.variance

        # units
        if reset_units:
            new_data.units = 'generic'
        else:
            new_data.units = self.units

        if title is not None:
            new_data.title = title
        else:
            if title_prefix or title_suffix:
                new_data.title = self.title
            else:
                new_data.title = self.title + '_new'

        new_data.title = title_prefix + new_data.title + title_suffix

        # quantity
        if reset_quantity:
            new_data.quantity = 'generic'
        else:
            new_data.quantity = self.quantity

        new_data.modality = self.modality
        new_data.source = self.source

        if checkdims:
            for dim in range(new_data.ndim):
                # TODO: add parent to dimension to set attribute if name changes
                if len(self._axes[dim].values) == new_data.shape[dim]:
                    new_data.set_dimension(dim, self._axes[dim])
                else:
                    # assuming the axis scale is equidistant
                    try:
                        scale = get_slope(self._axes[dim])
                        # axis = self._axes[dim].copy()
                        axis = Dimension(np.arange(new_data.shape[dim]) * scale, self._axes[dim].name)
                        axis.quantity = self._axes[dim].quantity
                        axis.units = self._axes[dim].units
                        axis.dimension_type = self._axes[dim].dimension_type

                        new_data.set_dimension(dim, axis)

                    except ValueError:
                        print('using generic parameters for dimension ', dim)

        new_data.metadata = dict(self.metadata).copy()
        new_data.original_metadata = {}
        return new_data

    def __reduce_dimensions(self, new_dataset, axes, keepdims=False):
        new_dataset.del_dimension()
        if not keepdims:
            i = 0
            for key, dim in self._axes.items():
                new_dim = dim.copy()
                if key not in axes:
                    new_dataset.set_dimension(i, new_dim)
                    i += 1

        if keepdims:
            for key, dim in self._axes.items():
                new_dim = dim.copy()
                if key in axes:
                    new_dim = Dimension(np.arange(1), name=new_dim.name,
                                        quantity=new_dim.quantity, units=new_dim.units,
                                        dimension_type=new_dim.dimension_type)
                new_dataset.set_dimension(key, new_dim)

        return new_dataset

    def __rearrange_axes(self, new_dataset, new_order=None):
        """Rearranges the dimension order of the current instance
        Parameters:
            new_order: list or tuple of integers

        All the dimensions that are not in the new_order are deleted
        """
        new_dataset.del_dimension()

        for i, dim in enumerate(new_order):
            new_dataset.set_dimension(i, self._axes[dim])

        return new_dataset

    def copy(self):
        """
        Returns a deep copy of this dataset.

        Returns
        -------
        sidpy dataset

        """
        dataset_copy = Dataset.from_array(self, self.title, self.chunks)

        dataset_copy.title = self.title
        dataset_copy.units = self.units
        dataset_copy.quantity = self.quantity
        dataset_copy.data_type = self.data_type
        dataset_copy.modality = self.modality
        dataset_copy.source = self.source
        dataset_copy.point_cloud = self.point_cloud
        dataset_copy.variance = self.variance

        dataset_copy.del_dimension()
        for dim in self._axes:
            dataset_copy.set_dimension(dim, self._axes[dim])
        dataset_copy.metadata = dict(self.metadata).copy()

        return dataset_copy

    def __validate_dim(self, ind, name):
        """
        Validates the provided index for a Dimension object

        Parameters
        ----------
        ind : int
            Index of the dimension

        Raises
        -------
        TypeError : if ind is not an integer
        IndexError : if ind is less than 0 or greater than maximum allowed
            index for Dimension
        ValueError: if name is not 'none' and is already used.
        """
        if not isinstance(ind, int):
            raise TypeError('Dimension must be an integer')
        if (0 > ind) or (ind >= self.ndim):
            raise IndexError('Dimension must be an integer between 0 and {}'
                             ''.format(self.ndim - 1))
        for key, dim in self._axes.items():
            if key != ind:
                if name != 'none' and name == dim.name:
                    raise ValueError('name: {} already used, but must be unique'.format(name))

    def rename_dimension(self, ind, name):
        """
        Renames Dimension at the specified index

        Parameters
        ----------
        ind : int
            Index of the dimension
        name : str
            New name for Dimension
        """
        self.__validate_dim(ind, name)
        if not isinstance(name, str):
            raise TypeError('New Dimension name must be a string')
        if hasattr(self, self._axes[ind].name):
            delattr(self, self._axes[ind].name)
            if self._axes[ind].name in self.__protected:
                self.__protected.remove(self._axes[ind].name)

        if hasattr(self, 'dim_{}'.format(ind)):
            delattr(self, 'dim_{}'.format(ind))
            self.__protected.remove('dim_{}'.format(ind))

        self._axes[ind]._name = validate_single_string_arg(name, 'name')  # protected attribute name
        setattr(self, name, self._axes[ind])
        self.__protected.add(name)
        setattr(self, 'dim_{}'.format(ind), self._axes[ind])
        self.__protected.add('dim_{}'.format(ind))

    def set_dimension(self, ind, dimension):
        """
        sets the dimension for the dataset including new name and updating the axes dictionary

        Parameters
        ----------
        ind: int
            Index of dimension
        dimension: sidpy.Dimension
            Dimension object describing this dimension of the Dataset

        Returns
        -------

        """
        if not isinstance(dimension, Dimension):
            raise TypeError('dimension needs to be a sidpy.Dimension object')
        self.__validate_dim(ind, dimension.name)
        if len(dimension.values) != self.shape[ind]:
            raise ValueError('The length of the dimension array does not match the shape of the '
                             'dataset at {}th dimension. {} != {}'.format(ind, len(dimension.values), self.shape[ind])
                             )

        dim = dimension.copy()

        try:
            if hasattr(self, self._axes[ind].name):
                delattr(self, self._axes[ind].name)
                if self._axes[ind].name in self.__protected:
                    self.__protected.remove(self._axes[ind].name)
        except KeyError:
            pass

        setattr(self, dimension.name, dim)
        self.__protected.add(dimension.name)

        if hasattr(self, 'dim_{}'.format(ind)):
            delattr(self, 'dim_{}'.format(ind))
            if 'dim_{}'.format(ind) in self.__protected:
                self.__protected.remove('dim_{}'.format(ind))  # we don't need this. But I am trying to be consistent

        setattr(self, 'dim_{}'.format(ind), dim)
        self._axes[ind] = dim
        self.__protected.add('dim_{}'.format(ind))

    def del_dimension(self, ind=None):
        """
        Deletes the dimension attached to axis 'ind'.
        """
        if isinstance(ind, int):
            ind = [ind]
        elif ind is None:
            ind = list(np.arange(self.ndim))
        else:
            ind = list(ind)

        for i in ind:
            # Delete the attribute with the format dim_0
            if hasattr(self, 'dim_{}'.format(i)):
                delattr(self, 'dim_{}'.format(i))
                if 'dim_{}'.format(i) in self.__protected:
                    self.__protected.remove('dim_{}'.format(i))

            if i in self._axes.keys():
                # Deleting the dataset attribute that has the dimension's name
                if hasattr(self, self._axes[i].name):
                    delattr(self, self._axes[i].name)
                    if self._axes[i].name in self.__protected:
                        self.__protected.remove(self._axes[i].name)

                # Deleting the key-value pair from the _axes dictionary
                del self._axes[i]

    def view_metadata(self):
        """
        Prints the metadata to stdout

        Returns
        -------
        None
        """
        if isinstance(self.metadata, dict):
            print_nested_dict(self.metadata)

    def view_original_metadata(self):
        """
        Prints the original_metadata dictionary to stdout

        Returns
        -------
        None
        """
        if isinstance(self.original_metadata, dict):
            print_nested_dict(self.original_metadata)

    def plot(self, verbose=False, figure=None, **kwargs):
        """
        Plots the dataset according to the
         - shape of the sidpy Dataset,
         - data_type of the sidpy Dataset and
         - dimension_type of dimensions of sidpy Dataset
            the dimension_type 'spatial' or 'spectral' determines how a dataset is plotted.

        Recognized data_types are:
        1D: any keyword, but 'spectrum' or 'line_plot' are encouraged
        2D: 'image' or one of ['spectrum_family', 'line_family', 'line_plot_family', 'spectra']
        3D: 'image', 'image_map', 'image_stack', 'spectrum_image'
        4D: not implemented yet, but will be similar to spectrum_image.

        Parameters
        ----------
        verbose: boolean
        kwargs: dictionary for additional plotting parameters
            additional keywords (besides the matplotlib ones) for plotting are:
            - scale_bar: for images to replace axis with a scale bar inside the image
        figure: matplotlib figure object
            define figure to which this datset will be plotted
        Returns
        -------
        self.view.fig: matplotlib figure reference

        """

        if verbose:
            print('Shape of dataset is: ', self.shape)

        if self.data_type.value < 0:
            raise NameError('Datasets with UNKNOWN data_types cannot be plotted')

        if len(self.shape) == 1:
            if verbose:
                print('1D dataset')
            self.view = CurveVisualizer(self, figure=figure, **kwargs)
            # plt.show()
        elif len(self.shape) == 2:
            # this can be an image or a set of line_plots
            if verbose:
                print('2D dataset')
            if self.data_type == DataType.IMAGE:
                self.view = ImageVisualizer(self, figure=figure, **kwargs)
            elif self.data_type.value <= DataType['LINE_PLOT'].value:
                # self.data_type in ['spectrum_family', 'line_family', 'line_plot_family', 'spectra']:
                self.view = CurveVisualizer(self, figure=figure, **kwargs)
            elif self.data_type == DataType.POINT_CLOUD:
                self.view = PointCloudVisualizer(self, figure=figure, **kwargs)
            else:
                raise NotImplementedError('Datasets with data_type {} cannot be plotted, yet.'.format(self.data_type))
        elif len(self.shape) == 3:
            if verbose:
                print('3D dataset:', self.data_type)
            if self.data_type == DataType.IMAGE:
                self.view = ImageVisualizer(self, figure=figure, **kwargs)
            elif self.data_type == DataType.IMAGE_MAP:
                pass
            elif self.data_type == DataType.IMAGE_STACK:
                self.view = ImageStackVisualizer(self, figure=figure, **kwargs)
            elif self.data_type == DataType.SPECTRAL_IMAGE:
                if 'complex' in self.dtype.name:
                    self.view = ComplexSpectralImageVisualizer(self, figure=figure, **kwargs)
                else:
                    self.view = SpectralImageVisualizer(self, figure=figure, **kwargs)
            elif self.data_type.name == 'SPECTRAL_IMAGE':
                print('spec3')
                if 'complex' in self.dtype.name:
                    self.view = ComplexSpectralImageVisualizer(self, figure=figure, **kwargs)
                else:
                    self.view = SpectralImageVisualizer(self, figure=figure, **kwargs)
            elif self.data_type == DataType.POINT_CLOUD:
                self.view = PointCloudVisualizer(self, figure=figure, **kwargs)
            else:
                raise NotImplementedError('Datasets with data_type {} cannot be plotted, yet.'.format(self.data_type))
        elif len(self.shape) == 4:
            if verbose:
                print('4D dataset')
            if self.data_type == DataType.IMAGE:
                self.view = ImageVisualizer(self, **kwargs)
                plt.show()
            elif self.data_type == DataType.IMAGE_MAP:
                pass
            elif self.data_type == DataType.IMAGE_STACK:
                self.view = ImageStackVisualizer(self, figure=figure, **kwargs)
                plt.show()
            elif self.data_type == DataType.SPECTRAL_IMAGE:
                if 'complex' in self.dtype.name:
                    self.view = ComplexSpectralImageVisualizer(self, figure=figure, **kwargs)
                else:
                    self.view = SpectralImageVisualizer(self, figure=figure, **kwargs)
                plt.show()
            elif self.data_type == DataType.IMAGE_4D:
                self.view = FourDimImageVisualizer(self, figure=figure, **kwargs)
                plt.show()
                if verbose:
                    print('4D dataset')
            else:
                raise NotImplementedError('Datasets with data_type {} cannot be plotted, yet.'.format(self.data_type))
        else:
            raise NotImplementedError('Datasets with data_type {} cannot be plotted, yet.'.format(self.data_type))
        return self.view.fig

    def set_thumbnail(self, figure=None, thumbnail_size=128):
        """
        Creates a thumbnail which is stored in thumbnail attribute of sidpy Dataset
        Thumbnail data is saved to Thumbnail group of associated h5_file if it exists

        Parameters
        ----------
        thumbnail_size: int
            size of icon in pixels (length of square)

        Returns
        -------
        thumbnail: numpy.ndarray
        """

        import imageio
        # Thumbnail configurations for matplotlib
        kwargs = {'figsize': (1, 1), 'colorbar': False, 'set_title': False}
        view = self.plot(figure=figure, **kwargs)
        for axis in view.axes:
            axis.set_axis_off()

        # Creating Thumbnail as png image
        view.savefig('thumb.png', dpi=thumbnail_size)
        self.thumbnail = imageio.imread('thumb.png')

        # Writing thumbnail to h5_file if it exists
        if self.h5_dataset is not None:
            if 'Thumbnail' not in self.h5_dataset.file:
                thumb_group = self.h5_dataset.file.create_group("Thumbnail")
            else:
                thumb_group = self.h5_dataset.file["Thumbnail"]
            if "Thumbnail" in thumb_group:
                del thumb_group["Thumbnail"]
            thumb_dset = thumb_group.create_dataset("Thumbnail", data=self.thumbnail)

        return self.thumbnail

    def get_extent(self, dimensions):
        """
        get image extents as needed i.e. in matplotlib's imshow function.
        This function works for equi- or non-equi spaced axes and is suitable
        for subpixel accuracy of positions

        Parameters
        ----------
        dimensions: list of dimensions

        Returns
        -------
        list of floats
        """
        extent = []
        for ind, dim in enumerate(dimensions):
            temp = self._axes[dim].values
            start = temp[0] - (temp[1] - temp[0]) / 2
            end = temp[-1] + (temp[-1] - temp[-2]) / 2
            if ind == 1:
                extent.append(end)  # y-axis starts on top
                extent.append(start)
            else:
                extent.append(start)
                extent.append(end)
        return extent

    def get_dimension_slope(self, dim):
        axis = None
        if isinstance(dim, int):
            axis = self._axes[dim]
        elif isinstance(dim, Dimension):
            axis = dim
        return get_slope(axis)

    def get_dimension_by_number(self, dims_in):
        if isinstance(dims_in, int):
            dims_in = [dims_in]
        for i in range(len(dims_in)):
            if not isinstance(dims_in[i], int):
                raise ValueError('Input dimensions must be integers')
        out_dim = []
        for dim in dims_in:
            out_dim.append(self._axes[dim])
        return out_dim

    def get_dimensions_types(self):
        out_types = []
        for dim, axis in self._axes.items():
            out_types.append(axis.dimension_type)
        return out_types


    def get_dimensions_by_type(self, dims_in, return_axis=False):
        """ get dimension by dimension_type name

        Parameter
        ---------
        dims_in: dimension_type/str or list of dimension_types/string

        Returns
        -------
        dims_out: list of [index]
            the kind of dimensions specified in input in numerical order of the dataset, not the input!
        """

        if isinstance(dims_in, (str, DimensionType)):
            dims_in = [dims_in]
        for i in range(len(dims_in)):
            if isinstance(dims_in[i], str):
                dims_in[i] = DimensionType[dims_in[i].upper()]
        dims_out = []
        for dim, axis in self._axes.items():
            if axis.dimension_type in dims_in:
                if return_axis:
                    dims_out.append(axis)
                else:
                    dims_out.append(dim)  # , self._axes[dim]])
        return dims_out

    def get_image_dims(self, return_axis=False):
        """Get all spatial dimensions"""
        return self.get_dimensions_by_type(DimensionType.SPATIAL, return_axis=return_axis)

    def get_spectral_dims(self, return_axis=False):
        """Get all spectral dimensions"""
        return self.get_dimensions_by_type(DimensionType.SPECTRAL, return_axis=return_axis)

    def _griddata_transform(self, **kwargs):
        """
        Interpolate unstructured point cloud for the visualization to 3D/4D sidpy.Dataset
        Parameters
        ----------
        kwards: parameters to reduce dataset dimentions to 2D (number of point, spectral data)

        Returns
        -------
        sidpy.Dataset with data_type = SPECTRAL_IMAGE
        """
        from scipy.interpolate import griddata

        if 'coordinates' in self.metadata.keys():
            coord = self.metadata['coordinates']
        else:
            raise NotImplementedError('Datasets with data_type POINT_CLOUD must contain coordinates in metadata.')

        if 'spacial_units' in self.metadata.keys():
            sp_units = self.metadata['spacial_units']
        else:
            sp_units = 'a.u.'

        im_size = max(50, coord.shape[0])

        _x0, _x1 = np.min(coord, axis=0)[0], np.max(coord, axis=0)[0]
        _y0, _y1 = np.min(coord, axis=0)[1], np.max(coord, axis=0)[1]
        _delta_x = _x1 - _x0
        _delta_y = _y1 - _y0

        # to extend filed of view
        _x0, _x1 = _x0 - 0.05*_delta_x, _x1 + 0.05*_delta_x
        _y0, _y1 = _y0 - 0.05*_delta_y, _y1 + 0.05 * _delta_y

        _px_x = np.array((coord[:, 0] - _x0) * im_size/(_x1 - _x0)).astype(int)
        _px_y = np.array((coord[:, 1] - _y0) * im_size/(_y1 - _y0)).astype(int)

        grid_x, grid_y = np.mgrid[_x0: _x1: (_x1 - _x0)/im_size,
                                  _y0: _y1: (_y1 - _y0)/im_size]
        grid_z = griddata(coord, self, (grid_x, grid_y), method='nearest')

        # transpform to 3D
        _dset = Dataset.from_array(grid_z)
        _dset.data_type = 'point_cloud'
        _dset.units = self.units
        _dset.quantity = self.quantity
        _dset.title = self.title
        _dset.set_dimension(0, Dimension(grid_x[:, 0], 'x'))
        _dset.x.dimension_type = 'spatial'
        _dset.x.units = sp_units
        _dset.x.quantity = 'distance'
        _dset.set_dimension(1, Dimension(grid_y[0], 'y'))
        _dset.y.dimension_type = 'spatial'
        _dset.y.units = sp_units
        _dset.y.quantity = 'distance'
        _dset.set_dimension(2, self.get_dimension_by_number(1)[0])
        if len(self.shape) == 3:
            _dset.set_dimension(3, self.get_dimension_by_number(2)[0])
        _dset.metadata = {'coord': np.array([_px_x, _px_y]).T}
        if 'variance' in self.metadata.keys():
            grid_z_var = griddata(coord, self.metadata['variance'], (grid_x, grid_y), method='nearest')
            _dset.metadata['variance'] = grid_z_var
        return _dset

    @staticmethod
    def _min_dist(array):
        _sort_ar = np.sort(array)
        return np.min(_sort_ar[1:] - _sort_ar[:-1])

    @staticmethod
    def _closest_point(array_coord, point):
        diff = array_coord - point
        return np.argmin(diff[:, 0]**2 + diff[:, 1]**2)

    @property
    def labels(self):
        labels = []
        for key, dim in self._axes.items():
            labels.append('{} ({})'.format(dim.quantity, dim.units))
        return labels

    @property
    def title(self):
        return self._title

    @title.setter
    def title(self, value):
        if isinstance(value, str):
            self._title = value
        else:
            raise ValueError('title needs to be a string')

    @property
    def structures(self):
        return self._structures

    def add_structure(self, atoms, title=None):
        if isinstance(atoms, ase.Atoms):
            if title is None:
                title = atoms.get_chemical_formula()
            self._structures.update({title: atoms})
        else:
            raise ValueError('structure not an ase.Atoms object')

    @property
    def units(self):
        return self._units

    @units.setter
    def units(self, value):
        if isinstance(value, str):
            self._units = value
        else:
            raise ValueError('units needs to be a string')

    @property
    def quantity(self):
        return self._quantity

    @quantity.setter
    def quantity(self, value):
        if isinstance(value, str):
            self._quantity = value
        else:
            raise ValueError('quantity needs to be a string')

    @property
    def data_type(self):
        return self._data_type

    @data_type.setter
    def data_type(self, value):
        if isinstance(value, str):
            if value.upper() in DataType._member_names_:
                self._data_type = DataType[value.upper()]
            else:
                self._data_type = DataType.UNKNOWN
                raise Warning('Supported data_types for plotting are only: ', DataType._member_names_)

        elif isinstance(value, DataType):
            self._data_type = value
        else:
            raise ValueError('data_type needs to be a string')

    @property
    def modality(self):
        return self._modality

    @modality.setter
    def modality(self, value):
        if isinstance(value, str):
            self._modality = value
        else:
            raise ValueError('modality needs to be a string')

    @property
    def source(self):
        return self._source

    @source.setter
    def source(self, value):
        if isinstance(value, str):
            self._source = value
        else:
            raise ValueError('source needs to be a string')

    @property
    def h5_dataset(self):
        return self._h5_dataset

    @h5_dataset.setter
    def h5_dataset(self, value):
        if isinstance(value, h5py.Dataset):
            self._h5_dataset = value
        elif value is None:
            self.hdf_close()
        else:
            raise TypeError('h5_dataset needs to be a hdf5 Dataset')

    @property
    def metadata(self):
        return self._metadata

    @metadata.setter
    def metadata(self, value):
        if isinstance(value, dict):
            if sys.getsizeof(value) < 64000:
                self._metadata = value
            else:
                raise ValueError('metadata dictionary too large, please use attributes for '
                                 'large additional data sets')
        else:
            raise ValueError('metadata needs to be a python dictionary')

    @property
    def original_metadata(self):
        return self._original_metadata

    @original_metadata.setter
    def original_metadata(self, value):
        if isinstance(value, dict):
            if sys.getsizeof(value) < 64000:
                self._original_metadata = value
            else:
                raise ValueError('original_metadata dictionary too large, please use attributes for '
                                 'large additional data sets')
        else:
            raise ValueError('original_metadata needs to be a python dictionary')

    @property
    def data_descriptor(self):
        return '{} ({})'.format(self.quantity, self.units)

    @property
    def variance(self):
        return self._variance

    @variance.setter
    def variance(self, value):
        if value is None:
            self._variance = None
        else:
            if np.array(value).shape != np.array(self).shape:
                raise ValueError('Variance array must have the same dimensionality as the dataset')
            if isinstance(value, da.Array) and not np.any(np.isnan(value.shape)):
                self._variance = value
            else:
                self._variance = da.from_array(np.array(value))

    def fft(self, dimension_type=None):
        """ Gets the FFT of a sidpy.Dataset of any size

        The data_type of the sidpy.Dataset determines the dimension_type over which the
        fourier transform is performed over, if the dimension_type is not set explicitly.

        The fourier transformed dataset is automatically shifted to center of dataset.

        Parameters
        ----------
        dimension_type: None, str, or sidpy.DimensionType - optional
            dimension_type over which fourier transform is performed, if None an educated guess will determine
            that from dimensions of sidpy.Dataset

        Returns
        -------
        fft_dset: 2D or 3D complex sidpy.Dataset (not tested for higher dimensions)
            2 or 3 dimensional matrix arranged in the same way as input

        Example
        -------
        >> fft_dataset = sidpy_dataset.fft()
        >> fft_dataset.plot()
        """

        if dimension_type is None:
            # test for data_type of sidpy.Dataset
            if self.data_type.name in ['IMAGE_MAP', 'IMAGE_STACK', 'SPECTRAL_IMAGE', 'IMAGE_4D']:
                dimension_type = self.dim_2.dimension_type
            else:
                dimension_type = self.dim_0.dimension_type

        if isinstance(dimension_type, str):
            dimension_type = DimensionType[dimension_type.upper()]

        if not isinstance(dimension_type, DimensionType):
            raise TypeError('Could not identify a dimension_type to perform Fourier transform on')

        axes = self.get_dimensions_by_type(dimension_type)
        if dimension_type.name in ['SPATIAL', 'RECIPROCAL']:
            if len(axes) != 2:
                raise TypeError('sidpy dataset of type', self.data_type,
                                ' has no obvious dimension over which to perform fourier transform, please specify')
            if dimension_type.name == 'SPATIAL':
                new_dimension_type = DimensionType.RECIPROCAL
            else:
                new_dimension_type = DimensionType.SPATIAL

        elif dimension_type.name == 'SPECTRAL':
            if len(axes) != 1:
                raise TypeError('sidpy dataset of type', self.data_type,
                                ' has no obvious dimension over which to perform fourier transform, please specify')
            new_dimension_type = DimensionType.SPECTRAL
        else:
            raise NotImplementedError('fourier transform not implemented for dimension_type ', dimension_type.name)

        fft_transform = np.fft.fftshift(da.fft.fftn(self, axes=axes))
        fft_dset = self.like_data(fft_transform)
        fft_dset.units = 'a.u.'
        fft_dset.modality = 'fft'

        units_x = '1/' + self._axes[axes[0]].units
        fft_dset.set_dimension(axes[0],
                               Dimension(np.fft.fftshift(np.fft.fftfreq(self.shape[axes[0]],
                                                                        d=get_slope(self._axes[axes[0]].values))),
                                         name='u', units=units_x, dimension_type=new_dimension_type,
                                         quantity='reciprocal'))
        if len(axes) > 1:
            units_y = '1/' + self._axes[axes[1]].units
            fft_dset.set_dimension(axes[1],
                                   Dimension(np.fft.fftshift(np.fft.fftfreq(self.shape[axes[1]],
                                                                            d=get_slope(self._axes[axes[1]].values))),
                                             name='v', units=units_y, dimension_type=new_dimension_type,
                                             quantity='reciprocal_length'))
        return fft_dset

    def flatten_complex(self):
        """
        This function returns a dataset with real and imaginary components that have been flattened
        This is necessary for scenarios such as fitting of complex functions
        Must be a 2D or 1D dataset to begin with
        Output:
        - ouput_arr: sidpy.Dataset object
        """
        assert self.ndim < 3, "flatten_complex() only works on 1D or 2D datasets, current dataset has {}".format(
            self.ndim)
        # Only the second dimension needs to be changed
        # Because we are stacking real and imaginary, this means we just tile the existing axis values
        if len(self._axes) == 1:
            index_ax = 0
        elif len(self._axes) == 2:
            index_ax = 1
        new_ax_values = np.tile(self._axes[index_ax].values, 2)
        output_arr = self.like_data(dask.array.hstack([self.real, self.imag]))
        output_arr.set_dimension(index_ax, Dimension(new_ax_values, name=output_arr._axes[index_ax].name,
                                                     units=output_arr._axes[index_ax].units,
                                                     dimension_type=output_arr._axes[index_ax].dimension_type,
                                                     quantity=output_arr._axes[index_ax].quantity))

        return output_arr

    # #####################################################
    # Original dask.array functions replaced
    # ##################################################

    def __eq__(self, other):  # TODO: Test __eq__
        if not isinstance(other, Dataset):
            return False
        # if (self.__array__() == other.__array__()).all():
        if (self.__array__().__eq__(other.__array__())).all():
            if self._units != other._units:
                return False
            if self._quantity != other._quantity:
                return False
            if self._source != other._source:
                return False
            if self._data_type != other._data_type:
                return False
            if self._modality != other._modality:
                return False
            if self._axes != other._axes:
                return False
            if (self._variance is not None) and (other._variance is not None):
                if not (self._variance.__eq__(other._variance)).all():
                    return False
            elif (self._variance is not None) or (other._variance is not None):
                return False
            return True
        return False

    @property
    def T(self):
        return self.transpose()

    def abs(self):
        return self.like_data(super().__abs__(), title_suffix='_absolute_value')

    ######################################################
    # Original dask.array functions handed through
    ##################################################
    @property
    def real(self):
        result = self.like_data(super().real)
        if self._variance is not None:
            result._variance = self._variance.real
        return result

    @property
    def imag(self):
        result = self.like_data(super().imag)
        if self._variance is not None:
            result._variance = self._variance.image
        return result

    # This is wrapper method for the methods that reduce dimensions
    def reduce_dims(original_method):
        @wraps(original_method)
        def wrapper_method(self, *args, **kwargs):
            result, arguments = original_method(self, *args, **kwargs)
            axis, keepdims = arguments.get('axis'), arguments.get('keepdims', False)
            if axis is None and not keepdims:
                return result.compute()
            if axis is None:
                axes = list(np.arange(self.ndim))
            elif isinstance(axis, int):
                axes = [axis]
            else:
                axes = list(axis)

            return self.__reduce_dimensions(result, axes, keepdims)

        return wrapper_method

    @reduce_dims
    def all(self, axis=None, keepdims=False, split_every=None, out=None):

        result = self.like_data(super().all(axis=axis, keepdims=keepdims,
                                            split_every=split_every, out=out), title_prefix='all_aggregate_',
                                checkdims=False)
        if self._variance is not None:
            result._variance = self._variance.all(axis=axis, keepdims=keepdims,
                                                split_every=split_every, out=out)
        return result, locals().copy()

    @reduce_dims
    def any(self, axis=None, keepdims=False, split_every=None, out=None):

        result = self.like_data(super().any(axis=axis, keepdims=keepdims,
                                            split_every=split_every, out=out), title_prefix='any_aggregate_',
                                checkdims=False)
        if self._variance is not None:
            result._variance = self._variance.any(axis=axis, keepdims=keepdims,
                                                  split_every=split_every, out=out)
        return result, locals().copy()

    @reduce_dims
    def min(self, axis=None, keepdims=False, split_every=None, out=None):

        result = self.like_data(super().min(axis=axis, keepdims=keepdims,
                                            split_every=split_every, out=out), title_prefix='min_aggregate_',
                                checkdims=False)
        if self._variance is not None:
            if axis is not None:
                _min_ind_axis = super().argmin(axis=axis, split_every=split_every, out=out)
                _coords = np.array(list(np.ndindex(_min_ind_axis.shape))) #list?
                _inds = np.insert(_coords, axis, np.array(_min_ind_axis).flatten(), axis=1)
                _extracted_points = da.take(self._variance.flatten(), np.ravel_multi_index(_inds.T, (self._variance.shape)))
                result._variance = _extracted_points.reshape(result.shape).rechunk(result.chunksize)
            else:
                _ind = np.unravel_index(super().min(), self._variance.shape)
                result._variance = self._variance[_ind]
        return result, locals().copy()

    @reduce_dims
    def max(self, axis=None, keepdims=False, split_every=None, out=None):

        result = self.like_data(super().max(axis=axis, keepdims=keepdims,
                                            split_every=split_every, out=out), title_prefix='max_aggregate_',
                                checkdims=False)

        if self._variance is not None:
            if axis is not None:
                _max_ind_axis = super().argmax(axis=axis, split_every=split_every, out=out)
                _coords = np.array(list(np.ndindex(_max_ind_axis.shape))) #list?
                _inds = np.insert(_coords, axis, np.array(_max_ind_axis).flatten(), axis=1)
                _extracted_points = da.take(self._variance.flatten(), np.ravel_multi_index(_inds.T, (self._variance.shape)))
                result._variance = _extracted_points.reshape(result.shape).rechunk(result.chunksize)

        return result, locals().copy()

    @reduce_dims
    def sum(self, axis=None, dtype=None, keepdims=False, split_every=None, out=None):

        result = self.like_data(super().sum(axis=axis, dtype=dtype, keepdims=keepdims,
                                            split_every=split_every, out=out), title_prefix='sum_aggregate_',
                                checkdims=False)
        if self._variance is not None:
            result._variance = abs(self._variance).sum(axis=axis, dtype=dtype, keepdims=keepdims,
                                                    split_every=split_every, out=out)
        #TODO imaginary
        return result, locals().copy()

    @reduce_dims
    def mean(self, axis=None, dtype=None, keepdims=False, split_every=None, out=None):

        result = self.like_data(super().mean(axis=axis, dtype=dtype, keepdims=keepdims,
                                             split_every=split_every, out=out), title_prefix='mean_aggregate_',
                                checkdims=False)
        if (self._variance is not None) and (axis is not None):
            if type(axis) is tuple:
                sh = np.prod(np.array(self._variance.shape, dtype=int)[list(axis)])
            else:
                sh = axis
            result._variance = self._variance.sum(axis=axis, dtype=dtype, keepdims=keepdims,
                                                   split_every=split_every, out=out)/sh**2

        return result, locals().copy()

    @reduce_dims
    def std(self, axis=None, dtype=None, keepdims=False, ddof=0, split_every=None, out=None):

        result = self.like_data(super().std(axis=axis, dtype=dtype, keepdims=keepdims,
                                            ddof=0, split_every=split_every, out=out),
                                title_prefix='std_aggregate_', checkdims=False)

        return result, locals().copy()

    @reduce_dims
    def var(self, axis=None, dtype=None, keepdims=False, ddof=0, split_every=None, out=None):

        result = self.like_data(super().var(axis=axis, dtype=dtype, keepdims=keepdims,
                                            ddof=ddof, split_every=split_every, out=out),
                                title_prefix='var_aggregate_', checkdims=False)
        return result, locals().copy()

    @reduce_dims
    def argmin(self, axis=None, split_every=None, out=None):

        result = self.like_data(super().argmin(axis=axis, split_every=split_every, out=out),
                                title_prefix='argmin_aggregate_', reset_units=True, reset_quantity=True,
                                check_dims=False)

        return result, locals().copy()

    @reduce_dims
    def argmax(self, axis=None, split_every=None, out=None):

        result = self.like_data(super().argmax(axis=axis, split_every=split_every, out=out),
                                title_prefix='argmax_aggregate_', reset_units=True, reset_quantity=True,
                                check_dims=False)

        return result, locals().copy()

    def angle(self, deg=False):
        result = self.like_data(da.angle(self, deg=deg), reset_units=True,
                                reset_quantity=True, title_prefix='angle_', checkdims=True)
        if deg:
            result.units = 'degrees'
        else:
            result.units = 'radians'
        return result

    def conj(self):
        return self.like_data(super().conj(), reset_units=True,
                              reset_quantity=True, title_prefix='conj_', checkdims=True)

    def astype(self, dtype, **kwargs):
        return self.like_data(super().astype(dtype=dtype, **kwargs), variance=self._variance)

    def flatten(self):

        result =  self.like_data(super().flatten(), title_prefix='flattened_',
                              check_dims=False)

        if self._variance is not None:
            result.variance = self._variance.flatten()
        return result

    def ravel(self):
        return self.flatten()

    def clip(self, min=None, max=None):
        return self.like_data(super().clip(min=min, max=max),
                              reset_quantity=True, title_prefix='clipped_')

    def compute_chunk_sizes(self):
        return self.like_data(super().compute_chunk_sizes())

    def cumprod(self, axis, dtype=None, out=None, method='sequential'):
        if axis is None:
            self = self.flatten()
            axis = 0

        return self.like_data(super().cumprod(axis=axis, dtype=dtype, out=out,
                                              method=method), title_prefix='cumprod_', reset_quantity=True)

    def cumsum(self, axis, dtype=None, out=None, method='sequential'):
        if axis is None:
            self = self.flatten()
            axis = 0

        return self.like_data(super().cumsum(axis=axis, dtype=dtype, out=out,
                                             method=method), title_prefix='cumsum_', reset_quantity=True)

    # What happens to the dimensions??
    def dot(self, other):
        return self.from_array(super().dot(other))

    def squeeze(self, axis=None):
        result = self.like_data(super().squeeze(axis=axis), title_prefix='Squeezed_',
                                checkdims=False)
        if self._variance is not None:
            result._variance = self._variance.squeeze(axis=axis)

        if axis is None:
            shape_list = list(self.shape)
            axes = [i for i in range(self.ndim) if shape_list[i] == 1]
        elif isinstance(axis, int):
            axes = [axis]
        else:
            axes = list(axis)

        return self.__reduce_dimensions(result, axes, keepdims=False)

    def swapaxes(self, axis1, axis2):
        result = self.like_data(super().swapaxes(axis1, axis2),
                                title_prefix='Swapped_axes_', checkdims=False)
        if self._variance is not None:
            result._variance = self._variance.swapaxes(axis1, axis2)

        new_order = np.arange(self.ndim)
        new_order[axis1] = axis2
        new_order[axis2] = axis1

        return self.__rearrange_axes(result, new_order)

    def transpose(self, *axes):
        result = self.like_data(super().transpose(*axes),
                                title_prefix='Transposed_', checkdims=False)
        if self._variance is not None:
            result._variance = self._variance.transpose(*axes)
        if not axes:
            new_axes_order = range(self.ndim)[::-1]
        elif len(axes) == 1 and isinstance(axes[0], Iterable):
            new_axes_order = axes[0]
        else:
            new_axes_order = axes

        return self.__rearrange_axes(result, new_axes_order)

    def round(self, decimals=0):
        return self.like_data(super().round(decimals=decimals),
                              title_prefix='Rounded_')

    def reshape(self, shape, merge_chunks=True, limit=None):
        # This somehow adds an extra dimension at the end
        # Will come back to this
        warnings.warn('Dimensional information will be lost.\
                       Please use fold, unfold to combine dimensions')
        if len(shape) == 1 and isinstance(shape[0], Iterable):
            new_shape = shape[0]
        else:
            new_shape = shape
        return super().reshape(*new_shape, merge_chunks)

    @reduce_dims
    def prod(self, axis=None, dtype=None, keepdims=False,
             split_every=None, out=None):

        result = self.like_data(super().prod(axis=axis, dtype=dtype, keepdims=keepdims,
                                             split_every=split_every, out=out),
                                title_prefix='prod_aggregate', reset_units=True, reset_quantity=True,
                                checkdims=False)
        return result, locals().copy()

    @reduce_dims
    def trace(self, offset=0, axis1=0, axis2=1, dtype=None):

        if self.ndim == 2:
            axes = None
            result = (super().trace(offset=offset))

        else:
            axes = [axis1, axis2]
            result = self.like_data(super().trace(offset=offset, axis1=axis1,
                                                  axis2=axis2, dtype=None), title_prefix='Trace_', checkdims=False)
        local_args = locals().copy()
        local_args['axis'] = axes
        return result, local_args

    def repeat(self, repeats, axis=None):
        result = self.like_data(super().repeat(repeats=repeats, axis=axis),
                                title_prefix='Repeated_', checkdims=False)

        # result._axes = {}
        for i, dim in self._axes.items():
            if axis != i:
                new_dim = dim.copy()
            else:
                new_dim = Dimension(np.repeat(dim.values, repeats=repeats),
                                    name=dim.name, quantity=dim.quantity,
                                    units=dim.units, dimension_type=dim.dimension_type)
            result.set_dimension(i, new_dim)

        return result

    @reduce_dims
    def moment(self, order, axis=None, dtype=None,
               keepdims=False, ddof=0, split_every=None,
               out=None):

        result = self.like_data(super().moment(order=order,
                                               axis=axis,
                                               dtype=dtype, keepdims=keepdims,
                                               ddof=0, split_every=split_every,
                                               out=out),
                                title_prefix='moment_aggregate_', checkdims=False)
        return result, locals().copy()

    def persist(self, **kwargs):
        return self.like_data(super().persist(**kwargs),
                              title_prefix='persisted_')

    def rechunk(self, chunks='auto', threshold=None, block_size_limit=None, balance=False):
        return self.like_data(super().rechunk(chunks=chunks,
                                              threshold=threshold,
                                              block_size_limit=block_size_limit,
                                              balance=balance), title_prefix='Rechunked_')

    def fold(self, dim_order=None, method=None):
        """
           This method collapses the dimensions of the sidpy dataset
        """

        """
        Parameters
        ----------
        
        dim_order: List of lists or tuple of tuples 
            -Each element corresponds to the order of axes in the corresponding 
            new axis after the collapse
            -Default: None
        method: str
            -'spaspec': collapses the original dataset to a 2D dataset, where 
            spatail dimensions form the zeroth axis and spectral dimensions 
            form the first axis
            -'spa': combines all the spatial dimensions into a single dimension and 
            the combined dimension will be first
            -'spec': combines all the spectral dimensions into a single dimension and 
            the combined dimension will be last
            -Uses the user defined dim_order when set to None
            -Default: None

        Returns
        -------
        Collapsed sidpy.Dataset object whose number of dimensions equals 
        two if method=='spaspec' or len(dim_order)
        """
        if method is None:
            if dim_order is None:
                raise NotImplementedError("Specify the dim_order or set the\
                                              method to 'spaspec'")
            if not (isinstance(dim_order, list) or isinstance(dim_order, tuple)):
                raise NotImplementedError("dim_order should be a List or a Tuple")

            dim_order_list = [list(x) for x in dim_order]

        # Book-keeping for unfolding
        fold_attr = {'_axes': self._axes.copy()}

        if method == 'spaspec':
            dim_order_list = [[], []]
            for dim, axis in self._axes.items():
                if axis.dimension_type == DimensionType.SPATIAL:
                    dim_order_list[0].extend([dim])
                elif axis.dimension_type == DimensionType.SPECTRAL:
                    dim_order_list[1].extend([dim])
                else:
                    warnings.warn('One of the dimensions is neither Spatial\
                                              nor Spectral Type and is considered to be a \
                                              part of the last collapsed dimension')
                    dim_order_list[1].extend([dim])

        if method == 'spa':
            dim_order_list = [[]]
            for dim, axis in self._axes.items():
                if axis.dimension_type == DimensionType.SPATIAL:
                    dim_order_list[0].extend([dim])
                else:
                    dim_order_list.append([dim])

            if len(dim_order_list[0]) == 0:
                raise NotImplementedError("No spatial dimensions found and the method is set to 'spa' ")
            if len(dim_order_list[0]) == 1:
                warnings.warn('Only one spatial dimension found\
                                Folding returns the original dataset')

        if method == 'spec':
            dim_order_list = [[]]
            for dim, axis in self._axes.items():
                if axis.dimension_type == DimensionType.SPECTRAL:
                    dim_order_list[-1].extend([dim])
                else:
                    dim_order_list.insert(-1, [dim])

            if len(dim_order_list[-1]) == 0:
                raise NotImplementedError("No spectral dimensions found and the method is set to 'spec'")
            if len(dim_order_list[-1]) == 1:
                warnings.warn('Only one spatial dimension found\
                                Folding returns the original dataset')

        # We need the flattened list to transpose the original array
        dim_order_flattened = [item for sublist in dim_order_list for item in sublist]

        # Check if all the dimensions are accounted for,
        if len(dim_order_flattened) != len(self.shape):
            warnings.warn('All the dimensions that are not present in the dim_order \
                              are considered to be a part of last collapsed dimension')

            left_dims = set(np.arange(0, self.ndim)) - set(dim_order_flattened)
            dim_order_list[-1].extend(list(left_dims))
            dim_order_flattened.extend(list(left_dims))

        fold_attr['dim_order_flattened'] = dim_order_flattened
        fold_attr['dim_order'] = dim_order_list
        # Get the shape of the collapsed array
        new_shape = np.ones(len(dim_order_list)).astype(int)
        for i, dim in enumerate(dim_order_list):
            for d in dim:
                new_shape[i] *= self.shape[d]

        # Collapsed dask array
        transposed_dset = self.transpose(dim_order_flattened)

        folded_dset = self.like_data(da.reshape(transposed_dset, tuple(new_shape), merge_chunks=True),
                                     title_prefix='folded_', checkdims=False)

        fold_attr['shape_transposed'] = [self.shape[i] for i in dim_order_flattened]

        # Setting the dimensions for spaspec method
        if method == 'spaspec':
            folded_dset._axes[0].dimension_type = DimensionType.SPATIAL
            folded_dset._axes[1].dimension_type = DimensionType.SPECTRAL

        folded_dset.metadata['fold_attr'] = fold_attr

        # Setting the dimensions for a general case
        for i, dim in enumerate(dim_order_list):
            dim_types = [self._axes[d].dimension_type for d in dim]
            if dim_types.count(dim_types[0]) == len(dim_types):
                folded_dset._axes[i].dimension_type = dim_types[0]

        return folded_dset

    def unfold(self):
        try:
            shape_transposed = self.metadata['fold_attr']['shape_transposed']
            dim_order_flattened = self.metadata['fold_attr']['dim_order_flattened']
            old_axes = self.metadata['fold_attr']['_axes']
        except:
            raise NotImplementedError('unfold only works on the dataset that was collapsed/folded by'
                                      ' the fold method')

        reshaped_dset = da.reshape(self, shape_transposed, merge_chunks=True)
        old_order = [dim_order_flattened.index(d) for d in range(len(dim_order_flattened))]

        unfolded_dset = self.like_data(da.transpose(reshaped_dset, old_order),
                                       title=self.title.replace('folded_', ''), checkdims=False)

        unfolded_dset._axes = {}
        for i, dim in old_axes.items():
            unfolded_dset.set_dimension(i, dim.copy())

        del unfolded_dset.metadata['fold_attr']
        return unfolded_dset

    # Following methods are to be edited

    def adjust_axis(self, result, axis, title='', keepdims=False):
        if not keepdims:
            dim = 0
            dataset = self.from_array(result)
            if isinstance(axis, int):
                axis = [axis]

            # for ax, dimension in self._axes.items():
            #    if int(ax) not in axis:
            #        delattr(self, dimension.name)
            #        delattr(self, f'dim_{ax}')
            #        del self._axes[ax]

            for ax, dimension in self._axes.items():
                if int(ax) not in axis:
                    dataset.set_dimension(dim, dimension)
                    dim += 1
        else:
            dataset = self.like_data(result)
        dataset.title = title + self.title
        dataset.modality = f'sum axis {axis}'
        dataset.quantity = self.quantity
        dataset.source = self.source
        dataset.units = self.units

        return dataset

    def choose(self, choices):
        return self.like_data(super().choose(choices))

    def __abs__(self):
        return self.like_data(super().__abs__(), title_suffix='_absolute_value')

    def __add__(self, other):
        return self.like_data(super().__add__(other))

    def __radd__(self, other):
        return self.like_data(super().__radd__(other))

    def __and__(self, other):
        return self.like_data(super().__and__(other))

    def __rand__(self, other):
        return self.like_data(super().__rand__(other))

    def __div__(self, other):
        return self.like_data(super().__div__(other))

    def __rdiv__(self, other):
        return self.like_data(super().__rdiv__(other))

    def __gt__(self, other):
        return self.like_data(super().__gt__(other))

    def __ge__(self, other):
        return self.like_data(super().__ge__(other))

    def __getitem__(self, idx):

        # Here we need to modify the dimensions of the sliced dataset using the argument index
        if not isinstance(idx, tuple):
            # This comes into play when slicing is done using 'None' or just integers.
            # For example: dset[4] or dset[None]
            idx = tuple([idx])

        # The following line creates a new sidpy dataset with generic dimensions and ..
        # all the other attributes copied from 'self' aka parent dataset.
        sliced = self.like_data(super().__getitem__(idx), checkdims=False)

        # Delete the dimensions created by like_data
        sliced.del_dimension()

        old_dims = copy(self._axes)
        j, k = 0, 0  # j is for self (old_dims) and k is for the sliced dataset (new dimensions)

        for ind in idx:
            if ind is None:  # Add a new dimension
                sliced.set_dimension(k, Dimension(1))
                k += 1
            elif isinstance(ind, (int, np.integer)):
                j += 1
            elif isinstance(ind, (slice, list)):
                old_dim = old_dims[j]
                sliced.set_dimension(k, Dimension(old_dim[ind].values,
                                                  name=old_dim.name, quantity=old_dim.quantity,
                                                  units=old_dim.units,
                                                  dimension_type=old_dim.dimension_type))
                j += 1
                k += 1

            elif isinstance(ind, (np.ndarray, da.Array)):
                if not ind.ndim == 1:
                    raise NotImplementedError('Multi Dimensional Slicing of sidpy Dataset'
                                              'is not available at this moment, please'
                                              'raise an issue on out GitHub page')
                old_dim = old_dims[j]
                sliced.set_dimension(k, Dimension(old_dim[np.array(ind)].values,
                                                  name=old_dim.name, quantity=old_dim.quantity,
                                                  units=old_dim.units,
                                                  dimension_type=old_dim.dimension_type))
                j += 1
                k += 1

            elif ind is Ellipsis:
                start_dim = idx.index(Ellipsis)
                ellipsis_dims = sliced.ndim - (len(idx) - 1)
                stop_dim = start_dim + ellipsis_dims

                for l in range(start_dim, stop_dim):
                    old_dim = old_dims[j]
                    sliced.set_dimension(k, old_dim)
                    j += 1
                    k += 1

        # Adding the rest of the dimensions
        for k in range(k, sliced.ndim):
            old_dim = old_dims[j]
            sliced.set_dimension(k, Dimension(old_dim.values,
                                              name=old_dim.name, quantity=old_dim.quantity,
                                              units=old_dim.units,
                                              dimension_type=old_dim.dimension_type))
            j += 1
            k += 1

        return sliced

    def __invert__(self):
        return self.like_data(super().__invert__())

    def __lshift__(self, other):
        return self.like_data(super().__lshift__(other))

    def __rlshift__(self, other):
        return self.like_data(super().__rlshift__(other))

    def __lt__(self, other):
        return self.like_data(super().__lt__(other))

    def __le__(self, other):
        return self.like_data(super().__lt__(other))

    def __mod__(self, other):
        return self.like_data(super().__lshift__(other))

    def __rmod__(self, other):
        return self.like_data(super().__rmod__(other))

    def __mul__(self, other):
        return self.like_data(super().__mul__(other))

    def __rmul__(self, other):
        return self.like_data(super().__rmul__(other))

    def __ne__(self, other):
        return self.like_data(super().__ne__(other))

    def __neg__(self):
        return self.like_data(super().__neg__())

    def __or__(self, other):
        return self.like_data(super().__or__(other))

    def __ror__(self, other):
        return self.like_data(super().__ror__(other))

    def __pos__(self):
        return self.like_data(super().__pos__())

    def __pow__(self, other):
        return self.like_data(super().__pow__(other))

    def __rpow__(self, other):
        return self.like_data(super().__rpow__(other))

    def __rshift__(self, other):
        return self.like_data(super().__rshift__(other))

    def __rrshift__(self, other):
        return self.like_data(super().__rrshift__(other))

    def __sub__(self, other):
        return self.like_data(super().__sub__(other))

    def __rsub__(self, other):
        return self.like_data(super().__rsub__(other))

    def __truediv__(self, other):
        return self.like_data(super().__truediv__(other))

    def __rtruediv__(self, other):
        return self.like_data(super().__rtruediv__(other))

    def __floordiv__(self, other):
        return self.like_data(super().__floordiv__(other))

    def __rfloordiv__(self, other):
        return self.like_data(super().__rfloordiv__(other))

    def __xor__(self, other):
        return self.like_data(super().__xor__(other))

    def __rxor__(self, other):
        return self.like_data(super().__rxor__(other))

    def __matmul__(self, other):
        return self.like_data(super().__matmul__(other))

    def __rmatmul__(self, other):
        return self.like_data(super().__rmatmul__(other))

    def __array_ufunc__(self, numpy_ufunc, method, *inputs, **kwargs):
        out = kwargs.get("out", ())

        if method == "__call__":
            # if numpy_ufunc is np.matmul:
            #     from dask.array.routines import matmul
            #
            #     # special case until apply_gufunc handles optional dimensions
            #     return self.like_data(matmul(*inputs, **kwargs))
            if numpy_ufunc.signature is not None:
                from dask.array.gufunc import apply_gufunc

                return self.like_data(apply_gufunc(
                    numpy_ufunc, numpy_ufunc.signature, *inputs, **kwargs))
            if numpy_ufunc.nout > 1:
                from dask.array import ufunc

                try:
                    da_ufunc = getattr(ufunc, numpy_ufunc.__name__)
                except AttributeError:
                    return NotImplemented
                return self.like_data(da_ufunc(*inputs, **kwargs))
            else:
                return self.like_data(dask.array.core.elemwise(numpy_ufunc, *inputs, **kwargs))
        elif method == "outer":
            from dask.array import ufunc

            try:
                da_ufunc = getattr(ufunc, numpy_ufunc.__name__)
            except AttributeError:
                return NotImplemented
            return self.like_data(da_ufunc.outer(*inputs, **kwargs))
        else:
            return NotImplemented


def convert_hyperspy(s):
    """
    imports a hyperspy signal object into sidpy.Dataset

    Parameters
    ----------
    s: hyperspy dataset

    Return
    ------
    dataset: sidpy.Dataset
    """
    try:
        import hyperspy.api as hs
    except ModuleNotFoundError:
        raise ModuleNotFoundError("Hyperspy is not installed")

    if not isinstance(s, (hs.signals.Signal1D, hs.signals.Signal2D)):
        raise TypeError('This is not a hyperspy signal object')
    dataset = Dataset.from_array(s, name=s.metadata.General.title)
    # Add dimension info
    axes = s.axes_manager.as_dictionary()

    if isinstance(s, hs.signals.Signal1D):
        if s.data.ndim < 2:
            dataset.data_type = 'spectrum'
        elif s.data.ndim > 1:
            if s.data.ndim == 2:
                dataset = Dataset.from_array(np.expand_dims(s, 2), title=s.metadata.General.title)
                dataset.set_dimension(2, Dimension([0], name='y', units='pixel',
                                                   quantity='distance', dimension_type='spatial'))
            dataset.data_type = DataType.SPECTRAL_IMAGE
        for key, axis in axes.items():
            if axis['navigate']:
                dimension_type = 'spatial'
            else:
                dimension_type = 'spectral'
            dim_array = np.arange(axis['size']) * axis['scale'] + axis['offset']
            if axis['units'] == '':
                axis['units'] = 'frame'
            dataset.set_dimension(int(key[-1]), Dimension(dim_array, name=axis['name'], units=axis['units'],
                                                          quantity=axis['name'], dimension_type=dimension_type))

    elif isinstance(s, hs.signals.Signal2D):
        if s.data.ndim < 4:
            if s.data.ndim == 2:
                dataset.data_type = 'image'
            elif s.data.ndim == 3:
                dataset.data_type = 'image_stack'
            for key, axis in axes.items():
                if axis['navigate']:
                    dimension_type = 'temporal'
                else:
                    dimension_type = 'spatial'
                dim_array = np.arange(axis['size']) * axis['scale'] + axis['offset']
                if axis['units'] == '':
                    axis['units'] = 'pixel'
                dataset.set_dimension(int(key[-1]), Dimension(dim_array, name=axis['name'], units=axis['units'],
                                                              quantity=axis['name'],
                                                              dimension_type=dimension_type))
        elif s.data.ndim == 4:
            dataset.data_type = 'IMAGE_4D'
            for key, axis in axes.items():
                if axis['navigate']:
                    dimension_type = 'spatial'
                else:
                    dimension_type = 'reciprocal'
                dim_array = np.arange(axis['size']) * axis['scale'] + axis['offset']
                dataset.set_dimension(int(key[-1]), Dimension(dim_array, name=axis['name'], units=axis['units'],
                                                              quantity=axis['name'],
                                                              dimension_type=dimension_type))
    dataset.metadata = dict(s.metadata)
    dataset.original_metadata = dict(s.original_metadata)
    dataset.title = dataset.metadata['General']['title']
    dataset.units = dataset.metadata['Signal']['quantity '].split('(')[-1][:-1]
    dataset.quantity = dataset.metadata['Signal']['quantity '].split('(')[0]
    dataset.source = 'hyperspy'
    return dataset