1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273
|
from __future__ import division, print_function, unicode_literals, absolute_import
import os
import sys
import socket
import h5py
import numpy as np
from io import StringIO
from contextlib import contextmanager
from platform import platform
sys.path.append("../../sidpy/")
from sidpy import __version__
from sidpy.base.string_utils import get_time_stamp
std_beps_path = 'test_hdf_utils.h5'
if sys.version_info.major == 3:
unicode = str
def delete_existing_file(file_path):
if os.path.exists(file_path):
os.remove(file_path)
def write_safe_attrs(h5_object, attrs):
for key, val in attrs.items():
h5_object.attrs[key] = val
def write_string_list_as_attr(h5_object, attrs):
for key, val in attrs.items():
h5_object.attrs[key] = np.array(val, dtype='S')
def write_aux_reg_ref(h5_dset, labels, is_spec=True):
for index, reg_ref_name in enumerate(labels):
if is_spec:
reg_ref_tuple = (slice(index, index + 1), slice(None))
else:
reg_ref_tuple = (slice(None), slice(index, index + 1))
h5_dset.attrs[reg_ref_name] = h5_dset.regionref[reg_ref_tuple]
def write_main_reg_refs(h5_dset, attrs):
for reg_ref_name, reg_ref_tuple in attrs.items():
h5_dset.attrs[reg_ref_name] = h5_dset.regionref[reg_ref_tuple]
write_string_list_as_attr(h5_dset, {'labels': list(attrs.keys())})
@contextmanager
def capture_stdout():
"""
context manager encapsulating a pattern for capturing stdout writes
and restoring sys.stdout even upon exceptions
https://stackoverflow.com/questions/17067560/intercept-pythons-print-statement-and-display-in-gui
Examples:
>>> with capture_stdout() as get_value:
>>> print("here is a print")
>>> captured = get_value()
>>> print('Gotcha: ' + captured)
>>> with capture_stdout() as get_value:
>>> print("here is a print")
>>> raise Exception('oh no!')
>>> print('Does printing still work?')
"""
# Redirect sys.stdout
out = StringIO()
sys.stdout = out
# Yield a method clients can use to obtain the value
try:
yield out.getvalue
finally:
# Restore the normal stdout
sys.stdout = sys.__stdout__
def verify_book_keeping_attrs(test_class, h5_obj):
time_stamp = get_time_stamp()
in_file = h5_obj.attrs['timestamp']
test_class.assertEqual(time_stamp[:time_stamp.rindex('_')], in_file[:in_file.rindex('_')])
test_class.assertEqual(__version__, h5_obj.attrs['sidpy_version'])
test_class.assertEqual(socket.getfqdn(), h5_obj.attrs['machine_id'])
test_class.assertEqual(platform(), h5_obj.attrs['platform'])
def make_beps_file(rev_spec=False):
if os.path.exists(std_beps_path):
os.remove(std_beps_path)
with h5py.File(std_beps_path, mode='w') as h5_f:
h5_raw_grp = h5_f.create_group('Raw_Measurement')
write_safe_attrs(h5_raw_grp, {'att_1': 'string_val', 'att_2': 1.2345, 'att_3': [1, 2, 3, 4]})
write_string_list_as_attr(h5_raw_grp, {'att_4': ['str_1', 'str_2', 'str_3']})
_ = h5_raw_grp.create_group('Misc')
num_rows = 3
num_cols = 5
num_cycles = 2
num_cycle_pts = 7
source_dset_name = 'source_main'
tool_name = 'Fitter'
# Per USID, dimensions are arranged from fastest to slowest
source_pos_data = np.vstack((np.tile(np.arange(num_cols), num_rows),
np.repeat(np.arange(num_rows), num_cols))).T
pos_attrs = {'units': ['nm', 'um'], 'labels': ['X', 'Y']}
h5_pos_inds = h5_raw_grp.create_dataset('Position_Indices', data=source_pos_data, dtype=np.uint16)
write_aux_reg_ref(h5_pos_inds, pos_attrs['labels'], is_spec=False)
write_string_list_as_attr(h5_pos_inds, pos_attrs)
# make the values more interesting:
cols_offset = -750
cols_step = 50
rows_offset = 2
rows_step = 1.25
source_pos_data = np.vstack((cols_offset + source_pos_data[:, 0] * cols_step,
rows_offset + source_pos_data[:, 1] * rows_step)).T
_ = h5_raw_grp.create_dataset('X', data=cols_offset + cols_step * np.arange(num_cols))
_ = h5_raw_grp.create_dataset('Y', data=rows_offset + rows_step * np.arange(num_rows))
h5_pos_vals = h5_raw_grp.create_dataset('Position_Values', data=source_pos_data, dtype=np.float32)
write_aux_reg_ref(h5_pos_vals, pos_attrs['labels'], is_spec=False)
write_string_list_as_attr(h5_pos_vals, pos_attrs)
if rev_spec:
source_spec_data = np.vstack((np.repeat(np.arange(num_cycles), num_cycle_pts),
np.tile(np.arange(num_cycle_pts), num_cycles)))
source_spec_attrs = {'units': ['', 'V'],
'labels': ['Cycle', 'Bias']}
else:
source_spec_data = np.vstack((np.tile(np.arange(num_cycle_pts), num_cycles),
np.repeat(np.arange(num_cycles), num_cycle_pts)))
source_spec_attrs = {'units': ['V', ''], 'labels': ['Bias', 'Cycle']}
h5_source_spec_inds = h5_raw_grp.create_dataset('Spectroscopic_Indices', data=source_spec_data,
dtype=np.uint16)
write_aux_reg_ref(h5_source_spec_inds, source_spec_attrs['labels'], is_spec=True)
write_string_list_as_attr(h5_source_spec_inds, source_spec_attrs)
# make spectroscopic axis interesting as well
bias_amp = 2.5
bias_period = np.pi
bias_vec = bias_amp * np.sin(np.linspace(0, bias_period, num_cycle_pts, endpoint=False))
_ = h5_raw_grp.create_dataset('Bias', data=bias_vec)
_ = h5_raw_grp.create_dataset('Cycle', data=np.arange(num_cycles))
if rev_spec:
source_spec_data = np.vstack((np.repeat(np.arange(num_cycles), num_cycle_pts),
np.tile(bias_vec, num_cycles)))
else:
source_spec_data = np.vstack((np.tile(bias_vec, num_cycles),
np.repeat(np.arange(num_cycles), num_cycle_pts)))
h5_source_spec_vals = h5_raw_grp.create_dataset('Spectroscopic_Values', data=source_spec_data,
dtype=np.float32)
write_aux_reg_ref(h5_source_spec_vals, source_spec_attrs['labels'], is_spec=True)
write_string_list_as_attr(h5_source_spec_vals, source_spec_attrs)
main_nd = np.random.rand(num_rows, num_cols, num_cycles, num_cycle_pts)
h5_nd_main = h5_raw_grp.create_dataset('n_dim_form', data=main_nd)
write_string_list_as_attr(h5_nd_main, {'dims': ['Y', 'X', 'Cycle', 'Bias']})
if rev_spec:
# This simulates things like BEPS where Field should actually be varied slower but is varied faster during acquisition
main_nd = main_nd.transpose(0, 1, 3, 2)
source_main_data = main_nd.reshape(num_rows * num_cols, num_cycle_pts * num_cycles)
# source_main_data = np.random.rand(num_rows * num_cols, num_cycle_pts * num_cycles)
h5_source_main = h5_raw_grp.create_dataset(source_dset_name, data=source_main_data)
write_safe_attrs(h5_source_main, {'units': 'A', 'quantity': 'Current'})
write_main_reg_refs(h5_source_main, {'even_rows': (slice(0, None, 2), slice(None)),
'odd_rows': (slice(1, None, 2), slice(None))})
# Now need to link as main!
for dset in [h5_pos_inds, h5_pos_vals, h5_source_spec_inds, h5_source_spec_vals]:
h5_source_main.attrs[dset.name.split('/')[-1]] = dset.ref
_ = h5_raw_grp.create_dataset('Ancillary', data=np.arange(5))
# Now add a few results:
h5_results_grp_1 = h5_raw_grp.create_group(source_dset_name + '-' + tool_name + '_000')
write_safe_attrs(h5_results_grp_1,
{'att_1': 'string_val', 'att_2': 1.2345, 'att_3': [1, 2, 3, 4]})
write_string_list_as_attr(h5_results_grp_1, {'att_4': ['str_1', 'str_2', 'str_3']})
num_cycles = 1
num_cycle_pts = 7
results_spec_inds = np.expand_dims(np.arange(num_cycle_pts), 0)
results_spec_attrs = {'units': ['V'], 'labels': ['Bias']}
h5_results_1_spec_inds = h5_results_grp_1.create_dataset('Spectroscopic_Indices',
data=results_spec_inds, dtype=np.uint16)
write_aux_reg_ref(h5_results_1_spec_inds, results_spec_attrs['labels'], is_spec=True)
write_string_list_as_attr(h5_results_1_spec_inds, results_spec_attrs)
results_spec_vals = np.expand_dims(2.5 * np.sin(np.linspace(0, np.pi, num_cycle_pts, endpoint=False)), 0)
h5_results_1_spec_vals = h5_results_grp_1.create_dataset('Spectroscopic_Values', data=results_spec_vals,
dtype=np.float32)
write_aux_reg_ref(h5_results_1_spec_vals, results_spec_attrs['labels'], is_spec=True)
write_string_list_as_attr(h5_results_1_spec_vals, results_spec_attrs)
# Let this be a compound dataset:
struc_dtype = np.dtype({'names': ['r', 'g', 'b'],
'formats': [np.float32, np.float16,
np.float64]})
num_elems = (num_rows, num_cols, num_cycles, num_cycle_pts)
results_1_nd = np.zeros(shape=num_elems, dtype=struc_dtype)
for name_ind, name in enumerate(struc_dtype.names):
results_1_nd[name] = np.random.random(size=num_elems)
h5_results_1_nd = h5_results_grp_1.create_dataset('n_dim_form',
data=results_1_nd)
write_string_list_as_attr(h5_results_1_nd,
{'dims': ['Y', 'X', 'Cycle', 'Bias']})
results_1_main_data = results_1_nd.reshape(num_rows * num_cols,
num_cycle_pts * num_cycles)
h5_results_1_main = h5_results_grp_1.create_dataset('results_main', data=results_1_main_data)
write_safe_attrs(h5_results_1_main, {'units': 'pF', 'quantity': 'Capacitance'})
# Now need to link as main!
for dset in [h5_pos_inds, h5_pos_vals, h5_results_1_spec_inds, h5_results_1_spec_vals]:
h5_results_1_main.attrs[dset.name.split('/')[-1]] = dset.ref
# add another result with different parameters
h5_results_grp_2 = h5_raw_grp.create_group(source_dset_name + '-' + tool_name + '_001')
write_safe_attrs(h5_results_grp_2,
{'att_1': 'other_string_val', 'att_2': 5.4321, 'att_3': [4, 1, 3]})
write_string_list_as_attr(h5_results_grp_2, {'att_4': ['s', 'str_2', 'str_3']})
# Let these results be a complex typed dataset:
results_2_nd = np.random.random(size=num_elems) + \
1j * np.random.random(size=num_elems)
h5_results_2_nd = h5_results_grp_2.create_dataset('n_dim_form',
data=results_2_nd)
write_string_list_as_attr(h5_results_2_nd,
{'dims': ['Y', 'X', 'Cycle', 'Bias']})
results_2_main_data = results_2_nd.reshape(num_rows * num_cols,
num_cycle_pts * num_cycles)
h5_results_2_main = h5_results_grp_2.create_dataset('results_main', data=results_2_main_data)
write_safe_attrs(h5_results_2_main, {'units': 'pF', 'quantity': 'Capacitance'})
h5_results_2_spec_inds = h5_results_grp_2.create_dataset('Spectroscopic_Indices',
data=results_spec_inds, dtype=np.uint16)
write_aux_reg_ref(h5_results_2_spec_inds, results_spec_attrs['labels'], is_spec=True)
write_string_list_as_attr(h5_results_2_spec_inds, results_spec_attrs)
h5_results_2_spec_vals = h5_results_grp_2.create_dataset('Spectroscopic_Values', data=results_spec_vals,
dtype=np.float32)
write_aux_reg_ref(h5_results_2_spec_vals, results_spec_attrs['labels'], is_spec=True)
write_string_list_as_attr(h5_results_2_spec_vals, results_spec_attrs)
# Now need to link as main!
for dset in [h5_pos_inds, h5_pos_vals, h5_results_2_spec_inds, h5_results_2_spec_vals]:
h5_results_2_main.attrs[dset.name.split('/')[-1]] = dset.ref
|