File: dimension.py

package info (click to toggle)
python-sidpy 0.12.3-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 21,988 kB
  • sloc: python: 11,456; makefile: 17
file content (231 lines) | stat: -rw-r--r-- 7,758 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
# -*- coding: utf-8 -*-
"""
Objects that represent dimensions or axes of scientific datasets

Created on Thu Jul  7 21:14:25 2020

@author: Gerd Duscher, Suhas Somnath
"""

from __future__ import division, print_function, unicode_literals, \
    absolute_import
from warnings import warn
import sys
import numpy as np
from enum import Enum
from sidpy.base.string_utils import validate_single_string_arg
import copy

__all__ = ['Dimension', 'DimensionType']

if sys.version_info.major == 3:
    unicode = str


class DimensionType(Enum):
    """
    Physical type of Dimension object. This information will be used for
    visualization and processing purposes.
    """
    UNKNOWN = -1
    SPATIAL = 1
    RECIPROCAL = 2
    SPECTRAL = 3
    TEMPORAL = 4
    CHANNEL = 5
    POINT_CLOUD = 6


class Dimension(np.ndarray):
    """
    """

    def __new__(cls, values, name='none', quantity='generic', units='generic',
                dimension_type=DimensionType.UNKNOWN, *args, **kwargs):
        """
        Parameters
        ----------
        name : str or unicode
            Name of the dimension. For example 'X'
        quantity : str or unicode
            Quantity for this dimension. For example: 'Length'
        units : str or unicode
            Units for this dimension. For example: 'um'
        values : array-like or int
            Values over which this dimension was varied. A linearly increasing
            set of values will be generated if an integer is provided instead
            of an array.
        dimension_type : str or sidpy.sid.dimension.DimensionType
            For example: 'spectral', 'spatial', 'reciprocal', 'channel', or 'UNKNOWN',
            'time', 'frame', 'reciprocal'
            This will determine how the data are visualized. 'spatial' are
            image dimensions. 'spectral' indicate spectroscopy data dimensions.

        Attributes
        ----------
        self.name : str
            Name of the dimension
        self.quantity : str
            Physical quantity. E.g. - current
        self.units : str
            Physical units. E.g. - amperes
        self.dimension_type : enum
            Type of dimension. E.g. - Spectral, Spatial, etc.
        self.values : array-like
            Values over which this dimension was varied
        """
        if isinstance(values, int):
            if values < 1:
                raise TypeError("When specifying the size of a Dimension, "
                                "values should at be integers > 1")
            values = np.arange(values)
        elif len(np.array(values)) < 1:
            raise TypeError("When specifying values over which a parameter is "
                            "varied, values should not be an empty array")
        if np.array(values).ndim != 1:
            raise ValueError('Dimension can only be 1 dimensional')
        new_dim = np.asarray(values, dtype=float).view(cls)
        new_dim._name = validate_single_string_arg(name, 'name')
        new_dim.quantity = quantity
        new_dim.units = units
        new_dim.dimension_type = dimension_type
        return new_dim

    def __array_finalize__(self, obj):
        # see InfoArray.__array_finalize__ for comments
        if obj is None:
            return
        self._name = validate_single_string_arg(getattr(obj, '_name', 'generic'), 'name')
        self.quantity = getattr(obj, '_quantity', 'generic')
        self.units = getattr(obj, '_units', 'generic')
        self.dimension_type = getattr(obj, '_dimension_type', 'UNKNOWN')

    def __array_wrap__(self, out_arr, context=None):
        # just call the parent
        super(Dimension, self).__array_wrap__(self, out_arr, context)
        # return correct values
        return out_arr

    def __repr__(self):
        return '{}:  {} ({}) of size {}'.format(self.name, self.quantity, self.units, self.shape)

    def __str__(self):
        return '{}:  {} ({}) of size {}'.format(self.name, self.quantity, self.units, self.shape)

    # def __copy__(self):
    #     new_dim = Dimension(np.array(self), name=self.name, quantity=self.quantity, units=self.units)
    #     new_dim.dimension_type = self.dimension_type
    #     return new_dim

    def __copy__(self):
        # Create a new instance of Dimension
        new_instance = Dimension(
            copy.copy(self.values),
            copy.copy(self.name),
            copy.copy(self.quantity),
            copy.copy(self.units),
            copy.copy(self.dimension_type)
        )

        return new_instance

    def __deepcopy__(self, memo):
        # For now this is what chatGPT came up with and it does not break any tests

        # Create a new instance of Dimension
        new_instance = Dimension(
            copy.deepcopy(self.values, memo),
            copy.deepcopy(self.name, memo),
            copy.deepcopy(self.quantity, memo),
            copy.deepcopy(self.units, memo),
            copy.deepcopy(self.dimension_type, memo)
        )

        return new_instance

    # TODO: Implement equality

    # TODO: Find out how to get rid of this
    def copy(self):
        # Not sure why __copy__() would not be called by itself
        new_dim = self.__copy__()
        return new_dim

    @property
    def info(self):
        return '{} - {} ({}): {}'.format(self.name, self.quantity, self.units,
                                         self.values)

    @property
    def name(self):
        return self._name

    @name.setter
    def name(self, value):
        raise AttributeError("Cannot change the name of the dimension. "
                             "If the dimension is associated with the dataset, please try "
                             "dataset.rename_dimension")

    #     # self._name = validate_single_string_arg(value, 'name')

    @property
    def quantity(self):
        return self._quantity

    @quantity.setter
    def quantity(self, value):
        self._quantity = validate_single_string_arg(value, 'quantity')

    @property
    def units(self):
        return self._units

    @units.setter
    def units(self, value):
        self._units = validate_single_string_arg(value, 'units')

    @property
    def dimension_type(self):
        return self._dimension_type

    @dimension_type.setter
    def dimension_type(self, value):
        if isinstance(value, DimensionType):
            self._dimension_type = value
        else:
            dimension_type = validate_single_string_arg(value, 'dimension_type')

            if dimension_type.upper() in [member.name for member in DimensionType]:
                self._dimension_type = DimensionType[dimension_type.upper()]
            elif dimension_type.lower() in ['frame', 'time', 'stack']:
                self._dimension_type = DimensionType.TEMPORAL
            else:
                self._dimension_type = DimensionType.UNKNOWN
                warn('Supported dimension types for plotting are only: {}'
                     ''.format([member.name for member in DimensionType]))
                warn('Setting DimensionType to UNKNOWN')

    @property
    def values(self):
        return np.array(self)

    # @values.setter
    # def values(self, value):
    #     isinstance(np.ndarray)

    def __eq__(self, other):
        if not isinstance(other, Dimension):
            return False
        if self.name != other.name:
            return False
        if self.units != other.units:
            return False
        if self.quantity != other.quantity:
            return False
        if len(self.values) != len(other):
            return False
        if not (np.array(self) == np.array(other)).all():
            return False
        if not (self.values == other.values).all():
            return False
        return True