1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421
|
# -*- coding: utf-8 -*-
"""
Utilities for generating static image and line plots of near-publishable quality
Created on Thu May 05 13:29:12 2016
@author: Suhas Somnath, Chris R. Smith
"""
from __future__ import division, print_function, absolute_import, \
unicode_literals
import inspect
import sys
from numbers import Number
import matplotlib as mpl
import numpy as np
from dask import array as da
from matplotlib import pyplot as plt
from mpl_toolkits.axes_grid1 import ImageGrid
from sidpy.base.num_utils import get_exponent
from sidpy.viz.plot_utils.misc import get_plot_grid_size, set_tick_font_size
from sidpy.viz.plot_utils.cmap import default_cmap
if sys.version_info.major == 3:
unicode = str
def plot_map(axis, img, show_xy_ticks=True, show_cbar=True, x_vec=None, y_vec=None,
num_ticks=4, stdevs=None, cbar_label=None, tick_font_size=None, infer_aspect=False, **kwargs):
"""
Plots an image within the given axis with a color bar + label and appropriate X, Y tick labels.
This is particularly useful to get readily interpretable plots for papers
Parameters
----------
axis : matplotlib.axes.Axes object
Axis to plot this image onto
img : 2D numpy array with real values
Data for the image plot
show_xy_ticks : bool, Optional, default = None, shown unedited
Whether or not to show X, Y ticks
show_cbar : bool, optional, default = True
Whether or not to show the colorbar
x_vec : 1-D array-like or Number, optional
if an array-like is provided, these will be used for the tick values on the X axis
if a Number is provided, this will serve as an extent for tick values in the X axis.
For example x_vec=1.5 would cause the x tick labels to range from 0 to 1.5
y_vec : 1-D array-like or Number, optional
if an array-like is provided - these will be used for the tick values on the Y axis
if a Number is provided, this will serve as an extent for tick values in the Y axis.
For example y_vec=225 would cause the y tick labels to range from 0 to 225
num_ticks : unsigned int, optional, default = 4
Number of tick marks on the X and Y axes
stdevs : unsigned int (Optional. Default = None)
Number of standard deviations to consider for plotting. If None, full range is plotted.
cbar_label : str, optional, default = None
Labels for the colorbar. Use this for something like quantity (units)
tick_font_size : unsigned int, optional, default = None
Font size to apply to x, y, colorbar ticks and colorbar label
infer_aspect : bool, Optional. Default = False
Whether or not to adjust the aspect ratio of the image based on the provided x_vec and y_vec
The values of x_vec and y_vec will be assumed to have the same units.
kwargs : dictionary
Anything else that will be passed on to matplotlib.pyplot.imshow
Returns
-------
im_handle : handle to image plot
handle to image plot
cbar : handle to color bar
handle to color bar
Note
----
The origin of the image will be set to the lower left corner. Use the kwarg 'origin' to change this
"""
if not isinstance(axis, mpl.axes.Axes):
raise TypeError('axis must be a matplotlib.axes.Axes object')
if not isinstance(img, (np.ndarray, da.core.Array)):
raise TypeError('img should be a numpy array')
if not img.ndim == 2:
raise ValueError('img should be a 2D array')
if not isinstance(show_xy_ticks, bool):
raise TypeError('show_xy_ticks should be a boolean value')
if not isinstance(show_cbar, bool):
raise TypeError('show_cbar should be a boolean value')
# checks for x_vec and y_vec are done below
if num_ticks is not None:
if not isinstance(num_ticks, int):
raise TypeError('num_ticks should be a whole number')
if num_ticks < 2:
raise ValueError('num_ticks should be at least 2')
if tick_font_size is not None:
if not isinstance(tick_font_size, Number):
raise TypeError('tick_font_size must be a whole number')
if tick_font_size < 0:
raise ValueError('tick_font_size must be a whole number')
if stdevs is not None:
if not isinstance(stdevs, Number):
raise TypeError('stdevs should be a Number')
data_mean = np.mean(img)
data_std = np.std(img)
kwargs.update({'clim': [data_mean - stdevs * data_std, data_mean + stdevs * data_std]})
kwargs.update({'origin': kwargs.pop('origin', 'lower')})
if show_cbar:
if np.isnan(img).any():
_img = img[np.where(~np.isnan(img))]
y_exp = get_exponent(np.squeeze(_img))
else:
y_exp = get_exponent(np.squeeze(img))
z_suffix = ''
if y_exp < -2 or y_exp > 3:
img = np.squeeze(img) / 10 ** y_exp
z_suffix = ' x $10^{' + str(y_exp) + '}$'
assert isinstance(show_xy_ticks, bool)
########################################################################################################
def set_ticks_for_axis(tick_vals, is_x):
if is_x:
tick_vals_var_name = 'x_vec'
tick_set_func = axis.set_xticks
tick_labs_set_func = axis.set_xticklabels
else:
tick_vals_var_name = 'y_vec'
tick_set_func = axis.set_yticks
tick_labs_set_func = axis.set_yticklabels
img_axis = int(is_x)
img_size = img.shape[img_axis]
chosen_ticks = np.linspace(0, img_size - 1, num_ticks, dtype=int)
if tick_vals is not None:
if isinstance(tick_vals, (int, float)):
if tick_vals > 0.01:
tick_labs = [str(np.round(ind * tick_vals / img_size, 2)) for ind in chosen_ticks]
else:
tick_labs = ['{0:.1E}'.format(ind * tick_vals / img_size) for ind in chosen_ticks]
print(tick_labs)
tick_vals = np.linspace(0, tick_vals, img_size)
else:
if not isinstance(tick_vals, (np.ndarray, list, tuple, range, da.core.Array)) or \
len(tick_vals) != img_size:
raise ValueError(
'{} should be array-like with shape equal to axis {} of img'.format(tick_vals_var_name,
img_axis))
if np.max(tick_vals) > 0.01:
tick_labs = [str(np.round(tick_vals[ind], 2)) for ind in chosen_ticks]
else:
tick_labs = ['{0:.1E}'.format(tick_vals[ind]) for ind in chosen_ticks]
else:
tick_labs = [str(ind) for ind in chosen_ticks]
tick_set_func(chosen_ticks)
tick_labs_set_func(tick_labs)
if tick_font_size is not None:
set_tick_font_size(axis, tick_font_size)
return tick_vals
########################################################################################################
if show_xy_ticks is True or x_vec is not None:
x_vec = set_ticks_for_axis(x_vec, True)
else:
axis.set_xticks([])
if show_xy_ticks is True or y_vec is not None:
y_vec = set_ticks_for_axis(y_vec, False)
else:
axis.set_yticks([])
if infer_aspect:
# Aspect ratio determined by this function will take precedence.
_ = kwargs.pop('infer_aspect', None)
"""
At this stage, if x_vec and y_vec are not None, they should be arrays.
This will be very useful when one dimension is coarsely sampled while another is finely sampled
and we want to visualize the image with the physically correct aspect ratio.
This CANNOT be performed automatically due to potentially incompatible units which are unknown to this func.
"""
if x_vec is not None or y_vec is not None:
x_range = x_vec.max() - x_vec.min()
y_range = y_vec.max() - y_vec.min()
kwargs.update({'aspect': (y_range / x_range) * (img.shape[1] / img.shape[0])})
im_handle = axis.imshow(img, **kwargs)
cbar = None
if not isinstance(show_cbar, bool):
show_cbar = False
if show_cbar:
cbar = plt.colorbar(im_handle, ax=axis, orientation='vertical',
fraction=0.046, pad=0.04, use_gridspec=True)
# cbar = axis.cbar_axes[count].colorbar(im_handle)
if cbar_label is not None:
if not isinstance(cbar_label, (str, unicode)):
raise TypeError('cbar_label should be a string')
if tick_font_size is not None:
cbar.set_label(cbar_label + z_suffix)
else:
cbar.set_label(cbar_label + z_suffix, fontsize=tick_font_size)
else:
if z_suffix != '':
cbar.set_label(z_suffix)
if tick_font_size is not None:
cbar.ax.tick_params(labelsize=tick_font_size)
return im_handle, cbar
def plot_map_stack(map_stack, num_comps=9, stdevs=2, color_bar_mode=None, evenly_spaced=False, reverse_dims=False,
subtitle='Component', title=None, colorbar_label='', fig_mult=(5, 5), pad_mult=(0.1, 0.07),
x_label=None, y_label=None, title_yoffset=None, title_size=None, **kwargs):
"""
Plots the provided stack of maps
Parameters
-------------
map_stack : 3D real numpy array
structured as [component, rows, cols]
num_comps : int, Optional
Number of components to plot
stdevs : int, Optional
Number of standard deviations to consider for plotting. Set to None if no clipping is desired
color_bar_mode : String, Optional
Options are None, single or each. Default None
evenly_spaced : bool, Optional. Default = False
If set to True - The slices / component will be selected at intervals from the first to last
If set to False - The first ``num_comps`` images will be plotted instead
reverse_dims : bool, Optional. Default = False
Set this to True to accept data structured as [rows, cols, component]
subtitle : String or list of strings
The titles for each of the plots.
If a single string is provided, the plot titles become ['title 01', title 02', ...].
if a list of strings (equal to the number of components) are provided, these are used instead.
title : str, Optinal
Title for the plot grid that will appear at the top
colorbar_label : str, Optional
label for colorbar. Default is an empty string.
fig_mult : length 2 array_like of uints
Size multipliers for the figure. Figure size is calculated as (num_rows*`fig_mult[0]`, num_cols*`fig_mult[1]`).
Default (4, 4)
pad_mult : tuple, list, array-like, Optional
Array-like of floats of length 2.
Multipliers for the axis padding between plots in the stack. Padding is calculated as
(pad_mult[0]*fig_mult[1], pad_mult[1]*fig_mult[0]) for the width and height padding respectively.
Default (0.1, 0.07)
x_label : str, Optional
X Label for all plots
y_label : (optional) String
Y label for all plots
title_yoffset : float
Offset to move the figure title vertically in the figure
title_size : float
Size of figure title
kwargs : dictionary
Keyword arguments to be passed to either matplotlib.pyplot.figure, mpl_toolkits.axes_grid1.ImageGrid, or
pyUSID.viz.plot_utils.plot_map. See specific function documentation for the relavent options.
Returns
---------
fig, axes
"""
# plt.rcParams["mpl_toolkits.legacy_colorbar"] = False
if not isinstance(map_stack, (np.ndarray, da.core.Array)) or not map_stack.ndim == 3:
raise TypeError('map_stack should be a 3 dimensional array arranged as [component, row, col]')
if num_comps is None:
num_comps = 4 # Default
else:
if not isinstance(num_comps, int) or num_comps < 1:
raise TypeError('num_comps should be a positive integer')
for var, var_name in zip([title, colorbar_label, color_bar_mode, x_label, y_label],
['title', 'colorbar_label', 'color_bar_mode', 'x_label', 'y_label']):
if var is not None:
if not isinstance(var, (str, unicode)):
raise TypeError(var_name + ' should be a string')
if title is None:
title = ''
if colorbar_label is None:
colorbar_label = ''
if x_label is None:
x_label = ''
if y_label is None:
y_label = ''
if color_bar_mode not in [None, 'single', 'each']:
raise ValueError('color_bar_mode must be either None, "single", or "each"')
for var, var_name in zip([stdevs, title_yoffset, title_size],
['stdevs', 'title_yoffset', 'title_size']):
if var is not None:
if not isinstance(var, Number) or var <= 0:
raise TypeError(var_name + ' of value: {} should be a number > 0'.format(var))
for var, var_name in zip([evenly_spaced, reverse_dims], ['evenly_spaced', 'reverse_dims']):
if not isinstance(var, bool):
raise TypeError(var_name + ' should be a bool')
for var, var_name in zip([fig_mult, pad_mult], ['fig_mult', 'pad_mult']):
if not isinstance(var, (list, tuple, np.ndarray, da.core.Array)) or len(var) != 2:
raise TypeError(var_name + ' should be a tuple / list / numpy array of size 2')
if not np.all([x > 0 and isinstance(x, Number) for x in var]):
raise ValueError(var_name + ' should contain positive numbers')
if reverse_dims:
map_stack = np.transpose(map_stack, (2, 0, 1))
num_comps = abs(num_comps)
num_comps = min(num_comps, map_stack.shape[0])
if evenly_spaced:
chosen_pos = np.linspace(0, map_stack.shape[0] - 1, num_comps, dtype=int)
else:
chosen_pos = np.arange(num_comps, dtype=int)
if isinstance(subtitle, list):
if len(subtitle) > num_comps:
# remove additional subtitles
subtitle = subtitle[:num_comps]
elif len(subtitle) < num_comps:
# add subtitles
subtitle += ['Component' + ' ' + str(x) for x in range(len(subtitle), num_comps)]
else:
if not isinstance(subtitle, str):
subtitle = 'Component'
subtitle = [subtitle + ' ' + str(x) for x in chosen_pos]
fig_h, fig_w = fig_mult
p_rows, p_cols = get_plot_grid_size(num_comps)
if p_rows * p_cols < num_comps:
p_cols += 1
pad_w, pad_h = pad_mult
'''
Set defaults for kwargs to the figure creation and extract any non-default values from current kwargs
'''
figkwargs = dict()
if sys.version_info.major == 3:
inspec_func = inspect.getfullargspec
else:
inspec_func = inspect.getargspec
for key in inspec_func(plt.figure).args:
if key in kwargs:
figkwargs.update({key: kwargs.pop(key)})
fig = plt.figure(figsize=(p_cols * fig_w, p_rows * fig_h), **figkwargs)
'''
Set defaults for kwargs to the ImageGrid and extract any non-default values from current kwargs
'''
igkwargs = {'cbar_pad': '1%',
'cbar_size': '5%',
'cbar_location': 'right',
'direction': 'row',
'share_all': False,
'aspect': True,
'label_mode': 'L'}
# 'add_all': True}
for key in igkwargs.keys():
if key in kwargs:
igkwargs.update({key: kwargs.pop(key)})
axes = ImageGrid(fig=fig, rect=111, nrows_ncols=(p_rows, p_cols),
cbar_mode=color_bar_mode,
axes_pad=(pad_w * fig_w, pad_h * fig_h),
**igkwargs)
try:
fig.canvas.set_window_title(title)
except:
fig.canvas.manager.set_window_title(title)
# These parameters have not been easy to fix:
if title_yoffset is None:
title_yoffset = 0.9
if title_size is None:
title_size = 16 + (p_rows + p_cols)
fig.suptitle(title, fontsize=title_size, y=title_yoffset)
# plt.rcParams["mpl_toolkits.legacy_colorbar"] = False
for count, index, curr_subtitle in zip(range(chosen_pos.size), chosen_pos, subtitle):
im, im_cbar = plot_map(axes[count],
map_stack[index],
stdevs=stdevs, show_cbar=False, **kwargs)
axes[count].set_title(curr_subtitle)
if color_bar_mode == 'each':
cb = axes[count].cax.colorbar(im)
if count % p_cols == p_cols-1:
cb.set_label(colorbar_label)
if count % p_cols == 0:
axes[count].set_ylabel(y_label)
if count >= (p_rows - 1) * p_cols:
axes[count].set_xlabel(x_label)
# With cbar_mode="single", cax attribute of all axes are identical.
if color_bar_mode == 'single':
cb = axes[0].cax.colorbar(im)
cb.set_label(colorbar_label)
return fig, axes
|