1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
|
# -*- coding: utf-8 -*-
"""
Created on Tue Nov 3 15:07:16 2017
@author: Suhas Somnath
"""
from __future__ import (absolute_import, division, print_function,
unicode_literals)
import sys
import unittest
import warnings
import numpy as np
from numpy.testing import assert_array_equal
from sidpy.sid.dimension import Dimension
sys.path.insert(0, "../../sidpy/")
if sys.version_info.major == 3:
unicode = str
class TestDimension(unittest.TestCase):
def test_values_as_array(self):
name = 'Bias'
values = np.random.rand(5)
descriptor = Dimension(values, name)
for expected, actual in zip([name, values],
[descriptor.name, descriptor.values]):
self.assertTrue(np.all([x == y for x, y in zip(expected, actual)]))
def test_values_as_length(self):
name = 'Bias'
units = 'V'
values = np.arange(5)
descriptor = Dimension(len(values), name, units=units)
for expected, actual in zip([name, units],
[descriptor.name, descriptor.units]):
self.assertTrue(np.all([x == y for x, y in zip(expected, actual)]))
self.assertTrue(np.allclose(values, descriptor.values))
def test_copy(self):
name = 'Bias'
units = 'V'
values = np.arange(5)
descriptor = Dimension(values, name, units=units)
copy_descriptor = descriptor.copy()
for expected, actual in zip([copy_descriptor.name, copy_descriptor.units],
[descriptor.name, descriptor.units]):
self.assertTrue(np.all([x == y for x, y in zip(expected, actual)]))
self.assertTrue(np.allclose(copy_descriptor.values, descriptor.values))
copy_descriptor.units = 'eV'
self.assertFalse(copy_descriptor.units == descriptor.units)
copy_descriptor = descriptor + 1
self.assertFalse(np.allclose(copy_descriptor.values, descriptor.values))
def test_repr(self):
name = 'Bias'
values = np.arange(5)
descriptor = Dimension(values, name)
actual = '{}'.format(descriptor)
quantity = 'generic'
units = 'generic'
expected = '{}: {} ({}) of size {}'.format(name, quantity, units, values.shape)
self.assertEqual(actual, expected)
def test_change_name(self):
name = 'Bias'
values = np.arange(5)
descriptor = Dimension(values, name)
with self.assertRaises(AttributeError):
descriptor.name = 'Voltage'
def test_inequality_req_inputs(self):
name = 'X'
quantity = "Length"
units = 'nm'
self.assertTrue(Dimension(5, name) == Dimension(5, name))
self.assertFalse(Dimension(5, 'Y') == Dimension(5, name))
self.assertFalse(Dimension(4, name) == Dimension(5, name))
self.assertTrue(
Dimension(5, units=units) == Dimension(5, units=units))
self.assertFalse(
Dimension(5, units='pm') == Dimension(5, units=units))
self.assertTrue(
Dimension(5, quantity=quantity) == Dimension(5, quantity=quantity))
self.assertFalse(
Dimension(5, quantity='Bias') == Dimension(5, quantity=quantity))
self.assertFalse(
Dimension(np.arange(5)) == Dimension(np.arange(5) + 1))
def test_dimensionality(self):
vals = np.ones((2, 2))
expected = 'Dimension can only be 1 dimensional'
with self.assertRaises(Exception) as context:
_ = Dimension(vals, "x", )
self.assertTrue(expected in str(context.exception))
def test_info(self):
expected = "X - Bias (mV): [0. 1. 2. 3. 4.]"
dim = Dimension(np.arange(5), "X", "Bias", "mV")
self.assertTrue(dim.info, expected)
def test_values_smaller_than_min_size(self):
with self.assertRaises(TypeError) as context:
_ = Dimension(0, name="x")
self.assertTrue("When specifying the size of a Dimension, values "
"should at be integers > 1" in str(context.exception))
def test_empty_array_values(self):
with self.assertRaises(TypeError) as context:
_ = Dimension([], name="x")
self.assertTrue("When specifying values over which a parameter is "
"varied, values should not be an empty array"
"" in str(context.exception))
def test_dimension_size_1(self):
dim = Dimension(1)
self.assertIsInstance(dim, Dimension)
assert_array_equal(np.array(dim), [0])
def test_single_valued_dimension(self):
dim = Dimension([1.23])
self.assertIsInstance(dim, Dimension)
assert_array_equal(np.array(dim), [1.23])
def test_conv2arr_values(self):
arr = np.arange(5)
vals = [5, arr, arr.tolist(), tuple(arr)]
vals_expected = arr
for v in vals:
dim = Dimension(v, "x")
self.assertIsInstance(dim, Dimension)
assert_array_equal(np.array(dim), vals_expected)
def test_dimension_type(self):
dim_types = ["spatial", "Spatial", "reciprocal", "Reciprocal",
"spectral", "Spectral", "temporal", "Temporal",
"frame", "Frame", "time", "Time", "stack", "Stack"]
dim_vals_expected = [1, 1, 2, 2, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4]
dim_names_expected = ["SPATIAL", "SPATIAL", "RECIPROCAL", "RECIPROCAL",
"SPECTRAL", "SPECTRAL", "TEMPORAL", "TEMPORAL",
"TEMPORAL", "TEMPORAL", "TEMPORAL", "TEMPORAL",
"TEMPORAL", "TEMPORAL"]
for dt, dv, dn in zip(dim_types, dim_vals_expected, dim_names_expected):
dim = Dimension(5, "x", dimension_type=dt)
self.assertEqual(dim.dimension_type.value, dv)
self.assertEqual(dim.dimension_type.name, dn)
def test_dimension_type(self):
dim_types = ["spatial", "Spatial", "reciprocal", "Reciprocal",
"spectral", "Spectral", "temporal", "Temporal",
"frame", "Frame", "time", "Time", "stack", "Stack"]
dim_vals_expected = [1, 1, 2, 2, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4]
dim_names_expected = ["SPATIAL", "SPATIAL", "RECIPROCAL", "RECIPROCAL",
"SPECTRAL", "SPECTRAL", "TEMPORAL", "TEMPORAL",
"TEMPORAL", "TEMPORAL", "TEMPORAL", "TEMPORAL",
"TEMPORAL", "TEMPORAL"]
for dt, dv, dn in zip(dim_types, dim_vals_expected, dim_names_expected):
dim = Dimension(5, "x", dimension_type=dt)
self.assertEqual(dim.dimension_type.value, dv)
self.assertEqual(dim.dimension_type.name, dn)
def test_unknown_dimension_type(self):
dim_type = "bad_name"
expected_wrn = ["Supported dimension types for plotting are only: [",
"Setting DimensionType to UNKNOWN"]
with warnings.catch_warnings(record=True) as w:
_ = Dimension(5, "x", dimension_type=dim_type)
self.assertTrue(expected_wrn[0] in str(w[0].message))
self.assertTrue(expected_wrn[1] in str(w[1].message))
def test_add(self):
name = 'Bias'
units = 'V'
values = np.arange(5)
descriptor = Dimension(values, name, units=units)
descriptor = descriptor + 3.
self.assertIsInstance(descriptor, Dimension)
if __name__ == '__main__':
unittest.main()
|