1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298
|
import sys
import time
import pytest
from simple_pid import PID
def test_zero():
pid = PID(1, 1, 1, setpoint=0)
assert pid(0) == 0
def test_P():
pid = PID(1, 0, 0, setpoint=10, sample_time=None)
assert pid(0) == 10
assert pid(5) == 5
assert pid(-5) == 15
def test_P_negative_setpoint():
pid = PID(1, 0, 0, setpoint=-10, sample_time=None)
assert pid(0) == -10
assert pid(5) == -15
assert pid(-5) == -5
assert pid(-15) == 5
def test_I():
pid = PID(0, 10, 0, setpoint=10, sample_time=0.1)
time.sleep(0.1)
assert round(pid(0)) == 10.0 # Make sure we are close to expected value
time.sleep(0.1)
assert round(pid(0)) == 20.0
def test_I_negative_setpoint():
pid = PID(0, 10, 0, setpoint=-10, sample_time=0.1)
time.sleep(0.1)
assert round(pid(0)) == -10.0
time.sleep(0.1)
assert round(pid(0)) == -20.0
def test_D():
pid = PID(0, 0, 0.1, setpoint=10, sample_time=0.1)
# Should not compute derivative when there is no previous input (don't assume 0 as first input)
assert pid(0) == 0
time.sleep(0.1)
# Derivative is 0 when input is the same
assert pid(0) == 0
assert pid(0) == 0
time.sleep(0.1)
assert round(pid(5)) == -5
time.sleep(0.1)
assert round(pid(15)) == -10
def test_D_negative_setpoint():
pid = PID(0, 0, 0.1, setpoint=-10, sample_time=0.1)
time.sleep(0.1)
# Should not compute derivative when there is no previous input (don't assume 0 as first input)
assert pid(0) == 0
time.sleep(0.1)
# Derivative is 0 when input is the same
assert pid(0) == 0
assert pid(0) == 0
time.sleep(0.1)
assert round(pid(5)) == -5
time.sleep(0.1)
assert round(pid(-5)) == 10
time.sleep(0.1)
assert round(pid(-15)) == 10
def test_desired_state():
pid = PID(10, 5, 2, setpoint=10, sample_time=None)
# Should not make any adjustment when setpoint is achieved
assert pid(10) == 0
def test_output_limits():
pid = PID(100, 20, 40, setpoint=10, output_limits=(0, 100), sample_time=None)
time.sleep(0.1)
assert 0 <= pid(0) <= 100
time.sleep(0.1)
assert 0 <= pid(-100) <= 100
def test_sample_time():
pid = PID(setpoint=10, sample_time=10)
control = pid(0)
# Last value should be returned again
assert pid(100) == control
def test_time_fn():
pid = PID()
# Default time function should be time.monotonic, or time.time in older versions of Python
if sys.version_info < (3, 3):
assert pid.time_fn == time.time
else:
assert pid.time_fn == time.monotonic
i = 0
def time_function():
nonlocal i
i += 1
return i
pid.time_fn = time_function
for j in range(1, 5):
# Call pid a few times and verify that the time function above was used
pid(0)
assert pid._last_time == j
def test_time_fn_notime():
# Deliberately prevent the time module from being imported
import sys
sys.modules['time'] = None
with pytest.raises(ModuleNotFoundError):
# Must specify a time_fn if time is not available
_ = PID()
# We can still create a PID if we specify our own time_fn
_ = PID(time_fn=lambda: 0)
# Restore time module so the following tests can use it
sys.modules['time'] = time
def test_starting_output():
# If the PID is started with a system already at the setpoint, we can give it our best guess
# for which output it should start at
pid = PID(1, 0, 0, setpoint=10, starting_output=25)
assert pid(10) == 25
def test_auto_mode():
pid = PID(1, 0, 0, setpoint=10, sample_time=None)
# Ensure updates happen by default
assert pid(0) == 10
assert pid(5) == 5
# Ensure no new updates happen when auto mode is off
pid.auto_mode = False
assert pid(1) == 5
assert pid(7) == 5
# Should reset when reactivating
pid.auto_mode = True
assert pid._last_input is None
assert pid._integral == 0
assert pid(8) == 2
# Last update time should be reset to avoid huge dt
pid.auto_mode = False
time.sleep(1)
pid.auto_mode = True
assert pid.time_fn() - pid._last_time < 0.01
# Check that setting last_output works
pid.auto_mode = False
pid.set_auto_mode(True, last_output=10)
assert pid._integral == 10
def test_separate_components():
pid = PID(1, 0, 1, setpoint=10, sample_time=0.1)
assert pid(0) == 10
assert pid.components == (10, 0, 0)
time.sleep(0.1)
assert round(pid(5)) == -45
assert tuple(round(term) for term in pid.components) == (5, 0, -50)
def test_clamp():
from simple_pid.pid import _clamp
assert _clamp(None, (None, None)) is None
assert _clamp(None, (-10, 10)) is None
# No limits
assert _clamp(0, (None, None)) == 0
assert _clamp(100, (None, None)) == 100
assert _clamp(-100, (None, None)) == -100
# Only lower limit
assert _clamp(0, (0, None)) == 0
assert _clamp(100, (0, None)) == 100
assert _clamp(-100, (0, None)) == 0
# Only upper limit
assert _clamp(0, (None, 0)) == 0
assert _clamp(100, (None, 0)) == 0
assert _clamp(-100, (None, 0)) == -100
# Both limits
assert _clamp(0, (-10, 10)) == 0
assert _clamp(-10, (-10, 10)) == -10
assert _clamp(10, (-10, 10)) == 10
assert _clamp(-100, (-10, 10)) == -10
assert _clamp(100, (-10, 10)) == 10
def test_repr():
pid = PID(1, 2, 3, setpoint=10)
new_pid = eval(repr(pid))
assert new_pid.Kp == 1
assert new_pid.Ki == 2
assert new_pid.Kd == 3
assert new_pid.setpoint == 10
def test_converge_system():
pid = PID(1, 0.8, 0.04, setpoint=5, output_limits=(-5, 5))
pv = 0 # Process variable
def update_system(c, dt):
# Calculate a simple system model
return pv + c * dt - 1 * dt
start_time = time.time()
last_time = start_time
while time.time() - start_time < 120:
c = pid(pv)
pv = update_system(c, time.time() - last_time)
last_time = time.time()
# Check if system has converged
assert abs(pv - 5) < 0.1
def test_converge_diff_on_error():
pid = PID(1, 0.8, 0.04, setpoint=5, output_limits=(-5, 5), differential_on_measurement=False)
pv = 0 # Process variable
def update_system(c, dt):
# Calculate a simple system model
return pv + c * dt - 1 * dt
start_time = time.time()
last_time = start_time
while time.time() - start_time < 12:
c = pid(pv)
pv = update_system(c, time.time() - last_time)
last_time = time.time()
# Check if system has converged
assert abs(pv - 5) < 0.1
def test_error_map():
import math
def pi_clip(angle):
"""Transform the angle value to a [-pi, pi) range."""
if angle > 0:
if angle > math.pi:
return angle - 2 * math.pi
else:
if angle < -math.pi:
return angle + 2 * math.pi
return angle
sp = 0.0 # Setpoint
pv = 5.0 # Process variable
pid = PID(1, 0, 0, setpoint=0.0, sample_time=0.1, error_map=pi_clip)
# Check if error value is mapped by the function
assert pid(pv) == pi_clip(sp - pv)
|