File: test_dataset.py

package info (click to toggle)
python-sidpy 0.12.3-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 21,988 kB
  • sloc: python: 11,456; makefile: 17
file content (927 lines) | stat: -rw-r--r-- 37,624 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
# -*- coding: utf-8 -*-
"""
Created on Fri Sep 18 17:07:16 2020

@author: Suhas Somnath, Gerd Duscher
"""
from __future__ import division, print_function, unicode_literals, \
    absolute_import
import unittest

import numpy as np
import dask.array as da
import string
import ase.build
import sys
from copy import deepcopy

sys.path.insert(0, "../../sidpy/")

from sidpy.sid.dimension import Dimension
from sidpy.sid.dataset import DataType, Dataset

if sys.version_info.major == 3:
    unicode = str

generic_attributes = ['title', 'quantity', 'units', 'modality', 'source']


def validate_dataset_properties(self, dataset, values,
                                title='generic', quantity='generic', units='generic',
                                modality='generic', source='generic', dimension_dict=None,
                                data_type=DataType.UNKNOWN, variance=None,
                                metadata={}, original_metadata={},
                                ):
    self.assertIsInstance(self, unittest.TestCase)
    self.assertIsInstance(dataset, Dataset)
    # DONE: Validate that EVERY property is set correctly
    values = np.array(values)

    self.assertTrue(np.all([hasattr(dataset, att) for att in generic_attributes]))

    expected = values.flatten()
    actual = dataset.compute().flatten()
    self.assertTrue(np.allclose(expected, actual, equal_nan=True, rtol=1e-05, atol=1e-08))
    # self.assertTrue(np.all([x == y for x, y in zip(expected, actual)]))

    this_attributes = [title, quantity, units, modality, source]
    dataset_attributes = [getattr(dataset, att) for att in generic_attributes]

    for expected, actual in zip(dataset_attributes, this_attributes):
        self.assertTrue(np.all([x == y for x, y in zip(expected, actual)]))

    if variance is None:
        self.assertEqual(dataset.variance, None)
    else:
        self.assertTrue(isinstance(dataset.variance, da.core.Array))
        expected_var = np.array(variance).flatten()
        actual_var = dataset.variance.compute().flatten()
        self.assertTrue(np.allclose(expected_var, actual_var, equal_nan=True, rtol=1e-05, atol=1e-08))

    self.assertEqual(dataset.data_type, data_type)

    self.assertEqual(dataset.metadata, metadata)
    self.assertEqual(dataset.original_metadata, original_metadata)

    if dimension_dict is None:
        for dim in range(len(values.shape)):
            self.assertEqual(getattr(dataset, string.ascii_lowercase[dim]),
                             getattr(dataset, 'dim_{}'.format(dim)))
    else:
        for dim in range(len(values.shape)):
            self.assertEqual(getattr(dataset, dimension_dict[dim].name),
                             getattr(dataset, 'dim_{}'.format(dim)))
            self.assertEqual(dataset._axes[dim], dimension_dict[dim])

    # Make sure we do not have too many dimensions
    self.assertFalse(hasattr(dataset, 'dim_{}'.format(len(values.shape))))
    # self.assertFalse(hasattr(dataset, string.ascii_lowercase[len(values.shape)]))


# Following 4 methods are used in testing the methods that reduce dimensions of the dataset
def single_axis_test(self, func, **kwargs):
    dset_np = np.random.rand(4, 1, 5)
    dset = Dataset.from_array(dset_np, title='test')
    sid_func = getattr(dset, func)
    np_func = getattr(dset_np, func)
    dset_1 = sid_func(axis=0, keepdims=False)
    dim_dict = {0: dset._axes[1].copy(), 1: dset._axes[2].copy()}

    title_prefix = kwargs.get('title_prefix')
    validate_dataset_properties(self, dset_1, np_func(axis=0, keepdims=False),
                                title=title_prefix + dset.title,
                                modality=dset.modality, source=dset.modality, dimension_dict=dim_dict,
                                data_type=DataType.UNKNOWN,
                                metadata={}, original_metadata={}
                                )


def multiple_axes_test(self, func, **kwargs):
    dset_np = np.random.rand(1, 6, 4)
    dset = Dataset.from_array(dset_np, title='test')
    sid_func = getattr(dset, func)
    np_func = getattr(dset_np, func)
    dset_1 = sid_func(axis=(0, 1), keepdims=False)
    dim_dict = {0: dset._axes[2].copy()}

    title_prefix = kwargs.get('title_prefix')
    validate_dataset_properties(self, dset_1, np_func(axis=(0, 1), keepdims=False),
                                title=title_prefix + dset.title,
                                modality=dset.modality, source=dset.modality, dimension_dict=dim_dict,
                                data_type=DataType.UNKNOWN,
                                metadata={}, original_metadata={}
                                )


# The following two tests are for when keep_dims is set to True
def keepdims_test(self, func, **kwargs):
    dset_np = np.random.rand(2, 1, 4)
    dset = Dataset.from_array(dset_np, title='test')
    sid_func = getattr(dset, func)
    np_func = getattr(dset_np, func)

    dset_1 = sid_func(axis=0, keepdims=True)

    dim_dict = dset._axes.copy()
    dim_dict[0] = Dimension(np.arange(1), name=dset._axes[0].name,
                            quantity=dset._axes[0].quantity, units=dset._axes[0].units,
                            dimension_type=dset._axes[0].dimension_type)

    title_prefix = kwargs.get('title_prefix')
    validate_dataset_properties(self, dset_1, np_func(axis=0, keepdims=True),
                                title=title_prefix + dset.title,
                                modality=dset.modality, source=dset.modality, dimension_dict=dim_dict,
                                data_type=DataType.UNKNOWN,
                                metadata={}, original_metadata={}
                                )


def keepdims_multiple_axes_test(self, func, **kwargs):
    dset_np = np.random.rand(1, 5, 4)
    dset = Dataset.from_array(dset_np, title='test')
    sid_func = getattr(dset, func)
    np_func = getattr(dset_np, func)
    title_prefix = kwargs.get('title_prefix')

    dset_1 = sid_func(axis=(0, 1), keepdims=True)
    dim_dict = dset._axes.copy()
    dim_dict[0] = Dimension(np.arange(1), name=dset._axes[0].name,
                            quantity=dset._axes[0].quantity, units=dset._axes[0].units,
                            dimension_type=dset._axes[0].dimension_type)
    dim_dict[1] = Dimension(np.arange(1), name=dset._axes[1].name,
                            quantity=dset._axes[1].quantity, units=dset._axes[1].units,
                            dimension_type=dset._axes[1].dimension_type)
    validate_dataset_properties(self, dset_1, np_func(axis=(0, 1), keepdims=True),
                                title=title_prefix + dset.title,
                                modality=dset.modality, source=dset.modality, dimension_dict=dim_dict,
                                data_type=DataType.UNKNOWN,
                                metadata={}, original_metadata={}
                                )


class TestDatasetFromArray(unittest.TestCase):

    def test_std_inputs(self):
        # verify generic properties, dimensions, etc.
        values = np.random.random([4, 5, 6])
        descriptor = Dataset.from_array(values)

        validate_dataset_properties(self, descriptor, values)

    def test_dset_with_variance(self):
        values = np.random.random([4, 5, 6])
        variance = np.random.random([4, 5, 6])
        descriptor = Dataset.from_array(values, variance=variance)
        validate_dataset_properties(self, descriptor, values, variance=variance)


class TestDatasetConstructor(unittest.TestCase):

    def test_minimal_inputs(self):
        """ test minimum input requirement of an array like object
        """
        with self.assertRaises(TypeError):
            Dataset.from_array()
        descriptor = Dataset.from_array(np.arange(3))
        validate_dataset_properties(self, descriptor, np.arange(3))

    def test_all_inputs(self):
        descriptor = Dataset.from_array(np.arange(3), title='test')
        validate_dataset_properties(self, descriptor, np.arange(3), title='test')

    def test_user_defined_parms(self):
        descriptor = Dataset.from_array(np.arange(3), title='test')

        for att in generic_attributes:
            setattr(descriptor, att, 'test')

        test_dict = {0: 'test'}
        descriptor.metadata = test_dict.copy()
        descriptor.original_metadata = test_dict.copy()

        validate_dataset_properties(self, descriptor, np.arange(3),
                                    title='test', quantity='test', units='test',
                                    modality='test', source='test', dimension_dict=None,
                                    data_type=DataType.UNKNOWN,
                                    metadata=test_dict, original_metadata=test_dict
                                    )

    def test_invalid_main_types(self):
        """
        anything that is not recognized by dask will make an empty dask array
        but name has to be a string
        """
        # TODO: call validate_dataset_properties instead
        descriptor = Dataset.from_array(DataType.UNKNOWN)
        self.assertEqual(descriptor.shape, ())

        descriptor = Dataset.from_array('test')
        self.assertEqual(descriptor.shape, ())

        descriptor = Dataset.from_array(1)
        self.assertEqual(descriptor.shape, ())

        with self.assertRaises(ValueError):
            Dataset.from_array(1, 1)
        # TODO: Should be TypeError

    def test_numpy_array_input(self):
        x = np.ones([3, 4, 5])
        descriptor = Dataset.from_array(x, title='test')
        self.assertEqual(descriptor.shape, x.shape)
        # TODO: call validate_dataset_properties instead

    def test_dask_array_input(self):
        x = da.zeros([3, 4], chunks='auto')
        descriptor = Dataset.from_array(x, chunks='auto', title='test')
        self.assertEqual(descriptor.shape, x.shape)
        # TODO: call validate_dataset_properties instead

    def test_list_input(self):
        x = [[3, 4, 6], [5, 6, 7]]
        descriptor = Dataset.from_array(x, title='test')
        self.assertEqual(descriptor.shape, np.array(x).shape)
        # TODO: call validate_dataset_properties instead

    def test_1d_main_data(self):
        values = np.ones([10])
        descriptor = Dataset.from_array(values)
        self.assertTrue(np.all([x == y for x, y in zip(values, descriptor)]))

        # TODO: call validate_dataset_properties instead
        # Move such validation to validate_dataset_properties
        for dim in range(len(values.shape)):
            self.assertEqual(getattr(descriptor, string.ascii_lowercase[dim]),
                             getattr(descriptor, 'dim_{}'.format(dim)))

        self.assertFalse(hasattr(descriptor, 'dim_{}'.format(len(values.shape))))
        self.assertFalse(hasattr(descriptor, string.ascii_lowercase[len(values.shape)]))

    def test_2d_main_data(self):
        values = np.random.random([4, 5])
        descriptor = Dataset.from_array(values)

        for expected, actual in zip(values, descriptor):
            self.assertTrue(np.all([x == y for x, y in zip(expected, actual)]))
        for dim in range(len(values.shape)):
            self.assertEqual(getattr(descriptor, string.ascii_lowercase[dim]),
                             getattr(descriptor, 'dim_{}'.format(dim)))

        self.assertFalse(hasattr(descriptor, 'dim_{}'.format(len(values.shape))))
        self.assertFalse(hasattr(descriptor, string.ascii_lowercase[len(values.shape)]))

    def test_3d_main_data(self):
        values = np.random.random([4, 5, 6])
        descriptor = Dataset.from_array(values)

        for expected, actual in zip(values, descriptor):
            self.assertTrue(np.all([x == y for x, y in zip(expected, actual)]))

        for dim in range(len(values.shape)):
            self.assertEqual(getattr(descriptor, string.ascii_lowercase[dim]),
                             getattr(descriptor, 'dim_{}'.format(dim)))

        self.assertFalse(hasattr(descriptor, 'dim_{}'.format(len(values.shape))))
        self.assertFalse(hasattr(descriptor, string.ascii_lowercase[len(values.shape)]))

    def test_4d_main_data(self):
        values = np.random.random([4, 5, 7, 3])
        descriptor = Dataset.from_array(values)

        for expected, actual in zip(values, descriptor):
            self.assertTrue(np.all([x == y for x, y in zip(expected, actual)]))
        for dim in range(len(values.shape)):
            self.assertEqual(getattr(descriptor, string.ascii_lowercase[dim]),
                             getattr(descriptor, 'dim_{}'.format(dim)))

        self.assertFalse(hasattr(descriptor, 'dim_{}'.format(len(values.shape))))
        self.assertFalse(hasattr(descriptor, string.ascii_lowercase[len(values.shape)]))

    def test_dimensions_not_matching_main(self):
        pass

    def test_unknown_data_type(self):
        values = np.random.random([4])
        descriptor = Dataset.from_array(values)

        expected = "Supported data_types for plotting are only:"
        with self.assertRaises(Warning) as context:
            descriptor.data_type = 'quark'
        self.assertTrue(expected in str(context.exception))

    def test_enum_data_type(self):
        values = np.random.random([4])
        descriptor = Dataset.from_array(values)
        for dt_type in DataType:
            descriptor.data_type = dt_type
            self.assertTrue(descriptor.data_type == dt_type)

    def test_string_data_type(self):
        values = np.random.random([4])
        descriptor = Dataset.from_array(values)
        for dt_type in DataType:
            descriptor.data_type = str(dt_type.name)
            self.assertTrue(descriptor.data_type == dt_type)


class TestDatasetRepr(unittest.TestCase):

    def test_minimal_inputs(self):
        values = np.arange(5)

        descriptor = Dataset.from_array(values)
        actual = '{}'.format(descriptor)

        out = 'generic'
        da_array = da.from_array(values, chunks='auto')

        expected = 'sidpy.Dataset of type {} with:\n '.format(DataType.UNKNOWN.name)
        expected = expected + '{}'.format(da_array)
        expected = expected + '\n data contains: {} ({})'.format(out, out)
        expected = expected + '\n and Dimensions: '
        expected = expected + '\n{}:  {} ({}) of size {}'.format('a', out, out, values.shape)

        """
        for exp, act in zip(expected.split('\n'), actual.split('\n')):
            print('Expected:\t' + exp)
            print('Actual:\t' + act)
            print(exp == act)
        """

        self.assertEqual(actual, expected)

    def test_fully_configured(self):
        values = np.arange(5)

        descriptor = Dataset.from_array(values)
        for att in generic_attributes:
            setattr(descriptor, att, 'test')
        descriptor.metadata = {0: 'test'}

        actual = '{}'.format(descriptor)

        out = 'test'
        da_array = da.from_array(values, chunks='auto')

        expected = 'sidpy.Dataset of type {} with:\n '.format(DataType.UNKNOWN.name)
        expected = expected + '{}'.format(da_array)
        expected = expected + '\n data contains: {} ({})'.format(out, out)
        expected = expected + '\n and Dimensions: '
        expected = expected + '\n{}:  {} ({}) of size {}'.format('a', 'generic', 'generic', values.shape)
        expected = expected + '\n with metadata: {}'.format([0])

        """
        for exp, act in zip(expected.split('\n'), actual.split('\n')):
            print('Expected:\t' + exp)
            print('Actual:\t' + act)
            print(exp == act)
        """

        self.assertEqual(actual, expected)

    def test_user_defined_parameters(self):
        # self.blah = 14. Will / should this get printed
        pass


class TestLikeData(unittest.TestCase):

    def test_minimal_inputs(self):
        values = np.ones([4, 5])
        source_dset = Dataset.from_array(values)
        values = np.zeros([4, 5])
        descriptor = source_dset.like_data(values)
        self.assertTrue(descriptor.shape == values.shape)
        self.assertIsInstance(descriptor, Dataset)

    def test_all_customized_properties(self):
        values = np.ones([4, 5])
        source_dset = Dataset.from_array(values)
        for att in generic_attributes:
            setattr(source_dset, att, 'test')
        source_dset.metadata = {0: 'test'}

        values = np.zeros([4, 5])
        descriptor = source_dset.like_data(values)

        self.assertEqual(descriptor.title, 'test_new')
        descriptor.title = 'test'
        self.assertTrue(np.all([getattr(descriptor, att) == 'test' for att in generic_attributes]))

        self.assertEqual(descriptor.metadata, source_dset.metadata)
        self.assertEqual(descriptor.original_metadata, source_dset.original_metadata)

    def test_changing_size(self):
        values = np.ones([4, 5])
        source_dset = Dataset.from_array(values)
        source_dset.a *= 0.5
        source_dset.quantity = 'test'
        values = np.zeros([3, 5])
        descriptor = source_dset.like_data(values)

        # self.assertEqual(descriptor.a.values), np.arange(3)*.5)
        expected = descriptor.a.values
        actual = np.arange(3) * .5
        self.assertTrue(np.all([x == y for x, y in zip(expected, actual)]))

    def test_variance(self):
        values = np.ones([4, 5])
        var = np.random.normal(size=(4, 5))
        source_dset = Dataset.from_array(values, variance=var)
        descriptor = source_dset.like_data(values)
        self.assertEqual(descriptor.variance, None)
        descriptor = source_dset.like_data(values, variance=var)
        self.assertEqual(descriptor.variance.all(), source_dset.variance.all())


class TestCopy(unittest.TestCase):

    def test_minimal_inputs(self):
        values = np.random.random([4, 5])
        dataset = Dataset.from_array(values)

        descriptor = dataset.copy()

        self.assertIsInstance(descriptor, Dataset)
        for expected, actual in zip(dataset, descriptor):
            self.assertTrue(np.all([x == y for x, y in zip(expected, actual)]))

        self.assertTrue(np.all([hasattr(descriptor, att) for att in generic_attributes]))

        self.assertTrue(np.all([getattr(descriptor, att) == 'generic' for att in generic_attributes]))

        self.assertEqual(descriptor.data_type, DataType.UNKNOWN)

        self.assertEqual(descriptor.metadata, {})
        self.assertEqual(descriptor.original_metadata, {})

        for dim in range(len(values.shape)):
            self.assertEqual(getattr(descriptor, string.ascii_lowercase[dim]),
                             getattr(descriptor, 'dim_{}'.format(dim)))

        self.assertFalse(hasattr(descriptor, 'dim_{}'.format(len(dataset.shape))))
        self.assertFalse(hasattr(descriptor, string.ascii_lowercase[len(dataset.shape)]))

    def test_all_customized_properties(self):
        values = np.random.random([4, 5])
        dataset = Dataset.from_array(values)
        dataset.rename_dimension(0, 'x')
        dataset.quantity = 'test'
        descriptor = dataset.copy()

        self.assertIsInstance(descriptor, Dataset)
        self.assertEqual(descriptor.quantity, dataset.quantity)
        self.assertTrue(hasattr(descriptor, 'x'))


class TestRenameDimension(unittest.TestCase):

    def test_valid_index_and_name(self):
        values = np.zeros([4, 5])
        descriptor = Dataset.from_array(values)
        descriptor.rename_dimension(0, 'v')
        self.assertEqual(descriptor.v, descriptor.dim_0)

    def test_invalid_index_object_type(self):
        values = np.zeros([4, 5])
        descriptor = Dataset.from_array(values)
        with self.assertRaises(TypeError):
            descriptor.rename_dimension('v', 'v')

    def test_index_out_of_bounds(self):
        values = np.zeros([4, 5])
        descriptor = Dataset.from_array(values)
        with self.assertRaises(IndexError):
            descriptor.rename_dimension(3, 'v')

    def test_invalid_name_object_types(self):
        values = np.zeros([4, 5])
        descriptor = Dataset.from_array(values)
        with self.assertRaises(TypeError):
            descriptor.rename_dimension(0, 1)

    def test_empty_name_string(self):
        values = np.zeros([4, 5])
        descriptor = Dataset.from_array(values)
        with self.assertRaises(ValueError):
            descriptor.rename_dimension(0, '')

    def test_existing_name(self):
        values = np.zeros([4, 5])
        descriptor = Dataset.from_array(values)
        with self.assertRaises(ValueError):
            descriptor.rename_dimension(0, 'b')


class TestSetDimension(unittest.TestCase):

    def test_valid_index_and_dim_obj(self):
        values = np.zeros([4, 5])
        descriptor = Dataset.from_array(values)
        descriptor.set_dimension(0, Dimension(np.arange(4), 'x', quantity='test', units='test'))
        self.assertIsInstance(descriptor.x, Dimension)

    def test_invalid_dim_object(self):
        values = np.zeros([4, 5])
        descriptor = Dataset.from_array(values)

        with self.assertRaises(TypeError):
            descriptor.set_dimension(3, "New dimension")
        with self.assertRaises(TypeError):
            descriptor.set_dimension('2', {'x': np.arange(4)})
        with self.assertRaises(TypeError):
            descriptor.set_dimension(2, np.arange(4))

    # validity of index tested in TestRenameDimension


class TestHelperFunctions(unittest.TestCase):
    def test_get_image_dims(self):
        values = np.zeros([4, 5])
        descriptor = Dataset.from_array(values)
        descriptor.set_dimension(0, Dimension(np.arange(4), 'x', quantity='test', dimension_type='spatial'))

        image_dims = descriptor.get_image_dims()
        self.assertEqual(len(image_dims), 1)
        self.assertEqual(image_dims[0], 0)

        descriptor.dim_1.dimension_type = 'spatial'
        image_dims = descriptor.get_image_dims()
        self.assertEqual(len(image_dims), 2)
        self.assertEqual(image_dims[1], 1)

    def test_get_dimensions_by_type(self):
        values = np.zeros([4, 5])
        descriptor = Dataset.from_array(values)
        descriptor.set_dimension(0, Dimension(np.arange(4), 'x', quantity='test', dimension_type='spatial'))

        image_dims = descriptor.get_dimensions_by_type('spatial')
        self.assertEqual(len(image_dims), 1)
        self.assertEqual(image_dims[0], 0)

        descriptor.dim_1.dimension_type = 'spatial'
        image_dims = descriptor.get_dimensions_by_type('spatial')
        self.assertEqual(len(image_dims), 2)
        self.assertEqual(image_dims[1], 1)

    def test_get_spectral_dims(self):
        values = np.zeros([4, 5])
        descriptor = Dataset.from_array(values)
        descriptor.set_dimension(0, Dimension(np.arange(4), 'x', quantity='test', dimension_type='spatial'))

        spec_dims = descriptor.get_spectral_dims()
        self.assertEqual(len(spec_dims), 0)
        descriptor.x.dimension_type = 'spectral'
        spec_dims = descriptor.get_spectral_dims()
        self.assertEqual(len(spec_dims), 1)
        self.assertEqual(spec_dims[0], 0)

        descriptor.dim_1.dimension_type = 'spectral'
        spec_dims = descriptor.get_spectral_dims()
        self.assertEqual(len(spec_dims), 2)
        self.assertEqual(spec_dims[1], 1)

    def test_get_extent(self):
        values = np.zeros([4, 5])
        descriptor = Dataset.from_array(values)
        descriptor.set_dimension(0, Dimension(np.arange(4), 'x', quantity='test', dimension_type='spatial'))
        descriptor.dim_1.dimension_type = 'spatial'
        descriptor.set_dimension(0, Dimension(np.arange(4), 'x', quantity='test', dimension_type='spatial'))

        extent = descriptor.get_extent([0, 1])
        self.assertEqual(extent[0], -0.5)
        self.assertEqual(extent[1], 3.5)

    def test_get_labels(self):
        values = np.zeros([4, 5])
        descriptor = Dataset.from_array(values)
        labels = descriptor.labels
        self.assertEqual(labels[0], 'generic (generic)')

    def test_empty_structure(self):
        values = np.zeros([4, 5])
        descriptor = Dataset.from_array(values)
        structures = descriptor.structures
        self.assertEqual(len(structures), 0)

    def test_add_structure(self):
        values = np.zeros([4, 5])
        a = 5.14  # A
        atoms = ase.build.bulk('Si', 'diamond', a=a, cubic=True)
        descriptor = Dataset.from_array(values)
        descriptor.add_structure(atoms)
        descriptor.add_structure(atoms, 'reference')

        self.assertEqual(len(descriptor.structures), 2)
        self.assertTrue('reference' in descriptor.structures.keys())

    def test__equ__(self):
        values = np.zeros([4, 5])
        descriptor1 = Dataset.from_array(values)
        descriptor2 = Dataset.from_array(values)
        # TODO: why does direct comparison not work
        self.assertTrue(descriptor1.__eq__(descriptor2))
        self.assertFalse(descriptor1.__eq__(np.arange(4)))

        descriptor1.set_dimension(0, Dimension(np.arange(4), 'x', quantity='test', dimension_type='spatial'))
        self.assertFalse(descriptor1.__eq__(descriptor2))

        descriptor2.modality = 'nix'
        self.assertFalse(descriptor1.__eq__(descriptor2))

        descriptor2.data_type = 'image'
        self.assertFalse(descriptor1.__eq__(descriptor2))

        descriptor2.source = 'image'
        self.assertFalse(descriptor1.__eq__(descriptor2))

        descriptor2.quantity = 'image'
        self.assertFalse(descriptor1.__eq__(descriptor2))
        descriptor2.units = 'image'
        self.assertFalse(descriptor1.__eq__(descriptor2))

    def test_h5_dataset(self):
        values = np.ones([4, 5])
        source_dset = Dataset.from_array(values)


class TestViewMetadata(unittest.TestCase):

    def test_default_empty_metadata(self):
        values = np.zeros([4, 5])
        descriptor = Dataset.from_array(values)
        descriptor.view_metadata()
        # self.assertEqual('{}'.format(descriptor.view_metadata()),'None')

    def test_entered_metadata(self):
        values = np.zeros([4, 5])
        descriptor = Dataset.from_array(values)
        descriptor.metadata = {0: 'test'}

        print('{}'.format(descriptor.view_metadata()))

        # self.assertEqual(descriptor.view_metadata(), '0 : test')


class TestViewOriginalMetadata(unittest.TestCase):

    def test_default_empty_metadata(self):
        pass

    def test_entered_metadata(self):
        pass


class Testallmethod(unittest.TestCase):
    def test_all_single_axis(self):
        single_axis_test(self, 'all', title_prefix='all_aggregate_')

    def test_all_multiple_axes(self):
        multiple_axes_test(self, 'all', title_prefix='all_aggregate_')

    def test_all_keepdims(self):
        keepdims_test(self, 'all', title_prefix='all_aggregate_')

    def test_all_keepdims_multiple_axes(self):
        keepdims_multiple_axes_test(self, 'all', title_prefix='all_aggregate_')


class Testanymethod(unittest.TestCase):
    def test_any_single_axis(self):
        single_axis_test(self, 'any', title_prefix='any_aggregate_')

    def test_any_multiple_axes(self):
        multiple_axes_test(self, 'any', title_prefix='any_aggregate_')

    def test_any_keepdims(self):
        keepdims_test(self, 'any', title_prefix='any_aggregate_')

    def test_any_keepdims_multiple_axes(self):
        keepdims_multiple_axes_test(self, 'any', title_prefix='any_aggregate_')


class TestMinMethod(unittest.TestCase):
    def test_min_single_axis(self):
        single_axis_test(self, 'min', title_prefix='min_aggregate_')

    def test_min_multiple_axes(self):
        multiple_axes_test(self, 'min', title_prefix='min_aggregate_')

    def test_min_keepdims(self):
        keepdims_test(self, 'min', title_prefix='min_aggregate_')

    def test_min_keepdims_multiple_axes(self):
        keepdims_multiple_axes_test(self, 'min', title_prefix='min_aggregate_')


class TestMaxMethod(unittest.TestCase):
    def test_max_single_axis(self):
        single_axis_test(self, 'max', title_prefix='max_aggregate_')

    def test_max_multiple_axes(self):
        multiple_axes_test(self, 'max', title_prefix='max_aggregate_')

    def test_max_keepdims(self):
        keepdims_test(self, 'max', title_prefix='max_aggregate_')

    def test_min_keepdims_multiple_axes(self):
        keepdims_multiple_axes_test(self, 'max', title_prefix='max_aggregate_')


class TestSumMethod(unittest.TestCase):
    def test_sum_single_axis(self):
        single_axis_test(self, 'sum', title_prefix='sum_aggregate_')

    def test_sum_multiple_axis(self):
        multiple_axes_test(self, 'sum', title_prefix='sum_aggregate_')

    def test_sum_keepdims(self):
        keepdims_test(self, 'sum', title_prefix='sum_aggregate_')

    def test_sum_keepdims_multiple_axis(self):
        keepdims_multiple_axes_test(self, 'sum', title_prefix='sum_aggregate_')

    def test_sum_dtype(self):
        # Have to take care of complex datasets when asked about the sum of the entire dataset
        pass


class TestMeanMethod(unittest.TestCase):
    def test_mean_single_axis(self):
        single_axis_test(self, 'mean', title_prefix='mean_aggregate_')

    def test_mean_multiple_axis(self):
        multiple_axes_test(self, 'mean', title_prefix='mean_aggregate_')

    def test_mean_keepdims(self):
        keepdims_test(self, 'mean', title_prefix='mean_aggregate_')

    def test_mean_keepdims_multiple_axis(self):
        keepdims_multiple_axes_test(self, 'mean', title_prefix='mean_aggregate_')

    def test_mean_dtype(self):
        # Have to take care of complex datasets when asked about the sum of the entire dataset
        pass


class TestSlicing(unittest.TestCase):
    np.random.seed(0)
    values = np.random.rand(3, 4, 6, 5)
    dset = Dataset.from_array(values, title='4D_STEM', units='nA',
                              quantity='Current',
                              modality='modality', source='source')
    dset.data_type = DataType.IMAGE_4D
    dset.metadata = {'info_1': np.linspace(0, 5.6, 30), 'instrument': 'opportunity rover AFM'}

    x_dim = np.linspace(0, 1E-6,
                        dset.shape[0])
    y_dim = np.linspace(0, 2E-6,
                        dset.shape[1])
    kx_dim = np.linspace(0, 12, dset.shape[2])
    ky_dim = np.linspace(0, 10, dset.shape[3])

    dset.set_dimension(0, Dimension(x_dim,
                                    name='x',
                                    units='m', quantity='x',
                                    dimension_type='spatial'))
    dset.set_dimension(1, Dimension(y_dim,
                                    name='y',
                                    units='m', quantity='y',
                                    dimension_type='spatial'))
    dset.set_dimension(2, Dimension(kx_dim,
                                    name='Intensity KX',
                                    units='counts', quantity='Intensity',
                                    dimension_type='spectral'))
    dset.set_dimension(3, Dimension(ky_dim,
                                    name='Intensity KY',
                                    units='counts', quantity='Intensity',
                                    dimension_type='spectral'))

    def test_getitem_integer(self):
        # Create a sample Dask array
        old_dset = self.dset
        sliced = self.dset[:, 2]
        dim_dict = {0: old_dset._axes[0].copy(),
                    1: old_dset._axes[2].copy(),
                    2: old_dset._axes[3].copy()}

        validate_dataset_properties(self, sliced, self.dset.compute()[:, 2],
                                    title=self.dset.title, quantity=self.dset.quantity,
                                    units=self.dset.units,
                                    modality=self.dset.modality, source=self.dset.source,
                                    dimension_dict=dim_dict,
                                    data_type=self.dset.data_type,
                                    metadata=self.dset.metadata, original_metadata=self.dset.original_metadata)

    def test_getitem_NoneandEllipsis1(self):
        old_dset = self.dset
        sliced = self.dset[..., None, :]

        dim_dict = {0: old_dset._axes[0].copy(),
                    1: old_dset._axes[1].copy(),
                    2: old_dset._axes[2].copy(),
                    3: Dimension(1),
                    4: old_dset._axes[3].copy()}

        validate_dataset_properties(self, sliced, self.dset.compute()[..., None, :],
                                    title=self.dset.title, quantity=self.dset.quantity,
                                    units=self.dset.units,
                                    modality=self.dset.modality, source=self.dset.source,
                                    dimension_dict=dim_dict,
                                    data_type=self.dset.data_type,
                                    metadata=self.dset.metadata, original_metadata=self.dset.original_metadata)

    def test_getitem_NoneandEllipsis2(self):
        old_dset = self.dset

        sliced = self.dset[None, ..., None]
        dim_dict = {0: Dimension(1),
                    1: old_dset._axes[0].copy(),
                    2: old_dset._axes[1].copy(),
                    3: old_dset._axes[2].copy(),
                    4: old_dset._axes[3].copy(),
                    5: Dimension(1)}

        validate_dataset_properties(self, sliced, self.dset.compute()[None, ..., None],
                                    title=self.dset.title, quantity=self.dset.quantity,
                                    units=self.dset.units,
                                    modality=self.dset.modality, source=self.dset.source,
                                    dimension_dict=dim_dict,
                                    data_type=self.dset.data_type,
                                    metadata=self.dset.metadata, original_metadata=self.dset.original_metadata)

    def test_getitem_slice1(self):
        old_dset = self.dset
        sliced = self.dset[0:1]

        dim_dict = {0: deepcopy(old_dset._axes[0][0:1]),
                    1: deepcopy(old_dset._axes[1]),
                    2: deepcopy(old_dset._axes[2]),
                    3: deepcopy(old_dset._axes[3])}

        validate_dataset_properties(self, sliced, self.dset.compute()[0:1],
                                    title=self.dset.title, quantity=self.dset.quantity,
                                    units=self.dset.units,
                                    modality=self.dset.modality, source=self.dset.source,
                                    dimension_dict=dim_dict,
                                    data_type=self.dset.data_type,
                                    metadata=self.dset.metadata, original_metadata=self.dset.original_metadata)

    def test_getitem_slice2(self):
        old_dset = self.dset
        sliced = self.dset[0:3]

        dim_dict = {0: deepcopy(old_dset._axes[0][0:3]),
                    1: deepcopy(old_dset._axes[1]),
                    2: deepcopy(old_dset._axes[2]),
                    3: deepcopy(old_dset._axes[3])}

        validate_dataset_properties(self, sliced, self.dset.compute()[0:3],
                                    title=self.dset.title, quantity=self.dset.quantity,
                                    units=self.dset.units,
                                    modality=self.dset.modality, source=self.dset.source,
                                    dimension_dict=dim_dict,
                                    data_type=self.dset.data_type,
                                    metadata=self.dset.metadata, original_metadata=self.dset.original_metadata)

    def test_getitem_nparray(self):

        old_dset = self.dset
        inds = np.array([True, False, True, False, True, False])
        sliced = old_dset[:, :, inds, :]

        dim_dict = {0: deepcopy(old_dset._axes[0]),
                    1: deepcopy(old_dset._axes[1]),
                    2: deepcopy(old_dset._axes[2])[inds],
                    3: deepcopy(old_dset._axes[3])}

        validate_dataset_properties(self, sliced, self.dset.compute()[:, :, inds, :],
                                    title=self.dset.title, quantity=self.dset.quantity,
                                    units=self.dset.units,
                                    modality=self.dset.modality, source=self.dset.source,
                                    dimension_dict=dim_dict,
                                    data_type=self.dset.data_type,
                                    metadata=self.dset.metadata, original_metadata=self.dset.original_metadata)

    def test_getitem_daarray(self):
        np.random.seed(0)
        old_dset = self.dset
        inds = da.array(np.array([True, False, True, False, True]))
        sliced = old_dset[..., inds]

        dim_dict = {0: deepcopy(old_dset._axes[0]),
                    1: deepcopy(old_dset._axes[1]),
                    2: deepcopy(old_dset._axes[2]),
                    3: deepcopy(old_dset._axes[3])[np.array(inds)]}

        validate_dataset_properties(self, sliced, self.dset.compute()[..., inds],
                                    title=self.dset.title, quantity=self.dset.quantity,
                                    units=self.dset.units,
                                    modality=self.dset.modality, source=self.dset.source,
                                    dimension_dict=dim_dict,
                                    data_type=self.dset.data_type,
                                    metadata=self.dset.metadata, original_metadata=self.dset.original_metadata)


if __name__ == '__main__':
    unittest.main()