1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485
|
# -*- coding: utf-8 -*-
"""
Created on Fri March 26 17:07:16 2021
@author: Gerd Duscher
"""
from __future__ import division, print_function, unicode_literals, \
absolute_import
import unittest
import numpy as np
import sys
sys.path.insert(0, "../../sidpy/")
import sidpy
if sys.version_info.major == 3:
unicode = str
class TestUFunctions(unittest.TestCase):
def test_add(self):
input_spectrum = np.zeros([512])
dataset = sidpy.Dataset.from_array(input_spectrum)
new_dataset = dataset+3.
new_dataset.compute()
self.assertIsInstance(new_dataset, sidpy.Dataset)
self.assertEqual(np.array(new_dataset)[0], 3)
input_spectrum = np.zeros([3, 3, 512])
dataset = sidpy.Dataset.from_array(input_spectrum)
new_dataset = dataset + 3.
self.assertIsInstance(new_dataset, sidpy.Dataset)
self.assertEqual(np.array(new_dataset)[0, 0, 0], 3)
def test_sub(self):
input_spectrum = np.zeros([3, 3, 3])
dataset = sidpy.Dataset.from_array(input_spectrum)
new_dataset = dataset-3.
self.assertIsInstance(new_dataset, sidpy.Dataset)
self.assertEqual(np.array(new_dataset)[0, 0, 0], -3)
def test_mul(self):
input_spectrum = np.ones([3, 3, 3])
dataset = sidpy.Dataset.from_array(input_spectrum)
new_dataset = dataset*3.
self.assertIsInstance(new_dataset, sidpy.Dataset)
self.assertEqual(np.array(new_dataset)[0, 0, 0], 3)
def test_min(self):
input_spectrum = np.zeros([3, 3, 3])
dataset = sidpy.Dataset.from_array(input_spectrum)
min_dataset = dataset.min()
self.assertIsInstance(min_dataset, float)
self.assertEqual(min_dataset, 0)
def test_max(self):
input_spectrum = np.zeros([3, 3, 3])
dataset = sidpy.Dataset.from_array(input_spectrum)
max_dataset = dataset.max()
self.assertIsInstance(max_dataset, float)
self.assertEqual(max_dataset, 0)
def test_abs(self):
input_spectrum = np.ones([3, 3, 3]) * -1
dataset = sidpy.Dataset.from_array(input_spectrum)
abs_dataset = dataset.abs()
self.assertIsInstance(abs_dataset, sidpy.Dataset)
self.assertEqual(abs_dataset[0, 0, 0].compute(), 1)
new_dataset = dataset.__abs__()
self.assertIsInstance(new_dataset, sidpy.Dataset)
def test_angle(self):
input_spectrum = np.ones([3, 3, 3]) * -1
dataset = sidpy.Dataset.from_array(input_spectrum)
angle_dataset = dataset.angle()
self.assertIsInstance(angle_dataset, sidpy.Dataset)
self.assertEqual(float(angle_dataset[0, 0, 0]), np.pi)
def test_dot(self):
input_spectrum = np.ones([3, 3, 3])
dataset = sidpy.Dataset.from_array(input_spectrum)
new_dataset = dataset.dot(dataset)
self.assertIsInstance(new_dataset, sidpy.Dataset)
def test_t(self):
input_spectrum = np.ones([3, 3, 3])
dataset = sidpy.Dataset.from_array(input_spectrum)
new_dataset = dataset.T
self.assertIsInstance(new_dataset, sidpy.Dataset)
def test_transpose(self):
input_spectrum = np.ones([3, 3, 3])
dataset = sidpy.Dataset.from_array(input_spectrum)
new_dataset = dataset.transpose()
self.assertIsInstance(new_dataset, sidpy.Dataset)
def test_ravel(self):
input_spectrum = np.ones([3, 3, 3])
dataset = sidpy.Dataset.from_array(input_spectrum)
new_dataset = dataset.ravel()
self.assertIsInstance(new_dataset, sidpy.Dataset)
def test_choose(self):
input_spectrum = np.ones([3, 3, 3])
dataset = sidpy.Dataset.from_array(input_spectrum)
new_dataset = dataset.choose([2, 3, 1, 0])
self.assertIsInstance(new_dataset, sidpy.Dataset)
def test_radd(self):
input_spectrum = np.ones([3, 3, 3])
dataset = sidpy.Dataset.from_array(input_spectrum)
new_dataset = dataset+3.
self.assertIsInstance(new_dataset, sidpy.Dataset)
def test_and(self):
input_spectrum = np.ones([3, 3, 3])
dataset = sidpy.Dataset.from_array(input_spectrum)
new_dataset = dataset.__and__(dataset)
self.assertIsInstance(new_dataset, sidpy.Dataset)
def test_rand(self):
input_spectrum = np.ones([3, 3, 3])
dataset = sidpy.Dataset.from_array(input_spectrum)
new_dataset = dataset.__rand__(dataset)
self.assertIsInstance(new_dataset, sidpy.Dataset)
def test_div(self):
input_spectrum = np.ones([3, 3, 3])
dataset = sidpy.Dataset.from_array(input_spectrum)
new_dataset = dataset/dataset
self.assertIsInstance(new_dataset, sidpy.Dataset)
def test_rdiv(self):
input_spectrum = np.ones([3, 3, 3])
dataset = sidpy.Dataset.from_array(input_spectrum)
new_dataset = dataset/np.array(dataset)
self.assertIsInstance(new_dataset, sidpy.Dataset)
def test_gt(self):
input_spectrum = np.ones([3, 3, 3])
dataset = sidpy.Dataset.from_array(input_spectrum)
new_dataset = dataset > 3
self.assertIsInstance(new_dataset, sidpy.Dataset)
def test_ge(self):
input_spectrum = np.ones([3, 3, 3])
dataset = sidpy.Dataset.from_array(input_spectrum)
new_dataset = dataset >= 3
self.assertIsInstance(new_dataset, sidpy.Dataset)
def test_invert(self):
input_spectrum = np.ones([3, 3, 3])
dataset = sidpy.Dataset.from_array(input_spectrum)
new_dataset = ~dataset
self.assertIsInstance(new_dataset, sidpy.Dataset)
def test_lshift(self):
input_spectrum = np.ones([3, 3, 3])
dataset = sidpy.Dataset.from_array(input_spectrum)
new_dataset = dataset.__lshift__(1)
self.assertIsInstance(new_dataset, sidpy.Dataset)
def test_lt(self):
input_spectrum = np.ones([3, 3, 3])
dataset = sidpy.Dataset.from_array(input_spectrum)
new_dataset = dataset < 3
self.assertIsInstance(new_dataset, sidpy.Dataset)
def test_le(self):
input_spectrum = np.ones([3, 3, 3])
dataset = sidpy.Dataset.from_array(input_spectrum)
new_dataset = dataset <= 3
self.assertIsInstance(new_dataset, sidpy.Dataset)
def test_mod(self):
input_spectrum = np.ones([3, 3, 3])
dataset = sidpy.Dataset.from_array(input_spectrum)
new_dataset = dataset % 3
self.assertIsInstance(new_dataset, sidpy.Dataset)
def test_rmod(self):
input_spectrum = np.ones([3, 3, 3])
dataset = sidpy.Dataset.from_array(input_spectrum)
new_dataset = dataset.__rmod__(2)
self.assertIsInstance(new_dataset, sidpy.Dataset)
def test_rmul(self):
input_spectrum = np.ones([3, 3, 3])
dataset = sidpy.Dataset.from_array(input_spectrum)
new_dataset = dataset.__rmul__(2)
self.assertIsInstance(new_dataset, sidpy.Dataset)
def test_ne(self):
input_spectrum = np.ones([3, 3, 3])
dataset = sidpy.Dataset.from_array(input_spectrum)
new_dataset = dataset != 2
self.assertIsInstance(new_dataset, sidpy.Dataset)
def test_neg(self):
input_spectrum = np.ones([3, 3, 3])
dataset = sidpy.Dataset.from_array(input_spectrum)
new_dataset = dataset.__neg__()
self.assertIsInstance(new_dataset, sidpy.Dataset)
def test_or(self):
input_spectrum = np.ones([3, 3, 3])
dataset = sidpy.Dataset.from_array(input_spectrum)
new_dataset = dataset.__or__(dataset)
self.assertIsInstance(new_dataset, sidpy.Dataset)
def test_ror(self):
input_spectrum = np.ones([3, 3, 3])
dataset = sidpy.Dataset.from_array(input_spectrum)
new_dataset = dataset.__ror__(dataset)
self.assertIsInstance(new_dataset, sidpy.Dataset)
def test_pos(self):
input_spectrum = np.ones([3, 3, 3])
dataset = sidpy.Dataset.from_array(input_spectrum)
new_dataset = dataset.__pos__()
self.assertIsInstance(new_dataset, sidpy.Dataset)
def test_pow(self):
input_spectrum = np.ones([3, 3, 3])
dataset = sidpy.Dataset.from_array(input_spectrum)
new_dataset = dataset**2
self.assertIsInstance(new_dataset, sidpy.Dataset)
def test_rpow(self):
input_spectrum = np.ones([3, 3, 3])
dataset = sidpy.Dataset.from_array(input_spectrum)
new_dataset = dataset.__rpow__(2)
self.assertIsInstance(new_dataset, sidpy.Dataset)
def test_rshift(self):
input_spectrum = np.ones([3, 3, 3])
dataset = sidpy.Dataset.from_array(input_spectrum)
new_dataset = dataset.__rshift__(2)
self.assertIsInstance(new_dataset, sidpy.Dataset)
def test_rrshift(self):
input_spectrum = np.ones([3, 3, 3])
dataset = sidpy.Dataset.from_array(input_spectrum)
new_dataset = dataset.__rrshift__(2)
self.assertIsInstance(new_dataset, sidpy.Dataset)
def test_rsub(self):
input_spectrum = np.ones([3, 3, 3])
dataset = sidpy.Dataset.from_array(input_spectrum)
new_dataset = dataset.__rsub__(2)
self.assertIsInstance(new_dataset, sidpy.Dataset)
def test_rtruediv(self):
input_spectrum = np.ones([3, 3, 3])
dataset = sidpy.Dataset.from_array(input_spectrum)
new_dataset = dataset.__rtruediv__(2)
self.assertIsInstance(new_dataset, sidpy.Dataset)
def test_rfloordiv(self):
input_spectrum = np.ones([3, 3, 3])
dataset = sidpy.Dataset.from_array(input_spectrum)
new_dataset = dataset.__rfloordiv__(2)
self.assertIsInstance(new_dataset, sidpy.Dataset)
def test_xor(self):
input_spectrum = np.ones([3, 3, 3])
dataset = sidpy.Dataset.from_array(input_spectrum)
new_dataset = dataset.__xor__(2)
self.assertIsInstance(new_dataset, sidpy.Dataset)
def test_rxor(self):
input_spectrum = np.ones([3, 3, 3])
dataset = sidpy.Dataset.from_array(input_spectrum)
new_dataset = dataset.__rxor__(2)
self.assertIsInstance(new_dataset, sidpy.Dataset)
def test_matmul(self):
input_spectrum = np.ones([3, 3, 3])
dataset = sidpy.Dataset.from_array(input_spectrum)
new_dataset = dataset @ dataset
self.assertIsInstance(new_dataset, sidpy.Dataset)
def test_rmatmul(self):
input_spectrum = np.ones([3, 3, 3])
dataset = sidpy.Dataset.from_array(input_spectrum)
new_dataset = dataset.__rmatmul__(dataset)
self.assertIsInstance(new_dataset, sidpy.Dataset)
def test_divmod(self):
input_spectrum = np.ones([3, 3, 3])
dataset = sidpy.Dataset.from_array(input_spectrum)
new_dataset, _ = dataset.__divmod__(2)
self.assertIsInstance(new_dataset, sidpy.Dataset)
def test_rdivmod(self):
input_spectrum = np.ones([3])
dataset = sidpy.Dataset.from_array(input_spectrum)
new_dataset, _ = dataset.__rdivmod__(8)
self.assertIsInstance(new_dataset, sidpy.Dataset)
def test_real(self):
input_spectrum = np.ones([3, 3, 3])
dataset = sidpy.Dataset.from_array(input_spectrum)
new_dataset = dataset.real
self.assertIsInstance(new_dataset, sidpy.Dataset)
def test_imag(self):
input_spectrum = np.ones([3, 3, 3])
dataset = sidpy.Dataset.from_array(input_spectrum)
new_dataset = dataset.imag
self.assertIsInstance(new_dataset, sidpy.Dataset)
def test_conj(self):
input_spectrum = np.ones([3, 3, 3])
dataset = sidpy.Dataset.from_array(input_spectrum)
new_dataset = dataset.conj()
self.assertIsInstance(new_dataset, sidpy.Dataset)
def test_clip(self):
input_spectrum = np.ones([3, 3, 3])
dataset = sidpy.Dataset.from_array(input_spectrum)
new_dataset = dataset.clip()
self.assertIsInstance(new_dataset, sidpy.Dataset)
def test_sum(self):
input_spectrum = np.ones([3, 3, 3])
dataset = sidpy.Dataset.from_array(input_spectrum)
new_dataset = dataset.sum(axis=1)
self.assertIsInstance(new_dataset, sidpy.Dataset)
def test_mean(self):
input_spectrum = np.ones([3, 3, 3])
dataset = sidpy.Dataset.from_array(input_spectrum)
new_dataset = dataset.mean(axis=1)
self.assertIsInstance(new_dataset, sidpy.Dataset)
def test_squeeze(self):
input_spectrum = np.ones([3, 1, 3])
dataset = sidpy.Dataset.from_array(input_spectrum)
new_dataset = dataset.squeeze()
self.assertIsInstance(new_dataset, sidpy.Dataset)
def test_swapaxes(self):
input_spectrum = np.ones([3, 3, 3])
dataset = sidpy.Dataset.from_array(input_spectrum)
new_dataset = dataset.swapaxes(0, 1)
self.assertIsInstance(new_dataset, sidpy.Dataset)
def test_ufunc(self):
# Todo: More testing for better coverage
input_image = np.ones([3, 3, 3])
dataset = sidpy.Dataset.from_array(input_image)
new_dataset = np.sin(dataset)
self.assertIsInstance(new_dataset, sidpy.Dataset)
new_dataset = dataset @ dataset
self.assertIsInstance(new_dataset, sidpy.Dataset)
class TestFftFunctions(unittest.TestCase):
def test_spectrum_fft(self):
input_spectrum = np.zeros([512])
x = np.mgrid[0:32] * 16
input_spectrum[x] = 1
dataset = sidpy.Dataset.from_array(input_spectrum)
dataset.data_type = 'spectrum'
dataset.units = 'counts'
dataset.quantity = 'intensity'
with self.assertRaises(NotImplementedError):
dataset.fft()
with self.assertRaises(TypeError):
dataset.fft(dimension_type='spectral')
dataset.set_dimension(0, sidpy.Dimension(np.arange(dataset.shape[0]) * .02, 'x'))
dataset.x.dimension_type = 'spectral'
dataset.x.units = 'nm'
dataset.x.quantity = 'distance'
fft_dataset = dataset.fft()
self.assertEqual(np.array(fft_dataset)[0], 32+0j)
def test_image_fft(self):
input_image = np.zeros([512, 512])
x, y = np.mgrid[0:32, 0:32] * 16
input_image[x, y] = 1
dataset = sidpy.Dataset.from_array(input_image)
dataset.data_type = 'image'
dataset.units = 'counts'
dataset.quantity = 'intensity'
with self.assertRaises(NotImplementedError):
dataset.fft()
with self.assertRaises(TypeError):
dataset.fft(dimension_type='spatial')
dataset.set_dimension(0, sidpy.Dimension(np.arange(dataset.shape[0]) * .02, 'x'))
dataset.x.dimension_type = 'spatial'
dataset.x.units = 'nm'
dataset.x.quantity = 'distance'
with self.assertRaises(TypeError):
dataset.fft()
dataset.set_dimension(1, sidpy.Dimension(np.arange(dataset.shape[1]) * .02, 'y'))
dataset.y.dimension_type = 'spatial'
dataset.y.units = 'nm'
dataset.y.quantity = 'distance'
fft_dataset = dataset.fft()
self.assertEqual(np.array(fft_dataset)[0, 0], 1024+0j)
def test_image_stack_fft(self):
input_stack = np.zeros([3, 512, 512])
x, y = np.mgrid[0:32, 0:32] * 16
input_stack[:, x, y] = 1.
dataset = sidpy.Dataset.from_array(input_stack)
dataset.data_type = 'image_stack'
dataset.units = 'counts'
dataset.quantity = 'intensity'
with self.assertRaises(NotImplementedError):
dataset.fft()
with self.assertRaises(TypeError):
dataset.fft(dimension_type='spatial')
dataset.set_dimension(0, sidpy.Dimension(np.arange(dataset.shape[0]), 'frame'))
dataset.frame.dimension_type = 'time'
dataset.set_dimension(1, sidpy.Dimension(np.arange(dataset.shape[1]) * .02, 'x'))
dataset.x.dimension_type = 'spatial'
dataset.x.units = 'nm'
dataset.x.quantity = 'distance'
with self.assertRaises(NotImplementedError):
dataset.fft()
dataset.set_dimension(2, sidpy.Dimension(np.arange(dataset.shape[2]) * .02, 'y'))
dataset.y.dimension_type = 'spatial'
dataset.y.units = 'nm'
dataset.y.quantity = 'distance'
fft_dataset = dataset.fft()
self.assertEqual(np.array(fft_dataset)[0, 0, 0], 1024 + 0j)
def test_spectrum_image_fft(self):
input_si = np.zeros([3, 3, 512])
x = np.mgrid[0:32] * 16
input_si[:, :, x] = 1.
dataset = sidpy.Dataset.from_array(input_si)
dataset.data_type = 'spectral_image'
dataset.units = 'counts'
dataset.quantity = 'intensity'
with self.assertRaises(NotImplementedError):
dataset.fft()
with self.assertRaises(TypeError):
dataset.fft(dimension_type='spectral')
dataset.set_dimension(0, sidpy.Dimension(np.arange(dataset.shape[0]) * .02, 'x'))
dataset.x.dimension_type = 'spatial'
dataset.x.units = 'nm'
dataset.x.quantity = 'distance'
with self.assertRaises(NotImplementedError):
dataset.fft()
dataset.set_dimension(1, sidpy.Dimension(np.arange(dataset.shape[1]) * .02, 'y'))
dataset.y.dimension_type = 'spatial'
dataset.y.units = 'nm'
dataset.y.quantity = 'distance'
dataset.set_dimension(2, sidpy.Dimension(np.arange(dataset.shape[2]) * .02, 'spec'))
dataset.spec.dimension_type = 'spectral'
dataset.spec.units = 'i'
dataset.spec.quantity = 'energy'
fft_dataset = dataset.fft()
self.assertEqual(np.array(fft_dataset)[0, 0, 0], 32+0j)
if __name__ == '__main__':
unittest.main()
|