1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
|
"""
Simplehound core.
"""
import base64
import json
from typing import Dict, List, Tuple
import requests
## Const
HTTP_OK = 200
BAD_API_KEY = 401
## API urls
URL_DETECTIONS_BASE = "https://{}.sighthoundapi.com/v1/detections"
URL_RECOGNITIONS_BASE = "https://{}.sighthoundapi.com/v1/recognition?objectType="
ALLOWED_MODES = ["dev", "prod"]
ALLOWED_RECOGNITION_OPTIONS = ["licenseplate", "vehicle", "vehicle,licenseplate"]
DETECTIONS_PARAMS = (
("type", "all"),
("faceOption", "gender,age"),
)
def bbox_to_tf_style(bbox: Dict, img_width: int, img_height: int) -> Tuple:
"""
Convert Sighthound bounding box to tensorflow box style.
In Tensorflow the bounding box is defined by the tuple (y_min, x_min, y_max, x_max)
where the coordinates are floats in the range [0.0, 1.0] and
relative to the width and height of the image.
For example, if an image is 100 x 200 pixels (height x width) and the bounding
box is `(0.1, 0.2, 0.5, 0.9)`, the upper-left and bottom-right coordinates of
the bounding box will be `(40, 10)` to `(180, 50)` (in (x,y) coordinates).
"""
decimals = 5
x_min = round(bbox["x"] / img_width, decimals)
x_max = round((bbox["x"] + bbox["width"]) / img_width, decimals)
y_min = round(bbox["y"] / img_height, decimals)
y_max = round((bbox["y"] + bbox["height"]) / img_height, decimals)
return (y_min, x_min, y_max, x_max)
def bboxvert_to_tf_style(bbox: Dict, img_width: int, img_height: int) -> Tuple:
"""
Convert Sighthound bounding box vertices, returned from the recognition API, to tensorflow box style.
In Tensorflow the bounding box is defined by the tuple (y_min, x_min, y_max, x_max)
where the coordinates are floats in the range [0.0, 1.0] and
relative to the width and height of the image.
For example, if an image is 100 x 200 pixels (height x width) and the bounding
box is `(0.1, 0.2, 0.5, 0.9)`, the upper-left and bottom-right coordinates of
the bounding box will be `(40, 10)` to `(180, 50)` (in (x,y) coordinates).
"""
decimals = 5
xs = [d["x"] for d in bbox["vertices"]]
ys = [d["y"] for d in bbox["vertices"]]
x_min = round(min(xs) / img_width, decimals)
x_max = round(max(xs) / img_width, decimals)
y_min = round(min(ys) / img_height, decimals)
y_max = round(max(ys) / img_height, decimals)
return (y_min, x_min, y_max, x_max)
def encode_image(image: bytes) -> str:
"""base64 encode an image."""
return base64.b64encode(image).decode("ascii")
def get_faces(detections: Dict) -> List[Dict]:
"""
Get the list of the faces.
"""
faces = []
for obj in detections["objects"]:
if not obj["type"] == "face":
continue
face = {}
face["gender"] = obj["attributes"]["gender"]
face["age"] = obj["attributes"]["age"]
face["boundingBox"] = obj["boundingBox"]
faces.append(face)
return faces
def get_people(detections: Dict) -> List[Dict]:
"""
Get the list of the people.
"""
people = []
for obj in detections["objects"]:
if not obj["type"] == "person":
continue
person = {}
person["boundingBox"] = obj["boundingBox"]
people.append(person)
return people
def get_metadata(detections: Dict) -> Dict:
"""
Get the detection metadata.
"""
metadata = {}
metadata["image_width"] = detections["image"]["width"]
metadata["image_height"] = detections["image"]["height"]
metadata["requestId"] = detections["requestId"]
return metadata
def get_license_plates(recognitions: Dict) -> List[Dict]:
"""
Get the list of recognized license plates.
"""
plates = []
for obj in recognitions["objects"]:
if not obj["objectType"] == "licenseplate":
continue
annotation = obj["licenseplateAnnotation"]
attributes = annotation["attributes"]["system"]
plate = {
"boundingBox": annotation["bounding"],
"string": attributes["string"],
"region": attributes["region"],
}
plates.append(plate)
return plates
def get_vehicles(detections: Dict) -> List[Dict]:
"""
Get the list of the vehicles.
"""
vehicles = []
for obj in detections["objects"]:
if not obj["objectType"] == "vehicle":
continue
vehicle = {}
vehicle["boundingBox"] = obj["vehicleAnnotation"]["bounding"]
vehicle["recognitionConfidence"] = obj["vehicleAnnotation"][
"recognitionConfidence"
]
attributes = obj["vehicleAnnotation"]["attributes"]["system"]
vehicle["vehicleType"] = attributes["vehicleType"]
vehicle["make"] = attributes["make"]["name"]
vehicle["model"] = attributes["model"]["name"]
vehicle["color"] = attributes["color"]["name"]
if "licenseplate" in obj["vehicleAnnotation"]:
vehicle["licenseplate"] = obj["vehicleAnnotation"]["licenseplate"][
"attributes"
]["system"]["string"]["name"]
vehicle["region"] = obj["vehicleAnnotation"]["licenseplate"]["attributes"][
"system"
]["region"]["name"]
else:
vehicle["licenseplate"] = "unknown"
vehicle["region"] = "unknown"
vehicles.append(vehicle)
return vehicles
def _sighthound_call(image_encoded: str, api_key: str, url: str, params=()) -> Dict:
headers = {"Content-type": "application/json", "X-Access-Token": api_key}
response = requests.post(
url,
headers=headers,
params=params,
data=json.dumps({"image": image_encoded}),
)
if response.status_code == HTTP_OK:
return response.json()
elif response.status_code == BAD_API_KEY:
raise SimplehoundException(f"Bad API key for Sighthound")
def run_detection(image_encoded: str, api_key: str, url_detections: str) -> Dict:
"""Post an image to Sighthound detection API."""
return _sighthound_call(image_encoded, api_key, url_detections, DETECTIONS_PARAMS)
def run_recognition(
image_encoded: str, api_key: str, url_recognitions: str, object_type: str
) -> Dict:
"""Post an image to Sighthound recognition API."""
return _sighthound_call(image_encoded, api_key, url_recognitions + object_type)
class SimplehoundException(Exception):
pass
class cloud:
"""Work with Sighthound cloud."""
def __init__(self, api_key: str, mode: str = "dev"):
if not mode in ALLOWED_MODES:
raise SimplehoundException(
f"Mode {mode} is not allowed, must be dev or prod"
)
self._api_key = api_key
self._url_detections = URL_DETECTIONS_BASE.format(mode)
self._url_recognitions = URL_RECOGNITIONS_BASE.format(mode)
def detect(self, image: bytes) -> Dict:
"""Run detection on an image (bytes)."""
return run_detection(encode_image(image), self._api_key, self._url_detections)
def recognize(self, image: bytes, object_type: str) -> Dict:
"""Run recognition on an image (bytes)."""
if not object_type in ALLOWED_RECOGNITION_OPTIONS:
raise SimplehoundException(f"object_type {object_type} is not valid")
return run_recognition(
encode_image(image), self._api_key, self._url_recognitions, object_type
)
|