File: test_dimension.py

package info (click to toggle)
python-sidpy 0.12.3-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 21,988 kB
  • sloc: python: 11,456; makefile: 17
file content (197 lines) | stat: -rw-r--r-- 7,595 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
# -*- coding: utf-8 -*-
"""
Created on Tue Nov  3 15:07:16 2017

@author: Suhas Somnath
"""
from __future__ import (absolute_import, division, print_function,
                        unicode_literals)

import sys
import unittest
import warnings

import numpy as np
from numpy.testing import assert_array_equal
from sidpy.sid.dimension import Dimension

sys.path.insert(0, "../../sidpy/")

if sys.version_info.major == 3:
    unicode = str


class TestDimension(unittest.TestCase):

    def test_values_as_array(self):
        name = 'Bias'
        values = np.random.rand(5)

        descriptor = Dimension(values, name)
        for expected, actual in zip([name, values],
                                    [descriptor.name, descriptor.values]):
            self.assertTrue(np.all([x == y for x, y in zip(expected, actual)]))

    def test_values_as_length(self):
        name = 'Bias'
        units = 'V'
        values = np.arange(5)

        descriptor = Dimension(len(values), name, units=units)
        for expected, actual in zip([name, units],
                                    [descriptor.name, descriptor.units]):
            self.assertTrue(np.all([x == y for x, y in zip(expected, actual)]))
        self.assertTrue(np.allclose(values, descriptor.values))

    def test_copy(self):
        name = 'Bias'
        units = 'V'
        values = np.arange(5)

        descriptor = Dimension(values, name, units=units)
        copy_descriptor = descriptor.copy()

        for expected, actual in zip([copy_descriptor.name, copy_descriptor.units],
                                    [descriptor.name, descriptor.units]):
            self.assertTrue(np.all([x == y for x, y in zip(expected, actual)]))
        self.assertTrue(np.allclose(copy_descriptor.values, descriptor.values))
        copy_descriptor.units = 'eV'
        self.assertFalse(copy_descriptor.units == descriptor.units)

        copy_descriptor = descriptor + 1
        self.assertFalse(np.allclose(copy_descriptor.values, descriptor.values))

    def test_repr(self):
        name = 'Bias'
        values = np.arange(5)

        descriptor = Dimension(values, name)
        actual = '{}'.format(descriptor)
        quantity = 'generic'
        units = 'generic'
        expected = '{}:  {} ({}) of size {}'.format(name, quantity, units, values.shape)
        self.assertEqual(actual, expected)

    def test_change_name(self):
        name = 'Bias'
        values = np.arange(5)

        descriptor = Dimension(values, name)
        with self.assertRaises(AttributeError):
            descriptor.name = 'Voltage'

    def test_inequality_req_inputs(self):
        name = 'X'
        quantity = "Length"
        units = 'nm'

        self.assertTrue(Dimension(5, name) == Dimension(5, name))
        self.assertFalse(Dimension(5, 'Y') == Dimension(5, name))
        self.assertFalse(Dimension(4, name) == Dimension(5, name))

        self.assertTrue(
            Dimension(5, units=units) == Dimension(5, units=units))
        self.assertFalse(
            Dimension(5, units='pm') == Dimension(5, units=units))

        self.assertTrue(
            Dimension(5, quantity=quantity) == Dimension(5, quantity=quantity))
        self.assertFalse(
            Dimension(5, quantity='Bias') == Dimension(5, quantity=quantity))

        self.assertFalse(
            Dimension(np.arange(5)) == Dimension(np.arange(5) + 1))

    def test_dimensionality(self):
        vals = np.ones((2, 2))
        expected = 'Dimension can only be 1 dimensional'
        with self.assertRaises(Exception) as context:
            _ = Dimension(vals, "x", )
        self.assertTrue(expected in str(context.exception))

    def test_info(self):
        expected = "X - Bias (mV): [0. 1. 2. 3. 4.]"
        dim = Dimension(np.arange(5), "X", "Bias", "mV")
        self.assertTrue(dim.info, expected)

    def test_values_smaller_than_min_size(self):
        with self.assertRaises(TypeError) as context:
            _ = Dimension(0, name="x")
        self.assertTrue("When specifying the size of a Dimension, values "
                        "should at be integers > 1" in str(context.exception))

    def test_empty_array_values(self):
        with self.assertRaises(TypeError) as context:
            _ = Dimension([], name="x")
        self.assertTrue("When specifying values over which a parameter is "
                        "varied, values should not be an empty array"
                        "" in str(context.exception))

    def test_dimension_size_1(self):
        dim = Dimension(1)
        self.assertIsInstance(dim, Dimension)
        assert_array_equal(np.array(dim), [0])

    def test_single_valued_dimension(self):
        dim = Dimension([1.23])
        self.assertIsInstance(dim, Dimension)
        assert_array_equal(np.array(dim), [1.23])

    def test_conv2arr_values(self):
        arr = np.arange(5)
        vals = [5, arr, arr.tolist(), tuple(arr)]
        vals_expected = arr
        for v in vals:
            dim = Dimension(v, "x")
            self.assertIsInstance(dim, Dimension)
            assert_array_equal(np.array(dim), vals_expected)

    def test_dimension_type(self):
        dim_types = ["spatial", "Spatial", "reciprocal", "Reciprocal",
                     "spectral", "Spectral", "temporal", "Temporal",
                     "frame", "Frame", "time", "Time", "stack", "Stack"]
        dim_vals_expected = [1, 1, 2, 2, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4]
        dim_names_expected = ["SPATIAL", "SPATIAL", "RECIPROCAL", "RECIPROCAL",
                              "SPECTRAL", "SPECTRAL", "TEMPORAL", "TEMPORAL",
                              "TEMPORAL", "TEMPORAL", "TEMPORAL", "TEMPORAL",
                              "TEMPORAL", "TEMPORAL"]
        for dt, dv, dn in zip(dim_types, dim_vals_expected, dim_names_expected):
            dim = Dimension(5, "x", dimension_type=dt)
            self.assertEqual(dim.dimension_type.value, dv)
            self.assertEqual(dim.dimension_type.name, dn)

    def test_dimension_type(self):
        dim_types = ["spatial", "Spatial", "reciprocal", "Reciprocal",
                     "spectral", "Spectral", "temporal", "Temporal",
                     "frame", "Frame", "time", "Time", "stack", "Stack"]
        dim_vals_expected = [1, 1, 2, 2, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4]
        dim_names_expected = ["SPATIAL", "SPATIAL", "RECIPROCAL", "RECIPROCAL",
                              "SPECTRAL", "SPECTRAL", "TEMPORAL", "TEMPORAL",
                              "TEMPORAL", "TEMPORAL", "TEMPORAL", "TEMPORAL",
                              "TEMPORAL", "TEMPORAL"]
        for dt, dv, dn in zip(dim_types, dim_vals_expected, dim_names_expected):
            dim = Dimension(5, "x", dimension_type=dt)
            self.assertEqual(dim.dimension_type.value, dv)
            self.assertEqual(dim.dimension_type.name, dn)

    def test_unknown_dimension_type(self):
        dim_type = "bad_name"
        expected_wrn = ["Supported dimension types for plotting are only: [",
                        "Setting DimensionType to UNKNOWN"]
        with warnings.catch_warnings(record=True) as w:
            _ = Dimension(5, "x", dimension_type=dim_type)
        self.assertTrue(expected_wrn[0] in str(w[0].message))
        self.assertTrue(expected_wrn[1] in str(w[1].message))

    def test_add(self):
        name = 'Bias'
        units = 'V'
        values = np.arange(5)

        descriptor = Dimension(values, name, units=units)
        descriptor = descriptor + 3.
        self.assertIsInstance(descriptor, Dimension)


if __name__ == '__main__':
    unittest.main()