1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468
|
from base64 import b64encode
from dataclasses import dataclass, replace
from typing import List, Optional, Union
from cryptography import x509
from cryptography.hazmat.primitives.asymmetric import dsa, ec, rsa, utils
from cryptography.hazmat.primitives.asymmetric.padding import MGF1, PSS, PKCS1v15
from cryptography.hazmat.primitives.hmac import HMAC
from cryptography.hazmat.primitives.serialization import Encoding, load_pem_private_key
from lxml.etree import Element, SubElement, _Element
from .algorithms import (
CanonicalizationMethod,
DigestAlgorithm,
SignatureConstructionMethod,
SignatureMethod,
digest_algorithm_implementations,
)
from .exceptions import InvalidInput
from .processor import XMLSignatureProcessor
from .util import (
SigningSettings,
_remove_sig,
bits_to_bytes_unit,
ds_tag,
dsig11_tag,
ec_tag,
ensure_bytes,
iterate_pem,
long_to_bytes,
namespaces,
strip_pem_header,
)
@dataclass(frozen=True)
class SignatureReference:
"""
A container representing a signature reference (pointer to data covered by the signature). A signature can include
one or more references. The integrity of each reference is attested by including the digest (hash) of its value.
"""
URI: str
"""
The reference URI, for example ``#elementId`` to refer to an element whose Id attribute is set to ``elementId``.
"""
c14n_method: Optional[CanonicalizationMethod] = None
"""
Use this parameter to set a canonicalization method for the reference value that is distinct from that for the
signature itself.
"""
inclusive_ns_prefixes: Optional[List] = None
"""
When using exclusive XML canonicalization, use this parameter to provide a list of XML namespace prefixes whose
declarations should be preserved when canonicalizing the reference value (**InclusiveNamespaces PrefixList**).
"""
class XMLSigner(XMLSignatureProcessor):
"""
Create a new XML Signature Signer object, which can be used to hold configuration information and sign multiple
pieces of data.
:param method:
``signxml.methods.enveloped``, ``signxml.methods.enveloping``, or ``signxml.methods.detached``. See
:class:`SignatureConstructionMethod` for details.
:param signature_algorithm:
Algorithm that will be used to generate the signature. See :class:`SignatureMethod` for the list of algorithm
IDs supported.
:param digest_algorithm:
Algorithm that will be used to hash the data during signature generation. See :class:`DigestAlgorithm` for the
list of algorithm IDs supported.
:param c14n_algorithm:
Algorithm that will be used to canonicalize (serialize in a reproducible way) the XML that is signed. See
:class:`CanonicalizationMethod` for the list of algorithm IDs supported.
"""
signature_annotators: List
"""
A list of callables that will be called at signature creation time to annotate the content to be signed before
signing. You can use this to register a custom signature decorator as follows:
.. code-block:: python
def my_annotator(sig_root, signing_settings):
...
sig_root.append(my_custom_node)
signer = XMLSigner()
signer.signature_annotators.append(my_annotator)
signed = signer.sign(data, ...)
"""
def __init__(
self,
method: SignatureConstructionMethod = SignatureConstructionMethod.enveloped,
signature_algorithm: Union[SignatureMethod, str] = SignatureMethod.RSA_SHA256,
digest_algorithm: Union[DigestAlgorithm, str] = DigestAlgorithm.SHA256,
c14n_algorithm: Union[CanonicalizationMethod, str] = CanonicalizationMethod.CANONICAL_XML_1_1,
):
if method is None or method not in SignatureConstructionMethod:
raise InvalidInput(f"Unknown signature construction method {method}")
self.construction_method = method
if isinstance(signature_algorithm, str) and "#" not in signature_algorithm:
self.sign_alg = SignatureMethod.from_fragment(signature_algorithm)
else:
self.sign_alg = SignatureMethod(signature_algorithm)
if isinstance(digest_algorithm, str) and "#" not in digest_algorithm:
self.digest_alg = DigestAlgorithm.from_fragment(digest_algorithm)
else:
self.digest_alg = DigestAlgorithm(digest_algorithm)
self.check_deprecated_methods()
self.c14n_alg = CanonicalizationMethod(c14n_algorithm)
self.namespaces = dict(ds=namespaces.ds)
self._parser = None
self.signature_annotators = [self._add_key_info]
def check_deprecated_methods(self):
if "SHA1" in self.sign_alg.name or "SHA1" in self.digest_alg.name:
msg = "SHA1-based algorithms are not supported in the default configuration because they are not secure"
raise InvalidInput(msg)
def sign(
self,
data,
*,
key: Optional[Union[str, bytes, rsa.RSAPrivateKey, dsa.DSAPrivateKey, ec.EllipticCurvePrivateKey]] = None,
passphrase: Optional[bytes] = None,
cert: Optional[Union[str, List[str], List[x509.Certificate]]] = None,
reference_uri: Optional[Union[str, List[str], List[SignatureReference]]] = None,
key_name: Optional[str] = None,
key_info: Optional[_Element] = None,
id_attribute: Optional[str] = None,
always_add_key_value: bool = False,
inclusive_ns_prefixes: Optional[List[str]] = None,
signature_properties: Optional[Union[_Element, List[_Element]]] = None,
) -> _Element:
"""
Sign the data and return the root element of the resulting XML tree.
:param data: Data to sign
:type data: String, file-like object, or XML ElementTree Element API compatible object
:param key:
Key to be used for signing. When signing with a certificate or RSA/DSA/ECDSA key, this can be a string/bytes
containing a PEM-formatted key, or a :class:`cryptography.hazmat.primitives.asymmetric.rsa.RSAPrivateKey`,
:class:`cryptography.hazmat.primitives.asymmetric.dsa.DSAPrivateKey`, or
:class:`cryptography.hazmat.primitives.asymmetric.ec.EllipticCurvePrivateKey` object. When signing with a
HMAC, this should be a string containing the shared secret.
:param passphrase: Passphrase to use to decrypt the key, if any.
:param cert:
X.509 certificate to use for signing. This should be a string containing a PEM-formatted certificate, or an
array of strings or :class:`cryptography.x509.Certificate` objects containing the certificate and a chain
of intermediate certificates.
:param reference_uri:
Custom reference URI or list of reference URIs to incorporate into the signature. When ``method`` is set to
``detached`` or ``enveloped``, reference URIs are set to this value and only the referenced elements are
signed. To specify extra options specific to each reference URI, pass a list of one or more
:class:`SignatureReference` objects.
:param key_name: Add a KeyName element in the KeyInfo element that may be used by the signer to communicate a
key identifier to the recipient. Typically, KeyName contains an identifier related to the key pair used to
sign the message.
:param key_info:
A custom KeyInfo element to insert in the signature. Use this to supply ``<wsse:SecurityTokenReference>``
or other custom key references. An example value can be found here:
https://github.com/XML-Security/signxml/blob/master/test/wsse_keyinfo.xml
:param id_attribute:
Name of the attribute whose value ``URI`` refers to. By default, SignXML will search for "Id", then "ID".
:param always_add_key_value:
Write the key value to the KeyInfo element even if a X509 certificate is present. Use of this parameter
is discouraged, as it introduces an ambiguity and a security hazard. The public key used to sign the
document is already encoded in the certificate (which is in X509Data), so the verifier must either ignore
KeyValue or make sure it matches what's in the certificate. This parameter is provided for compatibility
purposes only.
:param inclusive_ns_prefixes:
Provide a list of XML namespace prefixes whose declarations should be preserved when canonicalizing the
signature (**InclusiveNamespaces PrefixList**).
To specify this value separately for reference canonicalizaition, pass a list of one or more
:class:`SignatureReference` objects as the ``reference_uri`` keyword argument, and set the
``inclusive_ns_prefixes`` attribute on those objects.
:param signature_properties:
One or more Elements that are to be included in the SignatureProperies section when using the detached
method.
:returns:
A :class:`lxml.etree._Element` object representing the root of the XML tree containing the signature and
the payload data.
To specify the location of an enveloped signature within **data**, insert a
``<ds:Signature Id="placeholder"></ds:Signature>`` element in **data** (where
"ds" is the ``http://www.w3.org/2000/09/xmldsig#`` namespace). This element will
be replaced by the generated signature, and excised when generating the digest.
"""
if id_attribute is not None:
self.id_attributes = (id_attribute,)
if isinstance(cert, (str, bytes)):
cert_chain = list(iterate_pem(cert))
if len(cert_chain) == 0:
raise InvalidInput("No PEM-encoded certificates found in string cert input data")
else:
cert_chain = cert # type:ignore[assignment]
input_references = self._preprocess_reference_uri(reference_uri)
signing_settings = SigningSettings(
key=None,
key_name=key_name,
key_info=key_info,
always_add_key_value=always_add_key_value,
cert_chain=cert_chain,
)
if key is None:
raise InvalidInput('Parameter "key" is required')
elif not self.sign_alg.name.startswith("HMAC_"):
if isinstance(key, (str, bytes)):
signing_settings.key = load_pem_private_key(ensure_bytes(key), password=passphrase)
else:
signing_settings.key = key
sig_root, doc_root, c14n_inputs, references = self._unpack(data, input_references)
if self.construction_method == SignatureConstructionMethod.detached and signature_properties is not None:
references.append(SignatureReference(URI="#prop"))
if signature_properties is not None and not isinstance(signature_properties, list):
signature_properties = [signature_properties]
signature_properties_el = self._build_signature_properties(signature_properties)
c14n_inputs.append(signature_properties_el)
signed_info_node, signature_value_node = self._build_sig(
sig_root,
references=references,
c14n_inputs=c14n_inputs,
inclusive_ns_prefixes=inclusive_ns_prefixes,
)
for signature_annotator in self.signature_annotators:
signature_annotator(sig_root, signing_settings=signing_settings)
signed_info_c14n = self._c14n(
signed_info_node, algorithm=self.c14n_alg, inclusive_ns_prefixes=inclusive_ns_prefixes
)
if self.sign_alg.name.startswith("HMAC_"):
signer = HMAC(key=key, algorithm=digest_algorithm_implementations[self.sign_alg]()) # type:ignore[arg-type]
signer.update(signed_info_c14n)
signature_value_node.text = b64encode(signer.finalize()).decode()
sig_root.append(signature_value_node)
elif any(self.sign_alg.name.startswith(i) for i in ["DSA_", "RSA_", "ECDSA_", "SHA"]):
hash_alg = digest_algorithm_implementations[self.sign_alg]()
if self.sign_alg.name.startswith("DSA_"):
signature = signing_settings.key.sign(signed_info_c14n, algorithm=hash_alg)
elif self.sign_alg.name.startswith("ECDSA_"):
signature = signing_settings.key.sign(
signed_info_c14n, signature_algorithm=ec.ECDSA(algorithm=hash_alg)
)
elif self.sign_alg.name.startswith("RSA_"):
signature = signing_settings.key.sign(signed_info_c14n, padding=PKCS1v15(), algorithm=hash_alg)
elif self.sign_alg.name.startswith("SHA"):
# See https://www.rfc-editor.org/rfc/rfc9231.html#section-2.3.10
padding = PSS(mgf=MGF1(algorithm=hash_alg), salt_length=hash_alg.digest_size)
signature = signing_settings.key.sign(signed_info_c14n, padding=padding, algorithm=hash_alg)
else:
raise NotImplementedError()
if self.sign_alg.name.startswith("DSA_") or self.sign_alg.name.startswith("ECDSA_"):
# Note: The output of the DSA and ECDSA signers is a DER-encoded ASN.1 sequence of two DER integers.
(r, s) = utils.decode_dss_signature(signature)
int_len = bits_to_bytes_unit(signing_settings.key.key_size)
signature = long_to_bytes(r, blocksize=int_len) + long_to_bytes(s, blocksize=int_len)
signature_value_node.text = b64encode(signature).decode()
else:
raise NotImplementedError()
if self.construction_method == SignatureConstructionMethod.enveloping:
for c14n_input in c14n_inputs:
doc_root.append(c14n_input)
if self.construction_method == SignatureConstructionMethod.detached and signature_properties is not None:
sig_root.append(signature_properties_el)
return doc_root if self.construction_method == SignatureConstructionMethod.enveloped else sig_root
def _preprocess_reference_uri(self, reference_uris):
if reference_uris is None:
return None
if isinstance(reference_uris, (str, bytes)):
reference_uris = [reference_uris]
references = list(
ref if isinstance(ref, SignatureReference) else SignatureReference(URI=ref) for ref in reference_uris
)
return references
def _add_key_info(self, sig_root, signing_settings: SigningSettings):
if self.sign_alg.name.startswith("HMAC_"):
return
if signing_settings.key_info is None:
key_info = SubElement(sig_root, ds_tag("KeyInfo"))
if signing_settings.key_name is not None:
keyname = SubElement(key_info, ds_tag("KeyName"))
keyname.text = signing_settings.key_name
if signing_settings.cert_chain is None or signing_settings.always_add_key_value:
self._serialize_key_value(signing_settings.key, key_info)
if signing_settings.cert_chain is not None:
assert len(signing_settings.cert_chain) > 0
x509_data = SubElement(key_info, ds_tag("X509Data"))
for cert in signing_settings.cert_chain:
x509_certificate = SubElement(x509_data, ds_tag("X509Certificate"))
if isinstance(cert, (str, bytes)):
x509_certificate.text = strip_pem_header(cert)
else:
x509_certificate.text = strip_pem_header(cert.public_bytes(Encoding.PEM))
else:
sig_root.append(signing_settings.key_info)
def _get_c14n_inputs_from_references(self, doc_root, references: List[SignatureReference]):
c14n_inputs, new_references = [], []
for reference in references:
uri = reference.URI if reference.URI.startswith("#") else "#" + reference.URI
c14n_inputs.append(self.get_root(self._resolve_reference(doc_root, {"URI": uri})))
new_references.append(replace(reference, URI=uri))
return c14n_inputs, new_references
def _unpack(self, data, references: List[SignatureReference]):
sig_root = Element(ds_tag("Signature"), nsmap=self.namespaces)
if self.construction_method == SignatureConstructionMethod.enveloped:
if isinstance(data, (str, bytes)):
raise InvalidInput("When using enveloped signature, **data** must be an XML element")
doc_root = self.get_root(data)
c14n_inputs = [self.get_root(data)]
if references is not None:
# Only sign the referenced element(s)
c14n_inputs, references = self._get_c14n_inputs_from_references(doc_root, references)
signature_placeholders = self._findall(doc_root, "Signature[@Id='placeholder']", xpath=".//")
if len(signature_placeholders) == 0:
doc_root.append(sig_root)
elif len(signature_placeholders) == 1:
sig_root = signature_placeholders[0]
del sig_root.attrib["Id"]
for c14n_input in c14n_inputs:
placeholders = self._findall(c14n_input, "Signature[@Id='placeholder']", xpath=".//")
if placeholders:
assert len(placeholders) == 1
_remove_sig(placeholders[0])
else:
raise InvalidInput("Enveloped signature input contains more than one placeholder")
if references is None:
# Set default reference URIs based on signed data ID attribute values
references = []
for c14n_input in c14n_inputs:
payload_id = c14n_input.get("Id", c14n_input.get("ID"))
uri = "#{}".format(payload_id) if payload_id is not None else ""
references.append(SignatureReference(URI=uri))
elif self.construction_method == SignatureConstructionMethod.detached:
doc_root = self.get_root(data)
if references is None:
uri = "#{}".format(data.get("Id", data.get("ID", "object")))
references = [SignatureReference(URI=uri)]
c14n_inputs = [self.get_root(data)]
try:
c14n_inputs, references = self._get_c14n_inputs_from_references(doc_root, references)
except InvalidInput: # Dummy reference URI
c14n_inputs = [self.get_root(data)]
elif self.construction_method == SignatureConstructionMethod.enveloping:
doc_root = sig_root
c14n_inputs = [Element(ds_tag("Object"), nsmap=self.namespaces, Id="object")]
if isinstance(data, (str, bytes)):
c14n_inputs[0].text = data
else:
c14n_inputs[0].append(self.get_root(data))
references = [SignatureReference(URI="#object")]
return sig_root, doc_root, c14n_inputs, references
def _build_transforms_for_reference(self, *, transforms_node: _Element, reference: SignatureReference):
assert reference.c14n_method is not None
if self.construction_method == SignatureConstructionMethod.enveloped:
SubElement(transforms_node, ds_tag("Transform"), Algorithm=SignatureConstructionMethod.enveloped.value)
SubElement(transforms_node, ds_tag("Transform"), Algorithm=reference.c14n_method.value)
else:
c14n_xform = SubElement(
transforms_node,
ds_tag("Transform"),
Algorithm=reference.c14n_method.value,
)
if reference.inclusive_ns_prefixes:
SubElement(
c14n_xform, ec_tag("InclusiveNamespaces"), PrefixList=" ".join(reference.inclusive_ns_prefixes)
)
def _build_sig(self, sig_root, references, c14n_inputs, inclusive_ns_prefixes):
signed_info = SubElement(sig_root, ds_tag("SignedInfo"), nsmap=self.namespaces)
sig_c14n_method = SubElement(signed_info, ds_tag("CanonicalizationMethod"), Algorithm=self.c14n_alg.value)
if inclusive_ns_prefixes:
SubElement(sig_c14n_method, ec_tag("InclusiveNamespaces"), PrefixList=" ".join(inclusive_ns_prefixes))
SubElement(signed_info, ds_tag("SignatureMethod"), Algorithm=self.sign_alg.value)
for i, reference in enumerate(references):
if reference.c14n_method is None:
reference = replace(reference, c14n_method=self.c14n_alg)
if reference.inclusive_ns_prefixes is None:
reference = replace(reference, inclusive_ns_prefixes=inclusive_ns_prefixes)
reference_node = SubElement(signed_info, ds_tag("Reference"), URI=reference.URI)
transforms = SubElement(reference_node, ds_tag("Transforms"))
self._build_transforms_for_reference(transforms_node=transforms, reference=reference)
SubElement(reference_node, ds_tag("DigestMethod"), Algorithm=self.digest_alg.value)
digest_value = SubElement(reference_node, ds_tag("DigestValue"))
payload_c14n = self._c14n(
c14n_inputs[i], algorithm=reference.c14n_method, inclusive_ns_prefixes=reference.inclusive_ns_prefixes
)
digest = self._get_digest(payload_c14n, algorithm=self.digest_alg)
digest_value.text = b64encode(digest).decode()
signature_value = SubElement(sig_root, ds_tag("SignatureValue"))
return signed_info, signature_value
def _build_signature_properties(self, signature_properties):
# FIXME: make this use the annotator API
obj = Element(ds_tag("Object"), attrib={"Id": "prop"}, nsmap=self.namespaces)
signature_properties_el = Element(ds_tag("SignatureProperties"))
for i, el in enumerate(signature_properties):
signature_property = Element(
ds_tag("SignatureProperty"),
attrib={
"Id": el.attrib.pop("Id", f"sigprop{i}"),
"Target": el.attrib.pop("Target", f"#sigproptarget{i}"),
},
)
signature_property.append(el)
signature_properties_el.append(signature_property)
obj.append(signature_properties_el)
return obj
def _serialize_key_value(self, key, key_info_node):
"""
Add the public components of the key to the signature (see https://www.w3.org/TR/xmldsig-core2/#sec-KeyValue).
"""
key_value = SubElement(key_info_node, ds_tag("KeyValue"))
if self.sign_alg.name.startswith("RSA_") or self.sign_alg.name.startswith("SHA"):
rsa_key_value = SubElement(key_value, ds_tag("RSAKeyValue"))
modulus = SubElement(rsa_key_value, ds_tag("Modulus"))
modulus.text = b64encode(long_to_bytes(key.public_key().public_numbers().n)).decode()
exponent = SubElement(rsa_key_value, ds_tag("Exponent"))
exponent.text = b64encode(long_to_bytes(key.public_key().public_numbers().e)).decode()
elif self.sign_alg.name.startswith("DSA_"):
dsa_key_value = SubElement(key_value, ds_tag("DSAKeyValue"))
for field in "p", "q", "g", "y":
e = SubElement(dsa_key_value, ds_tag(field.upper()))
if field == "y":
key_params = key.public_key().public_numbers()
else:
key_params = key.parameters().parameter_numbers()
e.text = b64encode(long_to_bytes(getattr(key_params, field))).decode()
elif self.sign_alg.name.startswith("ECDSA_"):
ec_key_value = SubElement(key_value, dsig11_tag("ECKeyValue"), nsmap=dict(dsig11=namespaces.dsig11))
named_curve = SubElement( # noqa:F841
ec_key_value, dsig11_tag("NamedCurve"), URI=self.known_ecdsa_curve_oids[key.curve.name]
)
public_key = SubElement(ec_key_value, dsig11_tag("PublicKey"))
x = key.public_key().public_numbers().x
y = key.public_key().public_numbers().y
public_key.text = b64encode(long_to_bytes(4) + long_to_bytes(x) + long_to_bytes(y)).decode()
|