File: test_dataset_plot.py

package info (click to toggle)
python-sidpy 0.12.3-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 21,988 kB
  • sloc: python: 11,456; makefile: 17
file content (485 lines) | stat: -rw-r--r-- 16,072 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
"""
Created on Thurs Dec 10 2021

@author: Gerd Duscher
"""

import unittest
import sys
import os

import ipywidgets
import matplotlib as mpl
if os.environ.get('DISPLAY', '') == '':
    print('no display found. Using non-interactive Agg backend')
mpl.use('Agg')
import numpy as np
sys.path.insert(0, "../../sidpy/")
import sidpy


def get_spectrum(dtype=float):
    x = np.array(np.random.normal(3, 2.5, size=1024), dtype=dtype)

    dset = sidpy.Dataset.from_array(x)

    # dataset metadata
    dset.data_type = 'spectrum'
    dset.title = 'random'
    dset.quantity = 'intensity'
    dset.units = 'a.u.'
    scale = .5
    offset = 390
    dset.set_dimension(0, sidpy.Dimension(np.arange(dset.shape[0]) * scale + offset, 'energy'))
    dset.dim_0.dimension_type = 'spectral'
    dset.energy.units = 'eV'
    dset.energy.quantity = 'energy'
    return dset, x


def get_image(dtype=float):
    x = np.array(np.random.normal(3, 2.5, size=(512, 512)), dtype=dtype)
    dset = sidpy.Dataset.from_array(x)
    dset.data_type = 'image'
    dset.units = 'counts'
    dset.quantity = 'intensity'
    dset.title = 'random'
    dset.set_dimension(0, sidpy.Dimension(np.arange(dset.shape[0]) * .02, 'x'))
    dset.x.dimension_type = 'spatial'
    dset.x.units = 'nm'
    dset.x.quantity = 'distance'
    dset.set_dimension(1, sidpy.Dimension(np.arange(dset.shape[1]) * .02, 'y'))
    dset.y.dimension_type = 'spatial'
    dset.y.units = 'nm'
    dset.y.quantity = 'distance'

    return dset, x


def get_image_stack(dtype=float):
    x = np.array(np.random.normal(3, 2.5, size=(25, 512, 512)), dtype=dtype)

    dset = sidpy.Dataset.from_array(x)
    dset.data_type = 'image_stack'
    dset.units = 'counts'
    dset.quantity = 'intensity'

    dset.set_dimension(0, sidpy.Dimension(np.arange(dset.shape[0]), 'frame'))
    dset.frame.dimension_type = 'temporal'
    dset.set_dimension(1, sidpy.Dimension(np.arange(dset.shape[1]) * .02, 'x'))
    dset.x.dimension_type = 'spatial'
    dset.x.units = 'nm'
    dset.x.quantity = 'distance'
    dset.set_dimension(2, sidpy.Dimension(np.arange(dset.shape[2]) * .02, 'y'))
    dset.y.dimension_type = 'spatial'
    dset.y.units = 'nm'
    dset.y.quantity = 'distance'

    return dset, x


def get_spectral_image(dtype=float):

    x = np.array(np.random.normal(3, 2.5, size=(25, 512, 512)), dtype=dtype)

    dset = sidpy.Dataset.from_array(x)
    dset.data_type = 'spectral_image'
    dset.units = 'counts'
    dset.quantity = 'intensity'

    dset.set_dimension(0, sidpy.Dimension(np.arange(dset.shape[0]), 'energy'))
    dset.energy.dimension_type = 'spectral'
    dset.energy.units = 'eV'
    dset.energy.quantity = 'energy'

    dset.set_dimension(1, sidpy.Dimension(np.arange(dset.shape[1]) * .02, 'x'))
    dset.x.dimension_type = 'spatial'
    dset.x.units = 'nm'
    dset.x.quantity = 'distance'
    dset.set_dimension(2, sidpy.Dimension(np.arange(dset.shape[2]) * .02, 'y'))
    dset.y.dimension_type = 'spatial'
    dset.y.units = 'nm'
    dset.y.quantity = 'distance'

    return dset, x

def get_point_cloud(dtype=float):
    data = np.array(np.random.normal(3, 2.5, size=(20, 10)), dtype=dtype)
    data_var = np.array(np.random.normal(10, 2.5, size=(20, 10)), dtype=dtype)
    coordinates = np.array(np.random.rand(20, 2) + 10, dtype=dtype)

    dset = sidpy.Dataset.from_array(data, coordinates=coordinates)
    dset.data_type = 'point_cloud'

    dset.variance = data_var
    dset.point_cloud['spacial_units'] = 'um'
    dset.point_cloud['quantity'] = 'Distance'

    dset.set_dimension(0, sidpy.Dimension(np.arange(data.shape[0]),
                                          name='point number',
                                          quantity='Point number',
                                          dimension_type='point_cloud'))

    dset.set_dimension(1, sidpy.Dimension(np.arange(data.shape[1]),
                                          name='X',
                                          units='a.u.',
                                          quantity='X',
                                          dimension_type='spectral'))
    dset.units = 'a.u.'
    dset.quantity = 'Intensity'
    return dset, data





def get_4d_image(dtype=float):

    data = np.array(np.random.random([5, 5, 10, 10]), dtype=dtype)
    for i in range(5):
        for j in range(5):
            data[i, j] += (i+j)

    dataset = sidpy.Dataset.from_array(data)
    dataset.data_type = 'Image_4d'
    dataset.title = 'random'

    dataset.set_dimension(0, sidpy.Dimension(np.arange(dataset.shape[0]) * .02, 'u'))
    dataset.u.dimension_type = 'reciprocal'
    dataset.u.units = '1/nm'
    dataset.u.quantity = 'frequency'
    dataset.set_dimension(1, sidpy.Dimension(np.arange(dataset.shape[1]) * .02, 'v'))
    dataset.v.dimension_type = 'reciprocal'
    dataset.v.units = '1/nm'
    dataset.v.quantity = 'frequency'

    dataset.set_dimension(2, sidpy.Dimension(np.arange(dataset.shape[2]) * .02, 'x'))
    dataset.x.dimension_type = 'spatial'
    dataset.x.units = 'nm'
    dataset.x.quantity = 'distance'
    dataset.set_dimension(3, sidpy.Dimension(np.arange(dataset.shape[3]) * .02, 'y'))
    dataset.y.dimension_type = 'spatial'
    dataset.y.units = 'nm'
    dataset.y.quantity = 'distance'

    return dataset, data




class TestSpectrumPlot(unittest.TestCase):

    def test_spectrum(self):
        # dimension with metadata
        dset, x = get_spectrum()
        view = dset.plot(verbose=True)

        x_y = view.axes[0].lines[0].get_xydata()
        self.assertTrue(np.allclose(x_y[:, 1], x))
        self.assertTrue(np.allclose(x_y[:, 0], dset.energy))
        self.assertEqual(dset.title, view.axes[0].get_title())
        self.assertEqual(f"{dset.energy.quantity} ({dset.energy.units})", view.axes[0].get_xlabel())

    def test_false_type(self):
        x = np.zeros(5)
        with self.assertRaises(TypeError):
            sidpy.viz.dataset_viz.CurveVisualizer(x)

    def test_false_dim(self):
        dset, x = get_image()
        with self.assertRaises(TypeError):
            sidpy.viz.dataset_viz.CurveVisualizer(dset)

    def test_generic(self):
        x = np.random.normal(3, 2.5, size=(4, 1024))
        dset = sidpy.Dataset.from_array(x)
        dset.data_type = 'spectrum'
        dset.plot()

    def test_complex(self):
        dset, x = get_spectrum(dtype=complex)
        view = dset.plot(verbose=True)

        x_y = view.axes[0].lines[0].get_xydata()
        self.assertEqual(len(view.axes), 2)

        self.assertTrue(np.allclose(x_y[:, 1], np.abs(x)))
        self.assertTrue(np.allclose(x_y[:, 0], dset.energy))
        # self.assertEqual(dset.title, view.axes[0].get_title())
        self.assertEqual(f"{dset.energy.quantity} ({dset.energy.units})", view.axes[0].get_xlabel())


class TestImagePlot(unittest.TestCase):

    def test_image(self):
        dset, x = get_image()
        view = dset.plot()

        data = view.axes[0].images[0].get_array().data

        self.assertTrue(np.allclose(data.shape, x.shape))

        self.assertEqual(dset.title, view.axes[0].get_title())
        self.assertEqual(f"{dset.x.quantity} ({dset.x.units})", view.axes[0].get_xlabel())

    def test_false_type(self):
        x = np.zeros(5)
        with self.assertRaises(TypeError):
            sidpy.viz.dataset_viz.ImageVisualizer(x)

    def test_false_dim(self):
        dset, x = get_spectrum()
        with self.assertRaises(TypeError):
            sidpy.viz.dataset_viz.ImageVisualizer(dset)

    def test_generic(self):
        x = np.random.normal(3, 2.5, size=(6, 1024))
        dset = sidpy.Dataset.from_array(x)
        dset.data_type = 'image'
        dset.dim_0.dimension_type = 'spatial'
        dset.dim_1.dimension_type = 'spatial'

        dset.data_type = 'image'

        dset.plot()

    def test_complex(self):
        dset, x = get_image(dtype=complex)
        view = dset.plot(verbose=True)

        x_y = view.axes[0].images[0].get_array().data
        self.assertEqual(len(view.axes), 4)

        self.assertEqual(x_y.shape, x.shape)
        # self.assertEqual(dset.title, view.axes[0].get_title())
        self.assertEqual(f"{dset.x.quantity} ({dset.x.units})", view.axes[0].get_xlabel())

    def test_image_scale(self):
        dset, x = get_image()
        kwargs = {'scale_bar': True, 'cmap': 'hot'}  # or 'cmap': 'gray'
        view = dset.plot(verbose=True, **kwargs)

        data = view.axes[0].images[0].get_array().data

        self.assertTrue(np.allclose(data.shape, x.shape))

        self.assertEqual(dset.title, view.axes[0].get_title())
        self.assertEqual(f"{dset.x.quantity} ({dset.x.units})", view.axes[0].get_xlabel())

    def test_image_stack(self):
        dset, x = get_image_stack()
        view = sidpy.viz.dataset_viz.ImageVisualizer(dset)
        data = view.fig.axes[0].images[0].get_array().data

        self.assertTrue(np.allclose(data.shape, x.shape[1:]))

        self.assertEqual('generic_image 0', view.fig.axes[0].get_title())
        self.assertEqual(f"{dset.x.quantity} ({dset.x.units})", view.fig.axes[0].get_xlabel())



class TestImageStackPlot(unittest.TestCase):

    def test_plot(self):
        dset, x = get_image_stack()
        view = dset.plot()

        data = view.axes[0].images[0].get_array().data

        self.assertTrue(np.allclose(data.shape, x.shape[1:]))
        self.assertEqual(view.axes[0].get_title(), 'Image stack: generic\n use scroll wheel to navigate images')

        self.assertEqual(f"{dset.x.quantity} ({dset.x.units})", view.axes[0].get_xlabel())

    def test_scalebar(self):
        dset, x = get_image_stack()
        kwargs = {'scale_bar': True, 'cmap': 'hot'}  # or 'cmap': 'gray'
        view = dset.plot(verbose=True, **kwargs)
        data = view.axes[0].images[0].get_array().data
        self.assertTrue(np.allclose(data.shape, x.shape[1:]))

    def test_false_type(self):
        x = np.zeros(5)
        with self.assertRaises(TypeError):
            sidpy.viz.dataset_viz.ImageStackVisualizer(x)

    def test_false_dim(self):
        dset, x = get_spectrum()
        with self.assertRaises(TypeError):
            sidpy.viz.dataset_viz.ImageStackVisualizer(dset)

    def test_button_up(self):
        dset, x = get_image_stack()
        viz = sidpy.viz.dataset_viz.ImageStackVisualizer(dset)
        viz.slider.value = 2
        data = viz.fig.axes[0].images[0].get_array().data
        self.assertTrue(np.allclose(data.shape, x.shape[1:]))

    def test_button_average(self):
        dset, x = get_image_stack()
        viz = sidpy.viz.dataset_viz.ImageStackVisualizer(dset)
        viz.button.value = True
        data = viz.fig.axes[0].images[0].get_array().data
        self.assertTrue(np.allclose(data.shape, x.shape[1:]))

    def test_button_average2(self):
        dset, x = get_image_stack()
        viz = sidpy.viz.dataset_viz.ImageStackVisualizer(dset)
        viz.button.value = True
        viz.button.value = False
        data = viz.fig.axes[0].images[0].get_array().data
        self.assertTrue(np.allclose(data.shape, x.shape[1:]))


class TestSpectralImagePlot(unittest.TestCase):

    def test_plot(self):
        dset, x = get_spectral_image()
        view = dset.plot()
        self.assertEqual(len(view.axes), 2)

    def test_bin(self):
        dset, x = get_spectral_image()
        view = dset.plot()

        dset.view.set_bin([20, 20])

        self.assertEqual(len(view.axes), 2)

        dset.view.set_bin(10)
        self.assertEqual(len(view.axes), 2)

    def test_false_type(self):
        x = np.zeros(5)
        with self.assertRaises(TypeError):
            sidpy.viz.dataset_viz.SpectralImageVisualizer(x)

    def test_false_dim(self):
        dset, x = get_spectrum()
        with self.assertRaises(TypeError):
            sidpy.viz.dataset_viz.SpectralImageVisualizer(dset)
        dset, x = get_image()
        with self.assertRaises(TypeError):
            sidpy.viz.dataset_viz.SpectralImageVisualizer(dset)

        dset, x = get_4d_image()
        with self.assertRaises(TypeError):
            sidpy.viz.dataset_viz.SpectralImageVisualizer(dset)

class TestPointCloudPlot(unittest.TestCase):
    def test_plot_basic(self):
        dset, x = get_point_cloud()
        view = dset.plot()
        self.assertEqual(len(view.axes), 2)
        self.assertEqual(view.axes[0].get_xlabel(), 'Distance [px]')
        self.assertEqual(view.axes[0].get_ylabel(), 'Distance [px]')

        self.assertEqual(view.axes[1].get_xlabel(), 'X (a.u.)')
        self.assertEqual(view.axes[1].get_ylabel(), 'Intensity (a.u.)')

        x_y = view.axes[1].lines[0].get_xydata()
        self.assertEqual(x_y.shape, (10, 2))

    def test_false_type(self):
        x = np.zeros(5)
        with self.assertRaises(TypeError):
            sidpy.viz.dataset_viz.PointCloudVisualizer(x)

    def test_false_dim(self):
        dset, x = get_spectrum()
        with self.assertRaises(TypeError):
            sidpy.viz.dataset_viz.PointCloudVisualizer(dset)
        dset, x = get_image()
        with self.assertRaises(TypeError):
            sidpy.viz.dataset_viz.PointCloudVisualizer(dset)
        dset, x = get_4d_image()
        with self.assertRaises(TypeError):
            sidpy.viz.dataset_viz.PointCloudVisualizer(dset)
        dset, x = get_spectral_image()
        with self.assertRaises(TypeError):
            sidpy.viz.dataset_viz.PointCloudVisualizer(dset)

    def test_units_button(self):
        dset, x = get_point_cloud()
        view = dset.plot()
        self.assertIsInstance(dset.view.button, ipywidgets.Dropdown)
        self.assertEqual(dset.view.button.value, 1)

        dset.view.button.value = 2
        self.assertEqual(view.axes[0].get_xlabel(), 'Distance [um]')
        self.assertEqual(view.axes[0].get_ylabel(), 'Distance [um]')

    def test_point_selection(self):
        dset, x = get_point_cloud()
        view = dset.plot()

        event = mpl.backend_bases.MouseEvent(
            name='button_press_event',
            canvas=dset.view.fig.canvas,
            x=0,  # x-coordinate of the click (adjust as needed)
            y=0,  # y-coordinate of the click (adjust as needed)
            button=1,  # button number (1 for left button)
        )
        xpos, ypos = 25, 25
        event.inaxes = dset.view.axes[0]
        event.xdata = xpos
        event.ydata = ypos
        dset.view._onclick(event)

        selected_point = dset.view.tree.query(np.array([xpos, ypos]))[1]
        spectrum_title = dset.view.axes[1].get_title()
        self.assertEqual(spectrum_title, 'point {}'.format(selected_point))
        actual = dset.view.axes[1].lines[0].get_ydata()
        expected = dset[selected_point].compute()
        self.assertTrue(np.allclose(actual, expected, equal_nan=True, rtol=1e-05, atol=1e-08))







class Test4DImageStackPlot(unittest.TestCase):

    def test_plot(self):
        dataset, data = get_4d_image()
        view = dataset.plot()
        self.assertEqual(len(view.axes), 2)

    def test_bin(self):
        dset, x = get_4d_image()
        view = dset.plot()

        dset.view.set_bin([20, 20])

        self.assertEqual(len(view.axes), 2)

        dset.view.set_bin(10)
        self.assertEqual(len(view.axes), 2)

    def test_scan_directions(self):
        dataset, data = get_4d_image()
        view = dataset.plot(scan_x=3,scan_y=2, image_4d_x=1, image_4d_y=0)
        self.assertEqual(len(view.axes), 2)

    def test_false_type(self):
        x = np.zeros(5)
        with self.assertRaises(TypeError):
            sidpy.viz.dataset_viz.FourDimImageVisualizer(x)

    def test_false_dim(self):
        dset, x = get_image()
        with self.assertRaises(TypeError):
            sidpy.viz.dataset_viz.FourDimImageVisualizer(dset)

        dset, x = get_spectral_image()
        with self.assertRaises(TypeError):
            sidpy.viz.dataset_viz.FourDimImageVisualizer(dset)

    def test_plot_complex(self):
        dataset, data = get_4d_image(dtype=complex)
        view = dataset.plot()
        self.assertEqual(len(view.axes), 3)

if __name__ == '__main__':
    unittest.main()