1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
|
# -*- coding: utf-8 -*-
"""
Utilities for generating static image and line plots of near-publishable quality
Created on Thu May 05 13:29:12 2016
@author: Suhas Somnath, Chris R. Smith
"""
from __future__ import division, print_function, absolute_import, unicode_literals
import os
import sys
from numbers import Number
import numpy as np
import matplotlib as mpl
from matplotlib import ticker as mtick, pyplot as plt
from matplotlib.colors import LinearSegmentedColormap
from sidpy.viz.plot_utils.cmap import default_cmap
if sys.version_info.major == 3:
unicode = str
def reset_plot_params():
"""
Resets the plot parameters to matplotlib default values
Adapted from:
https://stackoverflow.com/questions/26413185/how-to-recover-matplotlib-defaults-after-setting-stylesheet
"""
mpl.rcParams.update(mpl.rcParamsDefault)
# Also resetting ipython inline parameters
inline_rc = dict(mpl.rcParams)
mpl.rcParams.update(inline_rc)
def use_nice_plot_params():
"""
Resets default plot parameters such as figure size, font sizes etc. to values better suited for scientific
publications
"""
# mpl.rcParams.keys() # gets all allowable keys
# mpl.rc('figure', figsize=(5.5, 5))
mpl.rc('lines', linewidth=2)
mpl.rc('axes', labelsize=16, titlesize=16)
mpl.rc('figure', titlesize=20)
mpl.rc('font', size=14) # global font size
mpl.rc('legend', fontsize=16, fancybox=True)
mpl.rc('xtick.major', size=6)
mpl.rc('xtick.minor', size=4)
# mpl.rcParams['xtick.major.size'] = 6
def set_tick_font_size(axes, font_size):
"""
Sets the font size of the ticks in the provided axes
Parameters
----------
axes : matplotlib.pyplot.axis object or list of axis objects
axes to set font sizes
font_size : unigned int
Font size
"""
assert isinstance(font_size, Number)
font_size = max(1, int(font_size))
def __set_axis_tick(axis):
"""
Sets the font sizes to the x and y axis in the given axis object
Parameters
----------
axis : matplotlib.axes.Axes object
axis to set font sizes
"""
for tick in axis.xaxis.get_major_ticks():
tick.label1.set_fontsize(font_size)
for tick in axis.yaxis.get_major_ticks():
tick.label1.set_fontsize(font_size)
mesg = 'axes must either be a matplotlib.axes.Axes object or an iterable containing such objects'
if hasattr(axes, '__iter__'):
for axis in axes:
assert isinstance(axis, mpl.axes.Axes), mesg
__set_axis_tick(axis)
else:
assert isinstance(axes, mpl.axes.Axes), mesg
__set_axis_tick(axes)
def use_scientific_ticks(axis, is_x=True, formatting='%.2e'):
"""
Makes the desired axis use scientific notation for its tick labels. This is applicable only for 1D plots at the
moment.
Parameters
----------
axis : matplotlib.pyplot.axis object
Axis handle
is_x : bool, optional. Default = True
If set to true, scientific notation will be applied only to the X axis.
If set to False, scientific notation will be applied only to the Y axis.
formatting : str / unicode, optional. Default = 2 digits of precision
Precision for the tick labels
"""
if not isinstance(axis, mpl.axes.Axes):
raise TypeError('axis must be a matplotlib.axes.Axes object')
if not isinstance(is_x, bool):
raise TypeError('is_x should be a boolean to avoid confusion')
if not isinstance(formatting, (str, unicode)):
raise TypeError('formatting must be a string')
if is_x:
ax_hand = axis.xaxis
else:
ax_hand = axis.yaxis
ax_hand.set_major_formatter(mtick.FormatStrFormatter(formatting))
def make_scalar_mappable(vmin, vmax, cmap=None):
"""
Creates a scalar mappable object that can be used to create a colorbar for non-image (e.g. - line) plots
Parameters
----------
vmin : Number
Minimum value for colorbar
vmax : Number
Maximum value for colorbar
cmap : colormap object
Colormap object to use
Returns
-------
sm : matplotlib.pyplot.cm.ScalarMappable object
The object that can used to create a colorbar via plt.colorbar(sm)
Adapted from: https://stackoverflow.com/questions/8342549/matplotlib-add-colorbar-to-a-sequence-of-line-plots
"""
assert isinstance(vmin, Number), 'vmin should be a number'
assert isinstance(vmax, Number), 'vmax should be a number'
assert vmin < vmax, 'vmin must be less than vmax'
if cmap is None:
cmap = default_cmap
else:
assert isinstance(cmap, (mpl.colors.Colormap, str, unicode))
sm = plt.cm.ScalarMappable(cmap=cmap,
norm=plt.Normalize(vmin=vmin, vmax=vmax))
# fake up the array of the scalar mappable
sm._A = []
return sm
def get_plot_grid_size(num_plots, fewer_rows=True):
"""
Returns the number of rows and columns ideal for visualizing multiple (identical) plots within a single figure
Parameters
----------
num_plots : uint
Number of identical subplots within a figure
fewer_rows : bool, optional. Default = True
Set to True if the grid should be short and wide or False for tall and narrow
Returns
-------
nrows : uint
Number of rows
ncols : uint
Number of columns
"""
assert isinstance(num_plots, Number), 'num_plots must be a number'
# force integer:
num_plots = int(num_plots)
if num_plots < 1:
raise ValueError('num_plots was less than 0')
if fewer_rows:
nrows = int(np.floor(np.sqrt(num_plots)))
ncols = int(np.ceil(num_plots / nrows))
else:
ncols = int(np.floor(np.sqrt(num_plots)))
nrows = int(np.ceil(num_plots / ncols))
return nrows, ncols
def export_fig_data(fig, filename, include_images=False):
"""
Export the data of all plots in the figure `fig` to a plain text file.
Parameters
----------
fig : matplotlib.figure.Figure
The figure containing the data to be exported
filename : str
The filename of the output text file
include_images : bool
Should images in the figure also be exported
Returns
-------
"""
# Get the data from the figure
axes = fig.get_axes()
axes_dict = dict()
for ax in axes:
ax_dict = dict()
ims = ax.get_images()
if len(ims) != 0 and include_images:
im_dict = dict()
for im in ims:
# Image data
im_lab = im.get_label()
im_dict['data'] = im.get_array().data
# X-Axis
x_ax = ax.get_xaxis()
x_lab = x_ax.label.get_label()
if x_lab == '':
x_lab = 'X'
im_dict[x_lab] = x_ax.get_data_interval()
# Y-Axis
y_ax = ax.get_yaxis()
y_lab = y_ax.label.get_label()
if y_lab == '':
y_lab = 'Y'
im_dict[y_lab] = y_ax.get_data_interval()
ax_dict['Images'] = {im_lab: im_dict}
lines = ax.get_lines()
if len(lines) != 0:
line_dict = dict()
xlab = ax.get_xlabel()
ylab = ax.get_ylabel()
if xlab == '':
xlab = 'X Data'
if ylab == '':
ylab = 'Y Data'
for line in lines:
line_dict[line.get_label()] = {xlab: line.get_xdata(),
ylab: line.get_ydata()}
ax_dict['Lines'] = line_dict
if ax_dict != dict():
axes_dict[ax.get_title()] = ax_dict
'''
Now that we have the data from the figure, we need to write it to file.
'''
filename = os.path.abspath(filename)
basename, ext = os.path.splitext(filename)
folder, _ = os.path.split(basename)
spacer = r'**********************************************\n'
data_file = open(filename, 'w')
data_file.write(fig.get_label() + '\n')
data_file.write('\n')
for ax_lab, ax in axes_dict.items():
data_file.write('Axis: {} \n'.format(ax_lab))
if 'Images' not in ax:
continue
for im_lab, im in ax['Images'].items():
data_file.write('Image: {} \n'.format(im_lab))
data_file.write('\n')
im_data = im.pop('data')
for row in im_data:
row.tofile(data_file, sep='\t', format='%s')
data_file.write('\n')
data_file.write('\n')
for key, val in im.items():
data_file.write(key + '\n')
val.tofile(data_file, sep='\n', format='%s')
data_file.write('\n')
data_file.write(spacer)
if 'Lines' not in ax:
continue
for line_lab, line_dict in ax['Lines'].items():
data_file.write('Line: {} \n'.format(line_lab))
data_file.write('\n')
dim1, dim2 = line_dict.keys()
data_file.write('{} \t {} \n'.format(dim1, dim2))
for val1, val2 in zip(line_dict[dim1], line_dict[dim2]):
data_file.write('{} \t {} \n'.format(str(val1), str(val2)))
data_file.write(spacer)
data_file.write(spacer)
data_file.close()
|