File: TheBankOO.html

package info (click to toggle)
python-simpy 2.3.1-1
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd, wheezy
  • size: 17,300 kB
  • ctags: 2,568
  • sloc: python: 11,172; makefile: 145
file content (1855 lines) | stat: -rw-r--r-- 145,405 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855


<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
  "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">


<html xmlns="http://www.w3.org/1999/xhtml">
  <head>
    <meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
    
    <title>The Bank (Object Oriented version) &mdash; SimPy 2.3.1 documentation</title>
    
    <link rel="stylesheet" href="../_static/default.css" type="text/css" />
    <link rel="stylesheet" href="../_static/pygments.css" type="text/css" />
    
    <script type="text/javascript">
      var DOCUMENTATION_OPTIONS = {
        URL_ROOT:    '../',
        VERSION:     '2.3.1',
        COLLAPSE_INDEX: false,
        FILE_SUFFIX: '.html',
        HAS_SOURCE:  true
      };
    </script>
    <script type="text/javascript" src="../_static/jquery.js"></script>
    <script type="text/javascript" src="../_static/underscore.js"></script>
    <script type="text/javascript" src="../_static/doctools.js"></script>
    <link rel="top" title="SimPy 2.3.1 documentation" href="../index.html" />
    <link rel="up" title="SimPy Tutorials" href="../SimPy_Tutorials.html" />
    <link rel="next" title="The Bank Tutorial (OO API) Part 2: More examples of SimPy Simulation" href="TheBank2OO.html" />
    <link rel="prev" title="Tutorial: An Object Oriented Approach to Using SimPy" href="OO_Approach.html" /> 
  </head>
  <body>
    <div class="related">
      <h3>Navigation</h3>
      <ul>
        <li class="right" style="margin-right: 10px">
          <a href="../genindex.html" title="General Index"
             accesskey="I">index</a></li>
        <li class="right" >
          <a href="TheBank2OO.html" title="The Bank Tutorial (OO API) Part 2: More examples of SimPy Simulation"
             accesskey="N">next</a> |</li>
        <li class="right" >
          <a href="OO_Approach.html" title="Tutorial: An Object Oriented Approach to Using SimPy"
             accesskey="P">previous</a> |</li>
        <li><a href="../index.html">SimPy 2.3.1 documentation</a> &raquo;</li>
          <li><a href="../SimPy_Tutorials.html" accesskey="U">SimPy Tutorials</a> &raquo;</li> 
      </ul>
    </div>  

    <div class="document">
      <div class="documentwrapper">
        <div class="bodywrapper">
          <div class="body">
            
  <div class="section" id="the-bank-object-oriented-version">
<h1>The Bank (Object Oriented version)<a class="headerlink" href="#the-bank-object-oriented-version" title="Permalink to this headline">¶</a></h1>
<span class="target" id="index-0"></span><div class="section" id="introduction">
<h2>Introduction<a class="headerlink" href="#introduction" title="Permalink to this headline">¶</a></h2>
<p><a class="reference external" href="http://simpy.sourceforge.net/">SimPy</a> is used to develop a simple simulation of a bank with a
number of tellers.  This Python package provides <em>Processes</em> to model
active components such as messages, customers, trucks, and planes. It
has three classes to model facilities where congestion might occur:
<em>Resources</em> for ordinary queues, <em>Levels</em> for the supply of quantities
of material, and <em>Stores</em> for collections of individual items. Only
examples of <em>Resources</em> are described here. It also provides
<em>Monitors</em> and <em>Tallys</em> to record data like queue lengths and delay
times and to calculate simple averages.  It uses the standard Python
random package to generate random numbers.</p>
<p>Starting with SimPy 2.0 an object-oriented programmer&#8217;s interface was
added to the package and it is this version that is described here.
It is quite compatible with the procedural approach. The object-oriented
interface, however, can support the process of developing and extending a
simulation model better than the procedural approach.</p>
<p>SimPy can be obtained from: <a class="reference external" href="http://sourceforge.net/projects/simpy">http://sourceforge.net/projects/simpy</a>.
This tutorial is best read with the SimPy Manual and CheatsheetOO at
your side for reference.</p>
<p>Before attempting to use SimPy you should be familiar with the <a class="reference external" href="http://www.Python.org">Python</a>
language. In particular you should be able to use <em>classes</em>. Python is
free and available for most machine types. You can find out more about
it at the <a class="reference external" href="http://www.Python.org">Python web site</a>.  SimPy is compatible with Python version
2.3 and later.</p>
</div>
<div class="section" id="a-single-customer">
<h2>A  single Customer<a class="headerlink" href="#a-single-customer" title="Permalink to this headline">¶</a></h2>
<p>In this tutorial we model a simple bank with customers arriving at
random. We develop the model step-by-step, starting out simply, and
producing a running program at each stage. The programs we develop are
available without line numbers and ready to go, in the
<tt class="docutils literal"><span class="pre">bankprograms_OO</span></tt> directory. Please copy them, run them and improve
them - and in the tradition of open-source software suggest your
modifications to the SimPy users list. Object-orented versions of all
the models are included in the same directory.</p>
<p>A simulation should always be developed to answer a specific question;
in these models we investigate how changing the number of bank servers
or tellers might affect the waiting time for customers.</p>
<div class="section" id="a-customer-arriving-at-a-fixed-time">
<span id="index-1"></span><h3>A Customer arriving at a fixed time<a class="headerlink" href="#a-customer-arriving-at-a-fixed-time" title="Permalink to this headline">¶</a></h3>
<p>We first model a single customer who arrives at the bank for a visit,
looks around at the decor for a time and then leaves.  There is no
queueing. First we will assume his arrival time and the time he spends
in the bank are fixed.</p>
<p>Examine the following listing which is a complete runnable Python
script, except for the line numbers.  We use comments to divide the
script up into sections. This makes for clarity later when the
programs get more complicated.  Line 1 is a normal Python
documentation string; line 2 makes available the SimPy constructs
needed for this model: the <tt class="docutils literal"><span class="pre">Simulation</span></tt> class, the <tt class="docutils literal"><span class="pre">Process</span></tt> class,
and the <tt class="docutils literal"><span class="pre">hold</span></tt> verb.</p>
<p>We define a <tt class="docutils literal"><span class="pre">Customer</span></tt> class derived from the SimPy <tt class="docutils literal"><span class="pre">Process</span></tt>
class. We create a <tt class="docutils literal"><span class="pre">Customer</span></tt> object, <tt class="docutils literal"><span class="pre">c</span></tt> who arrives at the bank
at simulation time <tt class="docutils literal"><span class="pre">5.0</span></tt> and leaves after a fixed time of <tt class="docutils literal"><span class="pre">10.0</span></tt>
minutes. The <tt class="docutils literal"><span class="pre">Customer</span></tt> class definition, lines 5-12, defines our
customer class and has the required generator method (called
<tt class="docutils literal"><span class="pre">visit</span></tt>) (line 9) having a <tt class="docutils literal"><span class="pre">yield</span></tt> statement (line
11)). Such a method is called a Process Execution Method (PEM) in
SimPy.</p>
<p>The customer&#8217;s <tt class="docutils literal"><span class="pre">visit</span></tt> PEM, lines 9-12, models his
activities.  When he arrives (it will turn out to be a &#8216;he&#8217; in this
model), he will print out the simulation time, <tt class="docutils literal"><span class="pre">self.sim.now()</span></tt>,
and his name (line 10). <tt class="docutils literal"><span class="pre">self.sim</span></tt> is a reference to the <tt class="docutils literal"><span class="pre">BankModel</span></tt>
simulation object where this customer exists. Every <tt class="docutils literal"><span class="pre">Process</span></tt> instance
is linked to the simulation in which it is created by assigning to
its <tt class="docutils literal"><span class="pre">sim</span></tt> parameter when it is created (see line 19).
The method <tt class="docutils literal"><span class="pre">now()</span></tt> can be used at any
time in the simulation to find the current simulation time though it cannot be
changed by the programmer. The customer&#8217;s name will be set when the
customer is created later in the script (line 19).</p>
<p>He then stays in the bank for a fixed simulation time <tt class="docutils literal"><span class="pre">timeInBank</span></tt>
(line 11).  This is achieved by the <tt class="docutils literal"><span class="pre">yield</span> <span class="pre">hold,self,timeInBank</span></tt> statement.
This is the first of the special simulation commands that <tt class="docutils literal"><span class="pre">SimPy</span></tt> offers.</p>
<p>After a simulation time of <tt class="docutils literal"><span class="pre">timeInBank</span></tt>, the program&#8217;s execution
returns to the line after the <tt class="docutils literal"><span class="pre">yield</span></tt> statement, line 12. The
customer then prints out the current simulation time and his
name. This completes the declaration of the <tt class="docutils literal"><span class="pre">Customer</span></tt> class.</p>
<p>Though we do not do it here, it is also possible to define an
<tt class="docutils literal"><span class="pre">__init__()</span></tt> method for a <tt class="docutils literal"><span class="pre">Process</span></tt> if you need to give the
customer any attributes.  Bear in mind that such an <tt class="docutils literal"><span class="pre">__init__</span></tt>
method must first call <tt class="docutils literal"><span class="pre">Process.__init__(self)</span></tt> and can then
initialize any instance variables needed.</p>
<p>Lines 6 to 21 define a class <tt class="docutils literal"><span class="pre">BankModel</span></tt>, composing a model of a bank from
the <tt class="docutils literal"><span class="pre">Simulation</span></tt> class, a <tt class="docutils literal"><span class="pre">Customer</span></tt> class and the global experiment data.
The definition <tt class="docutils literal"><span class="pre">class</span> <span class="pre">BankModel(Simulation)</span></tt> gives an instance of a
<tt class="docutils literal"><span class="pre">BankModel</span></tt> all the attributes of class <tt class="docutils literal"><span class="pre">Simulation</span></tt>. (In OO terms,
<tt class="docutils literal"><span class="pre">BankModel</span></tt> <em>inherits</em> from <tt class="docutils literal"><span class="pre">Simulation</span></tt>.) Any instance of <tt class="docutils literal"><span class="pre">BankModel</span></tt>
<em>is</em> a <tt class="docutils literal"><span class="pre">Simulation</span></tt> instance. This gives a <tt class="docutils literal"><span class="pre">BankModel</span></tt> its own event list
and thus its own time axis. Also, it allows a <tt class="docutils literal"><span class="pre">BankModel</span></tt> instance to
activate processes and to start the execution of a simulation on its time axis.</p>
<p>Lines 17 to 21 define a <tt class="docutils literal"><span class="pre">run</span></tt> method; when called, it results in
the execution of a <tt class="docutils literal"><span class="pre">BankModel</span></tt> instance, i.e. the performance of
a simulation experiment. Line 18 initializes this
simulation, i.e. it creates a new event list. L.19 creates a <tt class="docutils literal"><span class="pre">Customer</span></tt>
object. The parameter assignment <tt class="docutils literal"><span class="pre">sim</span> <span class="pre">=</span> <span class="pre">self</span></tt> ties the customer
instance to this and only this simulation. The customer does not exist
outside this simulation. L.20 activates the customer&#8217;s <tt class="docutils literal"><span class="pre">visit</span></tt> process (PEM).
Finally the call of <tt class="docutils literal"><span class="pre">simulate(until=maxTime)</span></tt> in line 24
starts the simulation. It will run until the simulation time is
<tt class="docutils literal"><span class="pre">maxTime</span></tt> unless stopped beforehand either by the
<tt class="docutils literal"><span class="pre">stopSimulation()</span></tt> command or by running out of events to execute
(as will happen here). <tt class="docutils literal"><span class="pre">maxTime</span></tt> was set to <tt class="docutils literal"><span class="pre">100.0</span></tt> in line
25.</p>
<div class="admonition note">
<p class="first admonition-title">Note</p>
<p class="last">If model classes like the``BankModel`` are to be given any other attributes, they
must have an <tt class="docutils literal"><span class="pre">__init__</span></tt> method in which these attributes are assigned
with the syntax <tt class="docutils literal"><span class="pre">self.attrib1</span> <span class="pre">=</span> <span class="pre">.</span> <span class="pre">.</span> <span class="pre">.</span></tt>. Such an <tt class="docutils literal"><span class="pre">__init__</span></tt>
method must first call <tt class="docutils literal"><span class="pre">Simulation.__init__(self)</span></tt> to also initialize the
<tt class="docutils literal"><span class="pre">Simulation</span></tt> class from which the model inherits.</p>
</div>
<p>The simulation model is executed by line 32. <tt class="docutils literal"><span class="pre">BankModel()</span></tt> constructs the
model, and <tt class="docutils literal"><span class="pre">.run()</span></tt> executes it. This is just a short form of:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="n">bM</span> <span class="o">=</span> <span class="n">BankModel</span><span class="p">()</span>
<span class="n">bM</span><span class="o">.</span><span class="n">run</span><span class="p">()</span>
</pre></div>
</div>
<span class="target" id="index-2"></span><div class="highlight-python"><table class="highlighttable"><tr><td class="linenos"><div class="linenodiv"><pre> 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32</pre></div></td><td class="code"><div class="highlight"><pre><span class="sd">&quot;&quot;&quot; bank01_OO: The single non-random Customer &quot;&quot;&quot;</span>
<span class="kn">from</span> <span class="nn">SimPy.Simulation</span> <span class="kn">import</span> <span class="n">Simulation</span><span class="p">,</span> <span class="n">Process</span><span class="p">,</span> <span class="n">hold</span>


<span class="c">## Model components -----------------------------</span>
<span class="k">class</span> <span class="nc">Customer</span><span class="p">(</span><span class="n">Process</span><span class="p">):</span>
    <span class="sd">&quot;&quot;&quot; Customer arrives, looks around and leaves &quot;&quot;&quot;</span>

    <span class="k">def</span> <span class="nf">visit</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">timeInBank</span><span class="p">):</span>
        <span class="k">print</span><span class="p">(</span><span class="s">&quot;</span><span class="si">%2.1f</span><span class="s"> </span><span class="si">%s</span><span class="s">  Here I am&quot;</span> <span class="o">%</span> <span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">sim</span><span class="o">.</span><span class="n">now</span><span class="p">(),</span> <span class="bp">self</span><span class="o">.</span><span class="n">name</span><span class="p">))</span>
        <span class="k">yield</span> <span class="n">hold</span><span class="p">,</span> <span class="bp">self</span><span class="p">,</span> <span class="n">timeInBank</span>
        <span class="k">print</span><span class="p">(</span><span class="s">&quot;</span><span class="si">%2.1f</span><span class="s"> </span><span class="si">%s</span><span class="s">  I must leave&quot;</span> <span class="o">%</span> <span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">sim</span><span class="o">.</span><span class="n">now</span><span class="p">(),</span> <span class="bp">self</span><span class="o">.</span><span class="n">name</span><span class="p">))</span>


<span class="c">## Model ----------------------------------------</span>
<span class="k">class</span> <span class="nc">BankModel</span><span class="p">(</span><span class="n">Simulation</span><span class="p">):</span>
    <span class="k">def</span> <span class="nf">run</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
        <span class="sd">&quot;&quot;&quot; PEM &quot;&quot;&quot;</span>
        <span class="n">c</span> <span class="o">=</span> <span class="n">Customer</span><span class="p">(</span><span class="n">name</span><span class="o">=</span><span class="s">&quot;Klaus&quot;</span><span class="p">,</span> <span class="n">sim</span><span class="o">=</span><span class="bp">self</span><span class="p">)</span>
        <span class="bp">self</span><span class="o">.</span><span class="n">activate</span><span class="p">(</span><span class="n">c</span><span class="p">,</span> <span class="n">c</span><span class="o">.</span><span class="n">visit</span><span class="p">(</span><span class="n">timeInBank</span><span class="p">),</span> <span class="n">at</span><span class="o">=</span><span class="n">tArrival</span><span class="p">)</span>
        <span class="bp">self</span><span class="o">.</span><span class="n">simulate</span><span class="p">(</span><span class="n">until</span><span class="o">=</span><span class="n">maxTime</span><span class="p">)</span>

<span class="c">## Experiment data ------------------------------</span>

<span class="n">maxTime</span> <span class="o">=</span> <span class="mf">100.0</span>     <span class="c"># minutes</span>
<span class="n">timeInBank</span> <span class="o">=</span> <span class="mf">10.0</span>   <span class="c"># minutes</span>
<span class="n">tArrival</span> <span class="o">=</span> <span class="mf">5.0</span>      <span class="c"># minutes</span>

<span class="c">## Experiment -----------------------------------</span>

<span class="n">mymodel</span> <span class="o">=</span> <span class="n">BankModel</span><span class="p">()</span>
<span class="n">mymodel</span><span class="o">.</span><span class="n">run</span><span class="p">()</span>
</pre></div>
</td></tr></table></div>
<p>The short trace printed out by the <tt class="docutils literal"><span class="pre">print</span></tt> statements shows the
result. The program finishes at simulation time <tt class="docutils literal"><span class="pre">15.0</span></tt> because there are
no further events to be executed. At the end of the <tt class="docutils literal"><span class="pre">visit</span></tt> routine,
the customer has no more actions and no other objects or customers are
active.</p>
<div class="highlight-python"><pre>5.0 Klaus  Here I am
15.0 Klaus  I must leave
</pre>
</div>
</div>
<div class="section" id="a-customer-arriving-at-random">
<span id="index-3"></span><h3>A Customer arriving at random<a class="headerlink" href="#a-customer-arriving-at-random" title="Permalink to this headline">¶</a></h3>
<p>Now we extend the model to allow our customer to arrive at a random
simulated time though we will keep the time in the bank at 10.0, as
before.</p>
<p>The change occurs in line 3 of the program and in lines 19, 21,
23, 31 and 35. In line 3 we import from the standard
Python <tt class="docutils literal"><span class="pre">random</span></tt> module to give us <tt class="docutils literal"><span class="pre">expovariate</span></tt> to generate the
random time of arrival. We also import the <tt class="docutils literal"><span class="pre">seed</span></tt> function to
initialize the random number stream to allow control of the random
numbers.  The  <tt class="docutils literal"><span class="pre">run</span></tt> method is given a parameter <tt class="docutils literal"><span class="pre">aseed</span></tt> for the
initial seed (line 19) .In line 31 we provide an initial seed of
<tt class="docutils literal"><span class="pre">99999</span></tt>. An exponential random variate, <tt class="docutils literal"><span class="pre">t</span></tt>, is generated in line 23. Note
that the Python Random module&#8217;s <tt class="docutils literal"><span class="pre">expovariate</span></tt> function uses the rate
(here, <tt class="docutils literal"><span class="pre">1.0/tMeanArrival</span></tt>) as the argument. The generated random variate,
<tt class="docutils literal"><span class="pre">t</span></tt>, is used in line 24 as the <tt class="docutils literal"><span class="pre">at</span></tt> argument to the
<tt class="docutils literal"><span class="pre">activate</span></tt> call. <tt class="docutils literal"><span class="pre">tMeanArrival</span></tt> is assigned a value of <tt class="docutils literal"><span class="pre">5.0</span></tt> minutes
at line 31.</p>
<p>In line 35, the <tt class="docutils literal"><span class="pre">BankModel</span></tt> entity is generated and its <tt class="docutils literal"><span class="pre">run</span></tt> function
called with parameter assignment <tt class="docutils literal"><span class="pre">aseed=seedVal</span></tt>.</p>
<div class="highlight-python"><table class="highlighttable"><tr><td class="linenos"><div class="linenodiv"><pre> 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37</pre></div></td><td class="code"><div class="highlight"><pre><span class="sd">&quot;&quot;&quot; bank05_OO: The single Random Customer &quot;&quot;&quot;</span>
<span class="kn">from</span> <span class="nn">SimPy.Simulation</span> <span class="kn">import</span> <span class="n">Simulation</span><span class="p">,</span> <span class="n">Process</span><span class="p">,</span> <span class="n">hold</span>
<span class="kn">from</span> <span class="nn">random</span> <span class="kn">import</span> <span class="n">expovariate</span><span class="p">,</span> <span class="n">seed</span>

<span class="c">## Model components ------------------------</span>

<span class="k">class</span> <span class="nc">Customer</span><span class="p">(</span><span class="n">Process</span><span class="p">):</span>
    <span class="sd">&quot;&quot;&quot; Customer arrives at a random time,</span>
<span class="sd">        looks around  and then leaves &quot;&quot;&quot;</span>

    <span class="k">def</span> <span class="nf">visit</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">timeInBank</span><span class="p">):</span>
        <span class="k">print</span><span class="p">(</span><span class="s">&quot;</span><span class="si">%f</span><span class="s"> </span><span class="si">%s</span><span class="s"> Here I am&quot;</span> <span class="o">%</span> <span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">sim</span><span class="o">.</span><span class="n">now</span><span class="p">(),</span> <span class="bp">self</span><span class="o">.</span><span class="n">name</span><span class="p">))</span>
        <span class="k">yield</span> <span class="n">hold</span><span class="p">,</span> <span class="bp">self</span><span class="p">,</span> <span class="n">timeInBank</span>
        <span class="k">print</span><span class="p">(</span><span class="s">&quot;</span><span class="si">%f</span><span class="s"> </span><span class="si">%s</span><span class="s"> I must leave&quot;</span> <span class="o">%</span> <span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">sim</span><span class="o">.</span><span class="n">now</span><span class="p">(),</span> <span class="bp">self</span><span class="o">.</span><span class="n">name</span><span class="p">))</span>

<span class="c">## Model -----------------------------------</span>

<span class="k">class</span> <span class="nc">BankModel</span><span class="p">(</span><span class="n">Simulation</span><span class="p">):</span>
    <span class="k">def</span> <span class="nf">run</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">aseed</span><span class="p">):</span>
        <span class="sd">&quot;&quot;&quot; PEM &quot;&quot;&quot;</span>
        <span class="n">seed</span><span class="p">(</span><span class="n">aseed</span><span class="p">)</span>
        <span class="n">c</span> <span class="o">=</span> <span class="n">Customer</span><span class="p">(</span><span class="n">name</span><span class="o">=</span><span class="s">&quot;Klaus&quot;</span><span class="p">,</span> <span class="n">sim</span><span class="o">=</span><span class="bp">self</span><span class="p">)</span>
        <span class="n">t</span> <span class="o">=</span> <span class="n">expovariate</span><span class="p">(</span><span class="mf">1.0</span> <span class="o">/</span> <span class="n">tMeanArrival</span><span class="p">)</span>
        <span class="bp">self</span><span class="o">.</span><span class="n">activate</span><span class="p">(</span><span class="n">c</span><span class="p">,</span> <span class="n">c</span><span class="o">.</span><span class="n">visit</span><span class="p">(</span><span class="n">timeInBank</span><span class="p">),</span> <span class="n">at</span><span class="o">=</span><span class="n">t</span><span class="p">)</span>
        <span class="bp">self</span><span class="o">.</span><span class="n">simulate</span><span class="p">(</span><span class="n">until</span><span class="o">=</span><span class="n">maxTime</span><span class="p">)</span>

<span class="c">## Experiment data -------------------------</span>

<span class="n">maxTime</span> <span class="o">=</span> <span class="mf">100.0</span>     <span class="c"># minutes</span>
<span class="n">timeInBank</span> <span class="o">=</span> <span class="mf">10.0</span>   <span class="c"># minutes</span>
<span class="n">tMeanArrival</span> <span class="o">=</span> <span class="mf">5.0</span>  <span class="c"># minutes</span>
<span class="n">seedVal</span> <span class="o">=</span> <span class="mi">99999</span>

<span class="c">## Experiment ------------------------------</span>

<span class="n">mymodel</span> <span class="o">=</span> <span class="n">BankModel</span><span class="p">()</span>
<span class="n">mymodel</span><span class="o">.</span><span class="n">run</span><span class="p">(</span><span class="n">aseed</span><span class="o">=</span><span class="n">seedVal</span><span class="p">)</span>
</pre></div>
</td></tr></table></div>
<p>The result is shown below. The customer now arrives at time
10.5809. Changing the seed value would change that time.</p>
<div class="highlight-python"><pre>0.641954 Klaus Here I am
10.641954 Klaus I must leave
</pre>
</div>
<p>The display looks pretty untidy. In the next example I will try and
make it tidier.</p>
</div>
</div>
<div class="section" id="more-customers">
<span id="index-4"></span><h2>More Customers<a class="headerlink" href="#more-customers" title="Permalink to this headline">¶</a></h2>
<p>Our simulation does little so far.  To consider a simulation with
several customers we return to the simple deterministic model and add
more <tt class="docutils literal"><span class="pre">Customers</span></tt>.</p>
<p>The program is almost as easy as the first example (<a class="reference internal" href="#a-customer-arriving-at-a-fixed-time">A Customer
arriving at a fixed time</a>). The main change is in lines
19-24 where we create, name, and activate three
customers. We also increase the maximum simulation time to <tt class="docutils literal"><span class="pre">400</span></tt>
(line 29 and referred to in line 25). Observe that we need
only one definition of the <tt class="docutils literal"><span class="pre">Customer</span></tt> class and create several
objects of that class. These will act quite independently in this
model.</p>
<p>Each customer stays for a different <tt class="docutils literal"><span class="pre">timeInBank</span></tt> so, instead of
setting a common value for this we set it for each customer. The
customers are started at different times (using <tt class="docutils literal"><span class="pre">at=</span></tt>). <tt class="docutils literal"><span class="pre">Tony's</span></tt>
activation time occurs before <tt class="docutils literal"><span class="pre">Klaus's</span></tt>, so <tt class="docutils literal"><span class="pre">Tony</span></tt> will arrive
first even though his activation statement appears later in the
script.</p>
<p>As promised, the print statements have been changed to use Python
string formatting (lines 10 and 12). The statements look
complicated but the output is much nicer.</p>
<div class="highlight-python"><table class="highlighttable"><tr><td class="linenos"><div class="linenodiv"><pre> 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34</pre></div></td><td class="code"><div class="highlight"><pre><span class="sd">&quot;&quot;&quot; bank02_OO: More Customers &quot;&quot;&quot;</span>
<span class="kn">from</span> <span class="nn">SimPy.Simulation</span> <span class="kn">import</span> <span class="n">Simulation</span><span class="p">,</span> <span class="n">Process</span><span class="p">,</span> <span class="n">hold</span>


<span class="c">## Model components ------------------------</span>
<span class="k">class</span> <span class="nc">Customer</span><span class="p">(</span><span class="n">Process</span><span class="p">):</span>
    <span class="sd">&quot;&quot;&quot; Customer arrives, looks around and leaves &quot;&quot;&quot;</span>

    <span class="k">def</span> <span class="nf">visit</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">timeInBank</span><span class="o">=</span><span class="mi">0</span><span class="p">):</span>
        <span class="k">print</span><span class="p">(</span><span class="s">&quot;</span><span class="si">%7.4f</span><span class="s"> </span><span class="si">%s</span><span class="s">: Here I am&quot;</span> <span class="o">%</span> <span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">sim</span><span class="o">.</span><span class="n">now</span><span class="p">(),</span> <span class="bp">self</span><span class="o">.</span><span class="n">name</span><span class="p">))</span>
        <span class="k">yield</span> <span class="n">hold</span><span class="p">,</span> <span class="bp">self</span><span class="p">,</span> <span class="n">timeInBank</span>
        <span class="k">print</span><span class="p">(</span><span class="s">&quot;</span><span class="si">%7.4f</span><span class="s"> </span><span class="si">%s</span><span class="s">: I must leave&quot;</span> <span class="o">%</span> <span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">sim</span><span class="o">.</span><span class="n">now</span><span class="p">(),</span> <span class="bp">self</span><span class="o">.</span><span class="n">name</span><span class="p">))</span>


<span class="c">## Model -----------------------------------</span>
<span class="k">class</span> <span class="nc">BankModel</span><span class="p">(</span><span class="n">Simulation</span><span class="p">):</span>
    <span class="k">def</span> <span class="nf">run</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
        <span class="sd">&quot;&quot;&quot; PEM &quot;&quot;&quot;</span>
        <span class="n">c1</span> <span class="o">=</span> <span class="n">Customer</span><span class="p">(</span><span class="n">name</span><span class="o">=</span><span class="s">&quot;Klaus&quot;</span><span class="p">,</span> <span class="n">sim</span><span class="o">=</span><span class="bp">self</span><span class="p">)</span>
        <span class="bp">self</span><span class="o">.</span><span class="n">activate</span><span class="p">(</span><span class="n">c1</span><span class="p">,</span> <span class="n">c1</span><span class="o">.</span><span class="n">visit</span><span class="p">(</span><span class="n">timeInBank</span><span class="o">=</span><span class="mf">10.0</span><span class="p">),</span> <span class="n">at</span><span class="o">=</span><span class="mf">5.0</span><span class="p">)</span>
        <span class="n">c2</span> <span class="o">=</span> <span class="n">Customer</span><span class="p">(</span><span class="n">name</span><span class="o">=</span><span class="s">&quot;Tony&quot;</span><span class="p">,</span> <span class="n">sim</span><span class="o">=</span><span class="bp">self</span><span class="p">)</span>
        <span class="bp">self</span><span class="o">.</span><span class="n">activate</span><span class="p">(</span><span class="n">c2</span><span class="p">,</span> <span class="n">c2</span><span class="o">.</span><span class="n">visit</span><span class="p">(</span><span class="n">timeInBank</span><span class="o">=</span><span class="mf">7.0</span><span class="p">),</span> <span class="n">at</span><span class="o">=</span><span class="mf">2.0</span><span class="p">)</span>
        <span class="n">c3</span> <span class="o">=</span> <span class="n">Customer</span><span class="p">(</span><span class="n">name</span><span class="o">=</span><span class="s">&quot;Evelyn&quot;</span><span class="p">,</span> <span class="n">sim</span><span class="o">=</span><span class="bp">self</span><span class="p">)</span>
        <span class="bp">self</span><span class="o">.</span><span class="n">activate</span><span class="p">(</span><span class="n">c3</span><span class="p">,</span> <span class="n">c3</span><span class="o">.</span><span class="n">visit</span><span class="p">(</span><span class="n">timeInBank</span><span class="o">=</span><span class="mf">20.0</span><span class="p">),</span> <span class="n">at</span><span class="o">=</span><span class="mf">12.0</span><span class="p">)</span>
        <span class="bp">self</span><span class="o">.</span><span class="n">simulate</span><span class="p">(</span><span class="n">until</span><span class="o">=</span><span class="n">maxTime</span><span class="p">)</span>

<span class="c">## Experiment data -------------------------</span>

<span class="n">maxTime</span> <span class="o">=</span> <span class="mf">400.0</span>  <span class="c"># minutes</span>

<span class="c">## Experiment ------------------------------</span>

<span class="n">mymodel</span> <span class="o">=</span> <span class="n">BankModel</span><span class="p">()</span>
<span class="n">mymodel</span><span class="o">.</span><span class="n">run</span><span class="p">()</span>
</pre></div>
</td></tr></table></div>
<p>The trace produced by the program is shown below.  Again the
simulation finishes before the <tt class="docutils literal"><span class="pre">400.0</span></tt> specified in the <tt class="docutils literal"><span class="pre">simulate</span></tt>
call.</p>
<div class="highlight-python"><pre> 2.0000 Tony: Here I am
 5.0000 Klaus: Here I am
 9.0000 Tony: I must leave
12.0000 Evelyn: Here I am
15.0000 Klaus: I must leave
32.0000 Evelyn: I must leave
</pre>
</div>
<div class="section" id="many-customers">
<span id="index-5"></span><h3>Many Customers<a class="headerlink" href="#many-customers" title="Permalink to this headline">¶</a></h3>
<p>Another change will allow us to have more customers. As it is
tedious to give a specially chosen name to each one, we will
call them <tt class="docutils literal"><span class="pre">Customer00,</span> <span class="pre">Customer01,...</span></tt> and use a separate
<tt class="docutils literal"><span class="pre">Source</span></tt> class to create and activate them. To make things clearer
we do not use the random numbers in this model.</p>
<p id="index-6">The following listing shows the new program. Lines 6-13
define a <tt class="docutils literal"><span class="pre">Source</span></tt> class. Its PEM, here called <tt class="docutils literal"><span class="pre">generate</span></tt>, is
defined in lines 9-13.  This PEM has a couple of arguments:
the <tt class="docutils literal"><span class="pre">number</span></tt> of customers to be generated and the Time Between
Arrivals, <tt class="docutils literal"><span class="pre">TBA</span></tt>. It consists of a loop that creates a stream
of numbered <tt class="docutils literal"><span class="pre">Customers</span></tt> from <tt class="docutils literal"><span class="pre">0</span></tt> to <tt class="docutils literal"><span class="pre">(number-1)</span></tt>, inclusive. We
create a customer and give it a name in line 11. The parameter
assignment <tt class="docutils literal"><span class="pre">sim</span> <span class="pre">=</span> <span class="pre">self.sim</span></tt> ties the customers to the <tt class="docutils literal"><span class="pre">BankModel</span></tt>
to which the <tt class="docutils literal"><span class="pre">Source</span></tt> belongs. The customer is
then activated at the current simulation time (the final argument of
the <tt class="docutils literal"><span class="pre">activate</span></tt> statement is missing so that the default value of
<tt class="docutils literal"><span class="pre">self.sim.now()</span></tt>, the current simulation time for the instance of
<tt class="docutils literal"><span class="pre">BankModel</span></tt>, is used as the time; here, it is <tt class="docutils literal"><span class="pre">0.0</span></tt>). We also specify
how long the customer
is to stay in the bank. To keep it simple, all customers stay
exactly <tt class="docutils literal"><span class="pre">12</span></tt> minutes.  After each new customer is activated, the
<tt class="docutils literal"><span class="pre">Source</span></tt> holds for a fixed time (<tt class="docutils literal"><span class="pre">yield</span> <span class="pre">hold,self,TBA</span></tt>)
before creating the next one (line 13).</p>
<p><tt class="docutils literal"><span class="pre">class</span> <span class="pre">BankModel(Simulation)</span></tt> (line 24) provides a <tt class="docutils literal"><span class="pre">run</span></tt> method
which executes this model consisting of a customer source and the global data.
As <tt class="docutils literal"><span class="pre">BankModel</span></tt> inherits from <tt class="docutils literal"><span class="pre">Simulation</span></tt>, it has its own event list which gets
initialized as empty in line 26.</p>
<p>A <tt class="docutils literal"><span class="pre">Source</span></tt>, <tt class="docutils literal"><span class="pre">s</span></tt>, is created in line 27 and activated at line
28 where the number of customers to be generated is set to
<tt class="docutils literal"><span class="pre">maxNumber</span> <span class="pre">=</span> <span class="pre">5</span></tt> and the interval between customers to <tt class="docutils literal"><span class="pre">ARRint</span> <span class="pre">=</span> <span class="pre">10.0</span></tt>.
The parameter assignment <tt class="docutils literal"><span class="pre">sim</span> <span class="pre">=</span> <span class="pre">self</span></tt> links the <tt class="docutils literal"><span class="pre">Source</span></tt> process
to this <tt class="docutils literal"><span class="pre">BankModel</span></tt> instance. Once started at time <tt class="docutils literal"><span class="pre">0.0</span></tt>, <tt class="docutils literal"><span class="pre">s</span></tt>  creates
customers at intervals and each customer then operates independently of the others.</p>
<p>In line 40, a <tt class="docutils literal"><span class="pre">BankModel</span></tt> object is created and its <tt class="docutils literal"><span class="pre">run</span></tt> method executed:</p>
<div class="highlight-python"><table class="highlighttable"><tr><td class="linenos"><div class="linenodiv"><pre> 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43</pre></div></td><td class="code"><div class="highlight"><pre><span class="sd">&quot;&quot;&quot; bank03_OO: Many non-random Customers &quot;&quot;&quot;</span>
<span class="kn">from</span> <span class="nn">SimPy.Simulation</span> <span class="kn">import</span> <span class="n">Simulation</span><span class="p">,</span> <span class="n">Process</span><span class="p">,</span> <span class="n">hold</span>


<span class="c">## Model components ------------------------</span>
<span class="k">class</span> <span class="nc">Source</span><span class="p">(</span><span class="n">Process</span><span class="p">):</span>
    <span class="sd">&quot;&quot;&quot; Source generates customers regularly &quot;&quot;&quot;</span>

    <span class="k">def</span> <span class="nf">generate</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">number</span><span class="p">,</span> <span class="n">TBA</span><span class="p">):</span>
        <span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="n">number</span><span class="p">):</span>
            <span class="n">c</span> <span class="o">=</span> <span class="n">Customer</span><span class="p">(</span><span class="n">name</span><span class="o">=</span><span class="s">&quot;Customer</span><span class="si">%02d</span><span class="s">&quot;</span> <span class="o">%</span> <span class="p">(</span><span class="n">i</span><span class="p">),</span> <span class="n">sim</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">sim</span><span class="p">)</span>
            <span class="bp">self</span><span class="o">.</span><span class="n">sim</span><span class="o">.</span><span class="n">activate</span><span class="p">(</span><span class="n">c</span><span class="p">,</span> <span class="n">c</span><span class="o">.</span><span class="n">visit</span><span class="p">(</span><span class="n">timeInBank</span><span class="o">=</span><span class="mf">12.0</span><span class="p">))</span>
            <span class="k">yield</span> <span class="n">hold</span><span class="p">,</span> <span class="bp">self</span><span class="p">,</span> <span class="n">TBA</span>


<span class="k">class</span> <span class="nc">Customer</span><span class="p">(</span><span class="n">Process</span><span class="p">):</span>
    <span class="sd">&quot;&quot;&quot; Customer arrives, looks around and leaves &quot;&quot;&quot;</span>

    <span class="k">def</span> <span class="nf">visit</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">timeInBank</span><span class="p">):</span>
        <span class="k">print</span><span class="p">(</span><span class="s">&quot;</span><span class="si">%7.4f</span><span class="s"> </span><span class="si">%s</span><span class="s">: Here I am&quot;</span> <span class="o">%</span> <span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">sim</span><span class="o">.</span><span class="n">now</span><span class="p">(),</span> <span class="bp">self</span><span class="o">.</span><span class="n">name</span><span class="p">))</span>
        <span class="k">yield</span> <span class="n">hold</span><span class="p">,</span> <span class="bp">self</span><span class="p">,</span> <span class="n">timeInBank</span>
        <span class="k">print</span><span class="p">(</span><span class="s">&quot;</span><span class="si">%7.4f</span><span class="s"> </span><span class="si">%s</span><span class="s">: I must leave&quot;</span> <span class="o">%</span> <span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">sim</span><span class="o">.</span><span class="n">now</span><span class="p">(),</span> <span class="bp">self</span><span class="o">.</span><span class="n">name</span><span class="p">))</span>


<span class="c">## Model -----------------------------------</span>
<span class="k">class</span> <span class="nc">BankModel</span><span class="p">(</span><span class="n">Simulation</span><span class="p">):</span>
    <span class="k">def</span> <span class="nf">run</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
        <span class="sd">&quot;&quot;&quot; PEM &quot;&quot;&quot;</span>
        <span class="n">s</span> <span class="o">=</span> <span class="n">Source</span><span class="p">(</span><span class="n">sim</span><span class="o">=</span><span class="bp">self</span><span class="p">)</span>
        <span class="bp">self</span><span class="o">.</span><span class="n">activate</span><span class="p">(</span><span class="n">s</span><span class="p">,</span> <span class="n">s</span><span class="o">.</span><span class="n">generate</span><span class="p">(</span><span class="n">number</span><span class="o">=</span><span class="n">maxNumber</span><span class="p">,</span>
                      <span class="n">TBA</span><span class="o">=</span><span class="n">ARRint</span><span class="p">),</span> <span class="n">at</span><span class="o">=</span><span class="mf">0.0</span><span class="p">)</span>
        <span class="bp">self</span><span class="o">.</span><span class="n">simulate</span><span class="p">(</span><span class="n">until</span><span class="o">=</span><span class="n">maxTime</span><span class="p">)</span>

<span class="c">## Experiment data -------------------------</span>

<span class="n">maxNumber</span> <span class="o">=</span> <span class="mi">5</span>
<span class="n">maxTime</span> <span class="o">=</span> <span class="mf">400.0</span>  <span class="c"># minutes</span>
<span class="n">ARRint</span> <span class="o">=</span> <span class="mf">10.0</span>    <span class="c"># time between arrivals, minutes</span>

<span class="c">## Experiment ------------------------------</span>

<span class="n">mymodel</span> <span class="o">=</span> <span class="n">BankModel</span><span class="p">()</span>
<span class="n">mymodel</span><span class="o">.</span><span class="n">run</span><span class="p">()</span>
</pre></div>
</td></tr></table></div>
<p>The output is:</p>
<div class="highlight-python"><pre> 0.0000 Customer00: Here I am
10.0000 Customer01: Here I am
12.0000 Customer00: I must leave
20.0000 Customer02: Here I am
22.0000 Customer01: I must leave
30.0000 Customer03: Here I am
32.0000 Customer02: I must leave
40.0000 Customer04: Here I am
42.0000 Customer03: I must leave
52.0000 Customer04: I must leave
</pre>
</div>
</div>
<div class="section" id="many-random-customers">
<h3>Many Random Customers<a class="headerlink" href="#many-random-customers" title="Permalink to this headline">¶</a></h3>
<p id="index-7">We now extend this model to allow arrivals at random. In simulation this
is usually interpreted as meaning that the times between customer
arrivals are distributed as exponential random variates. There is
little change in our program, we use a <tt class="docutils literal"><span class="pre">Source</span></tt> object, as before.</p>
<p>The exponential random variate is generated in line 14 with
<tt class="docutils literal"><span class="pre">meanTBA</span></tt> as the mean Time Between Arrivals and used in line
15. Note that this parameter is not exactly intuitive. As already
mentioned, the Python <tt class="docutils literal"><span class="pre">expovariate</span></tt> method uses the <em>rate</em> of
arrivals as the parameter not the average interval between them. The
exponential delay between two arrivals gives pseudo-random
arrivals. In this model the first customer arrives at time <tt class="docutils literal"><span class="pre">0.0</span></tt>.</p>
<p>The <tt class="docutils literal"><span class="pre">seed</span></tt> method is called to initialize the random number stream
in the <tt class="docutils literal"><span class="pre">run</span></tt> routine of <tt class="docutils literal"><span class="pre">BankModel</span></tt> (line 30). It uses the value
provided by parameter <tt class="docutils literal"><span class="pre">aseed</span></tt>. It is possible to leave this
call out but if we wish to do serious comparisons of systems, we must
have control over the random variates and therefore control over the
seeds. Then we can run identical models with different seeds or
different models with identical seeds.  We provide the seeds as
control parameters of the run. Here a seed is assigned in line 41
but it is clear it could have been read in or manually entered on an
input form.</p>
<p>The <tt class="docutils literal"><span class="pre">BankModel</span></tt> is generated in line 45 and its <tt class="docutils literal"><span class="pre">run</span></tt> method called with
the seed value as parameter.</p>
<div class="highlight-python"><table class="highlighttable"><tr><td class="linenos"><div class="linenodiv"><pre> 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46</pre></div></td><td class="code"><div class="highlight"><pre><span class="sd">&quot;&quot;&quot; bank06: Many Random Customers &quot;&quot;&quot;</span>
<span class="kn">from</span> <span class="nn">SimPy.Simulation</span> <span class="kn">import</span> <span class="n">Simulation</span><span class="p">,</span> <span class="n">Process</span><span class="p">,</span> <span class="n">hold</span>
<span class="kn">from</span> <span class="nn">random</span> <span class="kn">import</span> <span class="n">expovariate</span><span class="p">,</span> <span class="n">seed</span>


<span class="c">## Model components ------------------------</span>
<span class="k">class</span> <span class="nc">Source</span><span class="p">(</span><span class="n">Process</span><span class="p">):</span>
    <span class="sd">&quot;&quot;&quot; Source generates customers at random &quot;&quot;&quot;</span>

    <span class="k">def</span> <span class="nf">generate</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">number</span><span class="p">,</span> <span class="n">meanTBA</span><span class="p">):</span>
        <span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="n">number</span><span class="p">):</span>
            <span class="n">c</span> <span class="o">=</span> <span class="n">Customer</span><span class="p">(</span><span class="n">name</span> <span class="o">=</span> <span class="s">&quot;Customer</span><span class="si">%02d</span><span class="s">&quot;</span> <span class="o">%</span> <span class="p">(</span><span class="n">i</span><span class="p">),</span> <span class="n">sim</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">sim</span><span class="p">)</span>
            <span class="bp">self</span><span class="o">.</span><span class="n">sim</span><span class="o">.</span><span class="n">activate</span><span class="p">(</span><span class="n">c</span><span class="p">,</span> <span class="n">c</span><span class="o">.</span><span class="n">visit</span><span class="p">(</span><span class="n">timeInBank</span><span class="o">=</span><span class="mf">12.0</span><span class="p">))</span>
            <span class="n">t</span> <span class="o">=</span> <span class="n">expovariate</span><span class="p">(</span><span class="mf">1.0</span> <span class="o">/</span> <span class="n">meanTBA</span><span class="p">)</span>
            <span class="k">yield</span> <span class="n">hold</span><span class="p">,</span> <span class="bp">self</span><span class="p">,</span> <span class="n">t</span>

<span class="k">class</span> <span class="nc">Customer</span><span class="p">(</span><span class="n">Process</span><span class="p">):</span>
    <span class="sd">&quot;&quot;&quot; Customer arrives, looks round and leaves &quot;&quot;&quot;</span>

    <span class="k">def</span> <span class="nf">visit</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">timeInBank</span><span class="o">=</span><span class="mi">0</span><span class="p">):</span>
        <span class="k">print</span><span class="p">(</span><span class="s">&quot;</span><span class="si">%7.4f</span><span class="s"> </span><span class="si">%s</span><span class="s">: Here I am&quot;</span> <span class="o">%</span> <span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">sim</span><span class="o">.</span><span class="n">now</span><span class="p">(),</span> <span class="bp">self</span><span class="o">.</span><span class="n">name</span><span class="p">))</span>
        <span class="k">yield</span> <span class="n">hold</span><span class="p">,</span> <span class="bp">self</span><span class="p">,</span> <span class="n">timeInBank</span>
        <span class="k">print</span><span class="p">(</span><span class="s">&quot;</span><span class="si">%7.4f</span><span class="s"> </span><span class="si">%s</span><span class="s">: I must leave&quot;</span> <span class="o">%</span> <span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">sim</span><span class="o">.</span><span class="n">now</span><span class="p">(),</span> <span class="bp">self</span><span class="o">.</span><span class="n">name</span><span class="p">))</span>


<span class="c">## Model -----------------------------------</span>
<span class="k">class</span> <span class="nc">BankModel</span><span class="p">(</span><span class="n">Simulation</span><span class="p">):</span>
    <span class="k">def</span> <span class="nf">run</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">aseed</span><span class="p">):</span>
        <span class="sd">&quot;&quot;&quot; PEM &quot;&quot;&quot;</span>
        <span class="n">seed</span><span class="p">(</span><span class="n">aseed</span><span class="p">)</span>
        <span class="n">s</span> <span class="o">=</span> <span class="n">Source</span><span class="p">(</span><span class="n">name</span><span class="o">=</span><span class="s">&#39;Source&#39;</span><span class="p">,</span> <span class="n">sim</span><span class="o">=</span><span class="bp">self</span><span class="p">)</span>
        <span class="bp">self</span><span class="o">.</span><span class="n">activate</span><span class="p">(</span><span class="n">s</span><span class="p">,</span> <span class="n">s</span><span class="o">.</span><span class="n">generate</span><span class="p">(</span><span class="n">number</span><span class="o">=</span><span class="n">maxNumber</span><span class="p">,</span>
                      <span class="n">meanTBA</span><span class="o">=</span><span class="n">ARRint</span><span class="p">),</span> <span class="n">at</span><span class="o">=</span><span class="mf">0.0</span><span class="p">)</span>
        <span class="bp">self</span><span class="o">.</span><span class="n">simulate</span><span class="p">(</span><span class="n">until</span><span class="o">=</span><span class="n">maxTime</span><span class="p">)</span>

<span class="c">## Experiment data -------------------------</span>

<span class="n">maxNumber</span> <span class="o">=</span> <span class="mi">5</span>
<span class="n">maxTime</span> <span class="o">=</span> <span class="mf">400.0</span>  <span class="c"># minutes</span>
<span class="n">ARRint</span> <span class="o">=</span> <span class="mf">10.0</span>    <span class="c"># mean arrival interval, minutes</span>
<span class="n">seedVal</span> <span class="o">=</span> <span class="mi">99999</span>

<span class="c">## Experiment ------------------------------</span>

<span class="n">mymodel</span> <span class="o">=</span> <span class="n">BankModel</span><span class="p">()</span>
<span class="n">mymodel</span><span class="o">.</span><span class="n">run</span><span class="p">(</span><span class="n">aseed</span><span class="o">=</span><span class="n">seedVal</span><span class="p">)</span>
</pre></div>
</td></tr></table></div>
<p>This generates the following output:</p>
<div class="highlight-python"><pre> 0.0000 Customer00: Here I am
 1.2839 Customer01: Here I am
 4.9842 Customer02: Here I am
12.0000 Customer00: I must leave
13.2839 Customer01: I must leave
16.9842 Customer02: I must leave
35.5432 Customer03: Here I am
47.5432 Customer03: I must leave
48.9918 Customer04: Here I am
60.9918 Customer04: I must leave
</pre>
</div>
</div>
</div>
<div class="section" id="a-service-counter">
<span id="index-8"></span><h2>A Service counter<a class="headerlink" href="#a-service-counter" title="Permalink to this headline">¶</a></h2>
<p>So far, the model bank has been more like an art gallery, the customers
entering, looking around, and leaving. Now they are going to require
service from the bank clerk. We extend the model to include a service
counter which will be modelled as an object of SimPy&#8217;s <tt class="docutils literal"><span class="pre">Resource</span></tt>
class with a single resource unit.  The actions of a <tt class="docutils literal"><span class="pre">Resource</span></tt> are
simple: a customer <tt class="docutils literal"><span class="pre">requests</span></tt> a unit of the resource (a clerk). If
one is free he gets service (and removes the unit, i.e., makes it busy).
If there is no
free clerk the customer joins the queue (managed by the resource
object) until it is his turn to be served. As each customer
completes service and <tt class="docutils literal"><span class="pre">releases</span></tt> the unit, the clerk automatically
starts serving the next in line. This is done by reactivating that customer&#8217;s
process where it had been blocked.</p>
<div class="section" id="one-service-counter">
<span id="index-9"></span><h3>One Service counter<a class="headerlink" href="#one-service-counter" title="Permalink to this headline">¶</a></h3>
<p>As this model is built with the <tt class="docutils literal"><span class="pre">Resource</span></tt> class from <tt class="docutils literal"><span class="pre">SimPy.Simulation</span></tt>,
it and the related <tt class="docutils literal"><span class="pre">request</span></tt> and <tt class="docutils literal"><span class="pre">release</span></tt> verbs are mported, in addition
to the imports made in the previous programs
(line 2).</p>
<p>The service counter is created as a <tt class="docutils literal"><span class="pre">Resource</span></tt> attribute <tt class="docutils literal"><span class="pre">self.k</span></tt>
of the <tt class="docutils literal"><span class="pre">BankModel</span></tt> (line 39). The resource exists in the <tt class="docutils literal"><span class="pre">BankModel</span></tt>,
and this is indicated by the parameter assignment <tt class="docutils literal"><span class="pre">sim</span> <span class="pre">=</span> <span class="pre">self</span></tt>.
The <tt class="docutils literal"><span class="pre">Source</span></tt> PEM <tt class="docutils literal"><span class="pre">generate</span></tt> can access this attribute by
<tt class="docutils literal"><span class="pre">self.sim.k</span></tt>, its <tt class="docutils literal"><span class="pre">BankModel</span></tt>&#8216;s resource attribute (line 14).</p>
<p>The actions involving the <tt class="docutils literal"><span class="pre">Counter</span></tt> referred to by the parameter
<tt class="docutils literal"><span class="pre">res</span></tt> in the customer&#8217;s PEM are:</p>
<ul class="simple">
<li>the <tt class="docutils literal"><span class="pre">yield</span> <span class="pre">request</span></tt> statement in line 25. If the server is
free then the customer can start service immediately and the code
moves on to line  26. If the server is busy, the customer is
automatically queued by the Resource. When it eventually comes
available the PEM moves on to line 26.</li>
<li>the <tt class="docutils literal"><span class="pre">yield</span> <span class="pre">hold</span></tt> statement in line 28 where the operation of
the service counter is modelled. Here the service time is a fixed
<tt class="docutils literal"><span class="pre">timeInBank</span></tt>.  During this period the customer is being served
and the resource (the counter) is busy.</li>
<li>the <tt class="docutils literal"><span class="pre">yield</span> <span class="pre">release</span></tt> statement in line 29. The current
customer completes service and the service counter becomes available
for any remaining customers in the queue.</li>
</ul>
<p>Observe that the service counter is used with the pattern (<tt class="docutils literal"><span class="pre">yield</span>
<span class="pre">request..</span></tt>; <tt class="docutils literal"><span class="pre">yield</span> <span class="pre">hold..</span></tt>; <tt class="docutils literal"><span class="pre">yield</span> <span class="pre">release..</span></tt>).</p>
<p>To show the effect of the service counter on the activities of the
customers, I have added line 22 to record when the customer
arrived and line 26 to record the time between arrival in the
bank and starting service. Line 26 is <em>after</em> the <tt class="docutils literal"><span class="pre">yield</span>
<span class="pre">request</span></tt> command and will be reached only when the request is
satisfied. It is <em>before</em> the <tt class="docutils literal"><span class="pre">yield</span> <span class="pre">hold</span></tt> that corresponds to the
start of service. The variable <tt class="docutils literal"><span class="pre">wait</span></tt> will record how long the
customer waited and will be 0 if he received service at once. This
technique of saving the arrival time in a variable is common. So the
<tt class="docutils literal"><span class="pre">print</span></tt> statement also prints out how long the customer waited in
the bank before starting service.</p>
<div class="highlight-python"><table class="highlighttable"><tr><td class="linenos"><div class="linenodiv"><pre> 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55</pre></div></td><td class="code"><div class="highlight"><pre><span class="sd">&quot;&quot;&quot; bank07_OO: One Counter,random arrivals &quot;&quot;&quot;</span>
<span class="kn">from</span> <span class="nn">SimPy.Simulation</span> <span class="kn">import</span> <span class="n">Simulation</span><span class="p">,</span> <span class="n">Process</span><span class="p">,</span> <span class="n">hold</span><span class="p">,</span> <span class="n">Resource</span><span class="p">,</span> <span class="n">request</span><span class="p">,</span> <span class="n">release</span>
<span class="kn">from</span> <span class="nn">random</span> <span class="kn">import</span> <span class="n">expovariate</span><span class="p">,</span> <span class="n">seed</span>

<span class="c">## Model components ------------------------</span>

<span class="k">class</span> <span class="nc">Source</span><span class="p">(</span><span class="n">Process</span><span class="p">):</span>
    <span class="sd">&quot;&quot;&quot; Source generates customers randomly &quot;&quot;&quot;</span>

    <span class="k">def</span> <span class="nf">generate</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">number</span><span class="p">,</span> <span class="n">meanTBA</span><span class="p">):</span>
        <span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="n">number</span><span class="p">):</span>
            <span class="n">c</span> <span class="o">=</span> <span class="n">Customer</span><span class="p">(</span><span class="n">name</span><span class="o">=</span><span class="s">&quot;Customer</span><span class="si">%02d</span><span class="s">&quot;</span> <span class="o">%</span> <span class="p">(</span><span class="n">i</span><span class="p">),</span> <span class="n">sim</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">sim</span><span class="p">)</span>
            <span class="bp">self</span><span class="o">.</span><span class="n">sim</span><span class="o">.</span><span class="n">activate</span><span class="p">(</span><span class="n">c</span><span class="p">,</span> <span class="n">c</span><span class="o">.</span><span class="n">visit</span><span class="p">(</span><span class="n">timeInBank</span><span class="o">=</span><span class="mf">12.0</span><span class="p">,</span>
                               <span class="n">res</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">sim</span><span class="o">.</span><span class="n">k</span><span class="p">))</span>
            <span class="n">t</span> <span class="o">=</span> <span class="n">expovariate</span><span class="p">(</span><span class="mf">1.0</span> <span class="o">/</span> <span class="n">meanTBA</span><span class="p">)</span>
            <span class="k">yield</span> <span class="n">hold</span><span class="p">,</span> <span class="bp">self</span><span class="p">,</span> <span class="n">t</span>


<span class="k">class</span> <span class="nc">Customer</span><span class="p">(</span><span class="n">Process</span><span class="p">):</span>
    <span class="sd">&quot;&quot;&quot; Customer arrives, is served and  leaves &quot;&quot;&quot;</span>

    <span class="k">def</span> <span class="nf">visit</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">timeInBank</span><span class="o">=</span><span class="mi">0</span><span class="p">,</span> <span class="n">res</span><span class="o">=</span><span class="bp">None</span><span class="p">):</span>
        <span class="n">arrive</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">sim</span><span class="o">.</span><span class="n">now</span><span class="p">()</span>       <span class="c"># arrival time</span>
        <span class="k">print</span><span class="p">(</span><span class="s">&quot;</span><span class="si">%8.3f</span><span class="s"> </span><span class="si">%s</span><span class="s">: Here I am&quot;</span> <span class="o">%</span> <span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">sim</span><span class="o">.</span><span class="n">now</span><span class="p">(),</span> <span class="bp">self</span><span class="o">.</span><span class="n">name</span><span class="p">))</span>

        <span class="k">yield</span> <span class="n">request</span><span class="p">,</span> <span class="bp">self</span><span class="p">,</span> <span class="n">res</span>
        <span class="n">wait</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">sim</span><span class="o">.</span><span class="n">now</span><span class="p">()</span> <span class="o">-</span> <span class="n">arrive</span>  <span class="c"># waiting time</span>
        <span class="k">print</span><span class="p">(</span><span class="s">&quot;</span><span class="si">%8.3f</span><span class="s"> </span><span class="si">%s</span><span class="s">: Waited </span><span class="si">%6.3f</span><span class="s">&quot;</span> <span class="o">%</span> <span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">sim</span><span class="o">.</span><span class="n">now</span><span class="p">(),</span> <span class="bp">self</span><span class="o">.</span><span class="n">name</span><span class="p">,</span> <span class="n">wait</span><span class="p">))</span>
        <span class="k">yield</span> <span class="n">hold</span><span class="p">,</span> <span class="bp">self</span><span class="p">,</span> <span class="n">timeInBank</span>
        <span class="k">yield</span> <span class="n">release</span><span class="p">,</span> <span class="bp">self</span><span class="p">,</span> <span class="n">res</span>

        <span class="k">print</span><span class="p">(</span><span class="s">&quot;</span><span class="si">%8.3f</span><span class="s"> </span><span class="si">%s</span><span class="s">: Finished&quot;</span> <span class="o">%</span> <span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">sim</span><span class="o">.</span><span class="n">now</span><span class="p">(),</span> <span class="bp">self</span><span class="o">.</span><span class="n">name</span><span class="p">))</span>

<span class="c">## Model -----------------------------------</span>

<span class="k">class</span> <span class="nc">BankModel</span><span class="p">(</span><span class="n">Simulation</span><span class="p">):</span>
    <span class="k">def</span> <span class="nf">run</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">aseed</span><span class="p">):</span>
        <span class="sd">&quot;&quot;&quot; PEM &quot;&quot;&quot;</span>
        <span class="n">seed</span><span class="p">(</span><span class="n">aseed</span><span class="p">)</span>
        <span class="bp">self</span><span class="o">.</span><span class="n">k</span> <span class="o">=</span> <span class="n">Resource</span><span class="p">(</span><span class="n">name</span><span class="o">=</span><span class="s">&quot;Counter&quot;</span><span class="p">,</span> <span class="n">unitName</span><span class="o">=</span><span class="s">&quot;Clerk&quot;</span><span class="p">,</span> <span class="n">sim</span><span class="o">=</span><span class="bp">self</span><span class="p">)</span>
        <span class="n">s</span> <span class="o">=</span> <span class="n">Source</span><span class="p">(</span><span class="s">&#39;Source&#39;</span><span class="p">,</span> <span class="n">sim</span><span class="o">=</span><span class="bp">self</span><span class="p">)</span>
        <span class="bp">self</span><span class="o">.</span><span class="n">activate</span><span class="p">(</span><span class="n">s</span><span class="p">,</span> <span class="n">s</span><span class="o">.</span><span class="n">generate</span><span class="p">(</span><span class="n">number</span><span class="o">=</span><span class="n">maxNumber</span><span class="p">,</span> <span class="n">meanTBA</span><span class="o">=</span><span class="n">ARRint</span><span class="p">),</span> <span class="n">at</span><span class="o">=</span><span class="mf">0.0</span><span class="p">)</span>
        <span class="bp">self</span><span class="o">.</span><span class="n">simulate</span><span class="p">(</span><span class="n">until</span><span class="o">=</span><span class="n">maxTime</span><span class="p">)</span>

<span class="c">## Experiment data -------------------------</span>

<span class="n">maxNumber</span> <span class="o">=</span> <span class="mi">5</span>
<span class="n">maxTime</span> <span class="o">=</span> <span class="mf">400.0</span>  <span class="c"># minutes</span>
<span class="n">ARRint</span> <span class="o">=</span> <span class="mf">10.0</span>    <span class="c"># mean, minutes</span>
<span class="n">seedVal</span> <span class="o">=</span> <span class="mi">99999</span>

<span class="c">## Experiment ------------------------------</span>

<span class="n">mymodel</span> <span class="o">=</span> <span class="n">BankModel</span><span class="p">()</span>
<span class="n">mymodel</span><span class="o">.</span><span class="n">run</span><span class="p">(</span><span class="n">aseed</span><span class="o">=</span><span class="n">seedVal</span><span class="p">)</span>
</pre></div>
</td></tr></table></div>
<p>Examining the trace we see that the first two customers get instant service but the others
have to wait. We still only have five customers (line 44) so we
cannot draw general conclusions.</p>
<div class="highlight-python"><pre>   0.000 Customer00: Here I am
   0.000 Customer00: Waited  0.000
   1.284 Customer01: Here I am
   4.984 Customer02: Here I am
  12.000 Customer00: Finished
  12.000 Customer01: Waited 10.716
  24.000 Customer01: Finished
  24.000 Customer02: Waited 19.016
  35.543 Customer03: Here I am
  36.000 Customer02: Finished
  36.000 Customer03: Waited  0.457
  48.000 Customer03: Finished
  48.992 Customer04: Here I am
  48.992 Customer04: Waited  0.000
  60.992 Customer04: Finished
</pre>
</div>
<span class="target" id="index-10"></span></div>
<div class="section" id="a-server-with-a-random-service-time">
<h3>A server with a random service time<a class="headerlink" href="#a-server-with-a-random-service-time" title="Permalink to this headline">¶</a></h3>
<p>This is a simple change to the model in that we retain the single
service counter but make the customer service time a random variable. As
is traditional in the study of simple queues we first assume an exponential service
time and set the mean to <tt class="docutils literal"><span class="pre">timeInBank</span></tt>.</p>
<p>The service time random variable, <tt class="docutils literal"><span class="pre">tib</span></tt>, is generated in line
26 and used in line 27. The argument to be used in the call
of <tt class="docutils literal"><span class="pre">expovariate</span></tt> is not the mean of the distribution,
<tt class="docutils literal"><span class="pre">timeInBank</span></tt>, but is the rate <tt class="docutils literal"><span class="pre">1.0/timeInBank</span></tt>.</p>
<p>We have put together the exeriment data by defining a
number of appropriate variables and giving them values. These are in
lines 44 to 48.</p>
<div class="highlight-python"><table class="highlighttable"><tr><td class="linenos"><div class="linenodiv"><pre> 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55</pre></div></td><td class="code"><div class="highlight"><pre><span class="sd">&quot;&quot;&quot; bank08_OO: A counter with a random service time &quot;&quot;&quot;</span>
<span class="kn">from</span> <span class="nn">SimPy.Simulation</span> <span class="kn">import</span> <span class="n">Simulation</span><span class="p">,</span> <span class="n">Process</span><span class="p">,</span> <span class="n">Resource</span><span class="p">,</span> <span class="n">hold</span><span class="p">,</span> <span class="n">request</span><span class="p">,</span> <span class="n">release</span>
<span class="kn">from</span> <span class="nn">random</span> <span class="kn">import</span> <span class="n">expovariate</span><span class="p">,</span> <span class="n">seed</span>


<span class="c">## Model components ------------------------</span>

<span class="k">class</span> <span class="nc">Source</span><span class="p">(</span><span class="n">Process</span><span class="p">):</span>
    <span class="sd">&quot;&quot;&quot; Source generates customers randomly &quot;&quot;&quot;</span>

    <span class="k">def</span> <span class="nf">generate</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">number</span><span class="p">,</span> <span class="n">meanTBA</span><span class="p">):</span>
        <span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="n">number</span><span class="p">):</span>
            <span class="n">c</span> <span class="o">=</span> <span class="n">Customer</span><span class="p">(</span><span class="n">name</span><span class="o">=</span><span class="s">&quot;Customer</span><span class="si">%02d</span><span class="s">&quot;</span> <span class="o">%</span> <span class="p">(</span><span class="n">i</span><span class="p">),</span> <span class="n">sim</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">sim</span><span class="p">)</span>
            <span class="bp">self</span><span class="o">.</span><span class="n">sim</span><span class="o">.</span><span class="n">activate</span><span class="p">(</span><span class="n">c</span><span class="p">,</span> <span class="n">c</span><span class="o">.</span><span class="n">visit</span><span class="p">(</span><span class="n">b</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">sim</span><span class="o">.</span><span class="n">k</span><span class="p">))</span>
            <span class="n">t</span> <span class="o">=</span> <span class="n">expovariate</span><span class="p">(</span><span class="mf">1.0</span> <span class="o">/</span> <span class="n">meanTBA</span><span class="p">)</span>
            <span class="k">yield</span> <span class="n">hold</span><span class="p">,</span> <span class="bp">self</span><span class="p">,</span> <span class="n">t</span>


<span class="k">class</span> <span class="nc">Customer</span><span class="p">(</span><span class="n">Process</span><span class="p">):</span>
    <span class="sd">&quot;&quot;&quot; Customer arrives, is served and leaves &quot;&quot;&quot;</span>

    <span class="k">def</span> <span class="nf">visit</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">b</span><span class="p">):</span>
        <span class="n">arrive</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">sim</span><span class="o">.</span><span class="n">now</span><span class="p">()</span>
        <span class="k">print</span><span class="p">(</span><span class="s">&quot;</span><span class="si">%8.4f</span><span class="s"> </span><span class="si">%s</span><span class="s">: Here I am     &quot;</span> <span class="o">%</span> <span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">sim</span><span class="o">.</span><span class="n">now</span><span class="p">(),</span> <span class="bp">self</span><span class="o">.</span><span class="n">name</span><span class="p">))</span>
        <span class="k">yield</span> <span class="n">request</span><span class="p">,</span> <span class="bp">self</span><span class="p">,</span> <span class="n">b</span>
        <span class="n">wait</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">sim</span><span class="o">.</span><span class="n">now</span><span class="p">()</span> <span class="o">-</span> <span class="n">arrive</span>
        <span class="k">print</span><span class="p">(</span><span class="s">&quot;</span><span class="si">%8.4f</span><span class="s"> </span><span class="si">%s</span><span class="s">: Waited </span><span class="si">%6.3f</span><span class="s">&quot;</span> <span class="o">%</span> <span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">sim</span><span class="o">.</span><span class="n">now</span><span class="p">(),</span> <span class="bp">self</span><span class="o">.</span><span class="n">name</span><span class="p">,</span> <span class="n">wait</span><span class="p">))</span>
        <span class="n">tib</span> <span class="o">=</span> <span class="n">expovariate</span><span class="p">(</span><span class="mf">1.0</span> <span class="o">/</span> <span class="n">timeInBank</span><span class="p">)</span>
        <span class="k">yield</span> <span class="n">hold</span><span class="p">,</span> <span class="bp">self</span><span class="p">,</span> <span class="n">tib</span>
        <span class="k">yield</span> <span class="n">release</span><span class="p">,</span> <span class="bp">self</span><span class="p">,</span> <span class="n">b</span>
        <span class="k">print</span><span class="p">(</span><span class="s">&quot;</span><span class="si">%8.4f</span><span class="s"> </span><span class="si">%s</span><span class="s">: Finished      &quot;</span> <span class="o">%</span> <span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">sim</span><span class="o">.</span><span class="n">now</span><span class="p">(),</span> <span class="bp">self</span><span class="o">.</span><span class="n">name</span><span class="p">))</span>

<span class="c">## Model -----------------------------------</span>

<span class="k">class</span> <span class="nc">BankModel</span><span class="p">(</span><span class="n">Simulation</span><span class="p">):</span>
    <span class="k">def</span> <span class="nf">run</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">aseed</span><span class="p">):</span>
        <span class="sd">&quot;&quot;&quot; PEM &quot;&quot;&quot;</span>
        <span class="n">seed</span><span class="p">(</span><span class="n">aseed</span><span class="p">)</span>
        <span class="bp">self</span><span class="o">.</span><span class="n">k</span> <span class="o">=</span> <span class="n">Resource</span><span class="p">(</span><span class="n">name</span><span class="o">=</span><span class="s">&quot;Counter&quot;</span><span class="p">,</span> <span class="n">unitName</span><span class="o">=</span><span class="s">&quot;Clerk&quot;</span><span class="p">,</span> <span class="n">sim</span><span class="o">=</span><span class="bp">self</span><span class="p">)</span>
        <span class="n">s</span> <span class="o">=</span> <span class="n">Source</span><span class="p">(</span><span class="s">&#39;Source&#39;</span><span class="p">,</span> <span class="n">sim</span><span class="o">=</span><span class="bp">self</span><span class="p">)</span>
        <span class="bp">self</span><span class="o">.</span><span class="n">activate</span><span class="p">(</span><span class="n">s</span><span class="p">,</span> <span class="n">s</span><span class="o">.</span><span class="n">generate</span><span class="p">(</span><span class="n">number</span><span class="o">=</span><span class="n">maxNumber</span><span class="p">,</span> <span class="n">meanTBA</span><span class="o">=</span><span class="n">ARRint</span><span class="p">),</span> <span class="n">at</span><span class="o">=</span><span class="mf">0.0</span><span class="p">)</span>
        <span class="bp">self</span><span class="o">.</span><span class="n">simulate</span><span class="p">(</span><span class="n">until</span><span class="o">=</span><span class="n">maxTime</span><span class="p">)</span>

<span class="c">## Experiment data -------------------------</span>

<span class="n">maxNumber</span> <span class="o">=</span> <span class="mi">5</span>
<span class="n">maxTime</span> <span class="o">=</span> <span class="mf">400.0</span>    <span class="c"># minutes</span>
<span class="n">timeInBank</span> <span class="o">=</span> <span class="mf">12.0</span>  <span class="c"># mean, minutes</span>
<span class="n">ARRint</span> <span class="o">=</span> <span class="mf">10.0</span>      <span class="c"># mean, minutes</span>
<span class="n">seedVal</span> <span class="o">=</span> <span class="mi">99999</span>

<span class="c">## Experiment ------------------------------</span>

<span class="n">mymodel</span> <span class="o">=</span> <span class="n">BankModel</span><span class="p">()</span>
<span class="n">mymodel</span><span class="o">.</span><span class="n">run</span><span class="p">(</span><span class="n">aseed</span><span class="o">=</span><span class="n">seedVal</span><span class="p">)</span>
</pre></div>
</td></tr></table></div>
<p>And the output:</p>
<div class="highlight-python"><pre>  0.0000 Customer00: Here I am     
  0.0000 Customer00: Waited  0.000
  1.2839 Customer01: Here I am     
  4.4403 Customer00: Finished      
  4.4403 Customer01: Waited  3.156
 20.5786 Customer01: Finished      
 31.8430 Customer02: Here I am     
 31.8430 Customer02: Waited  0.000
 34.5594 Customer02: Finished      
 36.2308 Customer03: Here I am     
 36.2308 Customer03: Waited  0.000
 41.4313 Customer04: Here I am     
 67.1315 Customer03: Finished      
 67.1315 Customer04: Waited 25.700
 87.9241 Customer04: Finished      
</pre>
</div>
<p>This model with random arrivals and exponential service times is an
example of an M/M/1 queue and could rather easily be solved
analytically to calculate the steady-state mean waiting time and other
operating characteristics. (But not so easily solved for its transient
behavior.)</p>
</div>
</div>
<div class="section" id="several-service-counters">
<h2>Several Service Counters<a class="headerlink" href="#several-service-counters" title="Permalink to this headline">¶</a></h2>
<p>When we introduce several counters we must decide on a queue
discipline. Are customers going to make one queue or are they going to
form separate queues in front of each counter? Then there are
complications - will they be allowed to switch lines (jockey)? We
first consider a single queue with several counters and later consider
separate isolated queues. We will not look at jockeying.</p>
<div class="section" id="several-counters-but-a-single-queue">
<span id="index-11"></span><h3>Several Counters but a Single Queue<a class="headerlink" href="#several-counters-but-a-single-queue" title="Permalink to this headline">¶</a></h3>
<p>Here we model a bank whose customers arrive randomly and are to be
served at a group of counters, taking a random time for service, where
we assume that waiting customers form a single first-in first-out
queue.</p>
<p>The <em>only</em> difference between this model and the single-server model
is in line 37. We have provided two counters by increasing the
capacity of the <tt class="docutils literal"><span class="pre">counter</span></tt> resource to 2. This value is set in line 50
(<tt class="docutils literal"><span class="pre">Nc</span> <span class="pre">=</span> <span class="pre">2</span></tt>). These <em>units</em> of the
resource correspond to the two counters. Because both clerks cannot be
called <tt class="docutils literal"><span class="pre">Karen</span></tt>, we have used a general name of <tt class="docutils literal"><span class="pre">Clerk</span></tt> as resource
unit.</p>
<div class="highlight-python"><table class="highlighttable"><tr><td class="linenos"><div class="linenodiv"><pre> 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55</pre></div></td><td class="code"><div class="highlight"><pre><span class="sd">&quot;&quot;&quot; bank09_OO: Several Counters but a Single Queue &quot;&quot;&quot;</span>
<span class="kn">from</span> <span class="nn">SimPy.Simulation</span> <span class="kn">import</span> <span class="n">Simulation</span><span class="p">,</span> <span class="n">Process</span><span class="p">,</span> <span class="n">Resource</span><span class="p">,</span> <span class="n">hold</span><span class="p">,</span> <span class="n">request</span><span class="p">,</span> <span class="n">release</span>
<span class="kn">from</span> <span class="nn">random</span> <span class="kn">import</span> <span class="n">expovariate</span><span class="p">,</span> <span class="n">seed</span>

<span class="c">## Model components ------------------------</span>

<span class="k">class</span> <span class="nc">Source</span><span class="p">(</span><span class="n">Process</span><span class="p">):</span>
    <span class="sd">&quot;&quot;&quot; Source generates customers randomly &quot;&quot;&quot;</span>

    <span class="k">def</span> <span class="nf">generate</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">number</span><span class="p">,</span> <span class="n">meanTBA</span><span class="p">):</span>
        <span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="n">number</span><span class="p">):</span>
            <span class="n">c</span> <span class="o">=</span> <span class="n">Customer</span><span class="p">(</span><span class="n">name</span><span class="o">=</span><span class="s">&quot;Customer</span><span class="si">%02d</span><span class="s">&quot;</span> <span class="o">%</span> <span class="p">(</span><span class="n">i</span><span class="p">),</span> <span class="n">sim</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">sim</span><span class="p">)</span>
            <span class="bp">self</span><span class="o">.</span><span class="n">sim</span><span class="o">.</span><span class="n">activate</span><span class="p">(</span><span class="n">c</span><span class="p">,</span> <span class="n">c</span><span class="o">.</span><span class="n">visit</span><span class="p">(</span><span class="n">b</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">sim</span><span class="o">.</span><span class="n">k</span><span class="p">))</span>
            <span class="n">t</span> <span class="o">=</span> <span class="n">expovariate</span><span class="p">(</span><span class="mf">1.0</span> <span class="o">/</span> <span class="n">meanTBA</span><span class="p">)</span>
            <span class="k">yield</span> <span class="n">hold</span><span class="p">,</span> <span class="bp">self</span><span class="p">,</span> <span class="n">t</span>


<span class="k">class</span> <span class="nc">Customer</span><span class="p">(</span><span class="n">Process</span><span class="p">):</span>
    <span class="sd">&quot;&quot;&quot; Customer arrives, is served and leaves &quot;&quot;&quot;</span>

    <span class="k">def</span> <span class="nf">visit</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">b</span><span class="p">):</span>
        <span class="n">arrive</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">sim</span><span class="o">.</span><span class="n">now</span><span class="p">()</span>
        <span class="k">print</span><span class="p">(</span><span class="s">&quot;</span><span class="si">%8.4f</span><span class="s"> </span><span class="si">%s</span><span class="s">: Here I am     &quot;</span> <span class="o">%</span> <span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">sim</span><span class="o">.</span><span class="n">now</span><span class="p">(),</span> <span class="bp">self</span><span class="o">.</span><span class="n">name</span><span class="p">))</span>
        <span class="k">yield</span> <span class="n">request</span><span class="p">,</span> <span class="bp">self</span><span class="p">,</span> <span class="n">b</span>
        <span class="n">wait</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">sim</span><span class="o">.</span><span class="n">now</span><span class="p">()</span> <span class="o">-</span> <span class="n">arrive</span>
        <span class="k">print</span><span class="p">(</span><span class="s">&quot;</span><span class="si">%8.4f</span><span class="s"> </span><span class="si">%s</span><span class="s">: Waited </span><span class="si">%6.3f</span><span class="s">&quot;</span> <span class="o">%</span> <span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">sim</span><span class="o">.</span><span class="n">now</span><span class="p">(),</span> <span class="bp">self</span><span class="o">.</span><span class="n">name</span><span class="p">,</span> <span class="n">wait</span><span class="p">))</span>
        <span class="n">tib</span> <span class="o">=</span> <span class="n">expovariate</span><span class="p">(</span><span class="mf">1.0</span> <span class="o">/</span> <span class="n">timeInBank</span><span class="p">)</span>
        <span class="k">yield</span> <span class="n">hold</span><span class="p">,</span> <span class="bp">self</span><span class="p">,</span> <span class="n">tib</span>
        <span class="k">yield</span> <span class="n">release</span><span class="p">,</span> <span class="bp">self</span><span class="p">,</span> <span class="n">b</span>
        <span class="k">print</span><span class="p">(</span><span class="s">&quot;</span><span class="si">%8.4f</span><span class="s"> </span><span class="si">%s</span><span class="s">: Finished      &quot;</span> <span class="o">%</span> <span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">sim</span><span class="o">.</span><span class="n">now</span><span class="p">(),</span> <span class="bp">self</span><span class="o">.</span><span class="n">name</span><span class="p">))</span>

<span class="c">## Model -----------------------------------</span>

<span class="k">class</span> <span class="nc">BankModel</span><span class="p">(</span><span class="n">Simulation</span><span class="p">):</span>
    <span class="k">def</span> <span class="nf">run</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">aseed</span><span class="p">):</span>
        <span class="sd">&quot;&quot;&quot; PEM &quot;&quot;&quot;</span>
        <span class="n">seed</span><span class="p">(</span><span class="n">aseed</span><span class="p">)</span>
        <span class="bp">self</span><span class="o">.</span><span class="n">k</span> <span class="o">=</span> <span class="n">Resource</span><span class="p">(</span><span class="n">capacity</span><span class="o">=</span><span class="n">Nc</span><span class="p">,</span> <span class="n">name</span><span class="o">=</span><span class="s">&quot;Counter&quot;</span><span class="p">,</span> <span class="n">unitName</span><span class="o">=</span><span class="s">&quot;Clerk&quot;</span><span class="p">,</span>
                     <span class="n">sim</span><span class="o">=</span><span class="bp">self</span><span class="p">)</span>
        <span class="n">s</span> <span class="o">=</span> <span class="n">Source</span><span class="p">(</span><span class="s">&#39;Source&#39;</span><span class="p">,</span> <span class="n">sim</span><span class="o">=</span><span class="bp">self</span><span class="p">)</span>
        <span class="bp">self</span><span class="o">.</span><span class="n">activate</span><span class="p">(</span><span class="n">s</span><span class="p">,</span> <span class="n">s</span><span class="o">.</span><span class="n">generate</span><span class="p">(</span><span class="n">number</span><span class="o">=</span><span class="n">maxNumber</span><span class="p">,</span> <span class="n">meanTBA</span><span class="o">=</span><span class="n">ARRint</span><span class="p">),</span> <span class="n">at</span><span class="o">=</span><span class="mf">0.0</span><span class="p">)</span>
        <span class="bp">self</span><span class="o">.</span><span class="n">simulate</span><span class="p">(</span><span class="n">until</span><span class="o">=</span><span class="n">maxTime</span><span class="p">)</span>

<span class="c">## Experiment data -------------------------</span>

<span class="n">maxNumber</span> <span class="o">=</span> <span class="mi">5</span>      <span class="c"># of customers</span>
<span class="n">maxTime</span> <span class="o">=</span> <span class="mf">400.0</span>    <span class="c"># minutes</span>
<span class="n">timeInBank</span> <span class="o">=</span> <span class="mf">12.0</span>  <span class="c"># mean, minutes</span>
<span class="n">ARRint</span> <span class="o">=</span> <span class="mf">10.0</span>      <span class="c"># mean, minutes</span>
<span class="n">Nc</span> <span class="o">=</span> <span class="mi">2</span>             <span class="c"># of clerks/counters</span>
<span class="n">seedVal</span> <span class="o">=</span> <span class="mi">99999</span>

<span class="c">## Experiment ------------------------------</span>
<span class="n">mymodel</span> <span class="o">=</span> <span class="n">BankModel</span><span class="p">()</span>
<span class="n">mymodel</span><span class="o">.</span><span class="n">run</span><span class="p">(</span><span class="n">aseed</span><span class="o">=</span><span class="n">seedVal</span><span class="p">)</span>
</pre></div>
</td></tr></table></div>
<p>The waiting times in this model are much shorter than those for the
single service counter. For example, the waiting time for
<tt class="docutils literal"><span class="pre">Customer02</span></tt> has been reduced from <tt class="docutils literal"><span class="pre">51.213</span></tt> to <tt class="docutils literal"><span class="pre">12.581</span></tt>
minutes. Again we have too few customers processed to draw general
conclusions.</p>
<div class="highlight-python"><pre>  0.0000 Customer00: Here I am     
  0.0000 Customer00: Waited  0.000
  1.2839 Customer01: Here I am     
  1.2839 Customer01: Waited  0.000
  4.4403 Customer00: Finished      
 17.4222 Customer01: Finished      
 31.8430 Customer02: Here I am     
 31.8430 Customer02: Waited  0.000
 34.5594 Customer02: Finished      
 36.2308 Customer03: Here I am     
 36.2308 Customer03: Waited  0.000
 41.4313 Customer04: Here I am     
 41.4313 Customer04: Waited  0.000
 62.2239 Customer04: Finished      
 67.1315 Customer03: Finished      
</pre>
</div>
</div>
<div class="section" id="several-counters-with-individual-queues">
<span id="index-12"></span><h3>Several Counters with individual queues<a class="headerlink" href="#several-counters-with-individual-queues" title="Permalink to this headline">¶</a></h3>
<p>Each counter is now assumed to have its own queue.  The programming is
more complicated because the customer has to decide which queue to
join. The obvious technique is to make each counter a separate
resource and it is useful to make a list of resource objects (line
56).</p>
<p>In practice, a customer will join the shortest queue.  So we define
the Python function, <tt class="docutils literal"><span class="pre">NoInSystem(R)</span></tt> (lines 17-19) which
returns the sum of the number waiting and the number being served for
a particular counter, <tt class="docutils literal"><span class="pre">R</span></tt>. This function is used in line 28 to
list the numbers at each counter. It is then easy to find which
counter the arriving customer should join. We have also modified the
trace printout, line 29 to display the state of the system when
the customer arrives. We choose the shortest queue in lines
30-33 (the variable <tt class="docutils literal"><span class="pre">choice</span></tt>).</p>
<p>The rest of the program is the same as before.</p>
<div class="highlight-python"><table class="highlighttable"><tr><td class="linenos"><div class="linenodiv"><pre> 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70</pre></div></td><td class="code"><div class="highlight"><pre><span class="sd">&quot;&quot;&quot; bank10_OO: Several Counters with individual queues&quot;&quot;&quot;</span>
<span class="kn">from</span> <span class="nn">SimPy.Simulation</span> <span class="kn">import</span> <span class="n">Simulation</span><span class="p">,</span> <span class="n">Process</span><span class="p">,</span> <span class="n">Resource</span><span class="p">,</span> <span class="n">hold</span><span class="p">,</span> <span class="n">request</span><span class="p">,</span> <span class="n">release</span>
<span class="kn">from</span> <span class="nn">random</span> <span class="kn">import</span> <span class="n">expovariate</span><span class="p">,</span> <span class="n">seed</span>

<span class="c">## Model components ------------------------</span>

<span class="k">class</span> <span class="nc">Source</span><span class="p">(</span><span class="n">Process</span><span class="p">):</span>
    <span class="sd">&quot;&quot;&quot; Source generates customers randomly&quot;&quot;&quot;</span>

    <span class="k">def</span> <span class="nf">generate</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">number</span><span class="p">,</span> <span class="n">interval</span><span class="p">):</span>
        <span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="n">number</span><span class="p">):</span>
            <span class="n">c</span> <span class="o">=</span> <span class="n">Customer</span><span class="p">(</span><span class="n">name</span><span class="o">=</span><span class="s">&quot;Customer</span><span class="si">%02d</span><span class="s">&quot;</span> <span class="o">%</span> <span class="p">(</span><span class="n">i</span><span class="p">,),</span> <span class="n">sim</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">sim</span><span class="p">)</span>
            <span class="bp">self</span><span class="o">.</span><span class="n">sim</span><span class="o">.</span><span class="n">activate</span><span class="p">(</span><span class="n">c</span><span class="p">,</span> <span class="n">c</span><span class="o">.</span><span class="n">visit</span><span class="p">(</span><span class="n">counters</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">sim</span><span class="o">.</span><span class="n">kk</span><span class="p">))</span>
            <span class="n">t</span> <span class="o">=</span> <span class="n">expovariate</span><span class="p">(</span><span class="mf">1.0</span> <span class="o">/</span> <span class="n">interval</span><span class="p">)</span>
            <span class="k">yield</span> <span class="n">hold</span><span class="p">,</span> <span class="bp">self</span><span class="p">,</span> <span class="n">t</span>

<span class="k">def</span> <span class="nf">NoInSystem</span><span class="p">(</span><span class="n">R</span><span class="p">):</span>
    <span class="sd">&quot;&quot;&quot; Total number of customers in the resource R&quot;&quot;&quot;</span>
    <span class="k">return</span> <span class="p">(</span><span class="nb">len</span><span class="p">(</span><span class="n">R</span><span class="o">.</span><span class="n">waitQ</span><span class="p">)</span> <span class="o">+</span> <span class="nb">len</span><span class="p">(</span><span class="n">R</span><span class="o">.</span><span class="n">activeQ</span><span class="p">))</span>


<span class="k">class</span> <span class="nc">Customer</span><span class="p">(</span><span class="n">Process</span><span class="p">):</span>
    <span class="sd">&quot;&quot;&quot; Customer arrives, chooses the shortest queue</span>
<span class="sd">        is served and leaves</span>
<span class="sd">    &quot;&quot;&quot;</span>

    <span class="k">def</span> <span class="nf">visit</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">counters</span><span class="p">):</span>
        <span class="n">arrive</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">sim</span><span class="o">.</span><span class="n">now</span><span class="p">()</span>
        <span class="n">Qlength</span> <span class="o">=</span> <span class="p">[</span><span class="n">NoInSystem</span><span class="p">(</span><span class="n">counters</span><span class="p">[</span><span class="n">i</span><span class="p">])</span> <span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="n">Nc</span><span class="p">)]</span>
        <span class="k">print</span><span class="p">(</span><span class="s">&quot;</span><span class="si">%7.4f</span><span class="s"> </span><span class="si">%s</span><span class="s">: Here I am. </span><span class="si">%s</span><span class="s">&quot;</span> <span class="o">%</span> <span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">sim</span><span class="o">.</span><span class="n">now</span><span class="p">(),</span> <span class="bp">self</span><span class="o">.</span><span class="n">name</span><span class="p">,</span> <span class="n">Qlength</span><span class="p">))</span>
        <span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="n">Nc</span><span class="p">):</span>
            <span class="k">if</span> <span class="n">Qlength</span><span class="p">[</span><span class="n">i</span><span class="p">]</span> <span class="o">==</span> <span class="mi">0</span> <span class="ow">or</span> <span class="n">Qlength</span><span class="p">[</span><span class="n">i</span><span class="p">]</span> <span class="o">==</span> <span class="nb">min</span><span class="p">(</span><span class="n">Qlength</span><span class="p">):</span>
                <span class="n">choice</span> <span class="o">=</span> <span class="n">i</span>  <span class="c"># the chosen queue number</span>
                <span class="k">break</span>

        <span class="k">yield</span> <span class="n">request</span><span class="p">,</span> <span class="bp">self</span><span class="p">,</span> <span class="n">counters</span><span class="p">[</span><span class="n">choice</span><span class="p">]</span>
        <span class="n">wait</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">sim</span><span class="o">.</span><span class="n">now</span><span class="p">()</span> <span class="o">-</span> <span class="n">arrive</span>
        <span class="k">print</span><span class="p">(</span><span class="s">&quot;</span><span class="si">%7.4f</span><span class="s"> </span><span class="si">%s</span><span class="s">: Waited </span><span class="si">%6.3f</span><span class="s">&quot;</span> <span class="o">%</span> <span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">sim</span><span class="o">.</span><span class="n">now</span><span class="p">(),</span> <span class="bp">self</span><span class="o">.</span><span class="n">name</span><span class="p">,</span> <span class="n">wait</span><span class="p">))</span>
        <span class="n">tib</span> <span class="o">=</span> <span class="n">expovariate</span><span class="p">(</span><span class="mf">1.0</span> <span class="o">/</span> <span class="n">timeInBank</span><span class="p">)</span>
        <span class="k">yield</span> <span class="n">hold</span><span class="p">,</span> <span class="bp">self</span><span class="p">,</span> <span class="n">tib</span>
        <span class="k">yield</span> <span class="n">release</span><span class="p">,</span> <span class="bp">self</span><span class="p">,</span> <span class="n">counters</span><span class="p">[</span><span class="n">choice</span><span class="p">]</span>

        <span class="k">print</span><span class="p">(</span><span class="s">&quot;</span><span class="si">%7.4f</span><span class="s"> </span><span class="si">%s</span><span class="s">: Finished&quot;</span> <span class="o">%</span> <span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">sim</span><span class="o">.</span><span class="n">now</span><span class="p">(),</span> <span class="bp">self</span><span class="o">.</span><span class="n">name</span><span class="p">))</span>


<span class="c">## Model -----------------------------------</span>

<span class="k">class</span> <span class="nc">BankModel</span><span class="p">(</span><span class="n">Simulation</span><span class="p">):</span>
    <span class="k">def</span> <span class="nf">run</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">aseed</span><span class="p">):</span>
        <span class="sd">&quot;&quot;&quot; PEM &quot;&quot;&quot;</span>
        <span class="n">seed</span><span class="p">(</span><span class="n">aseed</span><span class="p">)</span>
        <span class="bp">self</span><span class="o">.</span><span class="n">kk</span> <span class="o">=</span> <span class="p">[</span><span class="n">Resource</span><span class="p">(</span><span class="n">name</span><span class="o">=</span><span class="s">&quot;Clerk0&quot;</span><span class="p">,</span> <span class="n">sim</span><span class="o">=</span><span class="bp">self</span><span class="p">),</span>
              <span class="n">Resource</span><span class="p">(</span><span class="n">name</span><span class="o">=</span><span class="s">&quot;Clerk1&quot;</span><span class="p">,</span> <span class="n">sim</span><span class="o">=</span><span class="bp">self</span><span class="p">)]</span>
        <span class="n">s</span> <span class="o">=</span> <span class="n">Source</span><span class="p">(</span><span class="s">&#39;Source&#39;</span><span class="p">,</span> <span class="n">sim</span><span class="o">=</span><span class="bp">self</span><span class="p">)</span>
        <span class="bp">self</span><span class="o">.</span><span class="n">activate</span><span class="p">(</span><span class="n">s</span><span class="p">,</span> <span class="n">s</span><span class="o">.</span><span class="n">generate</span><span class="p">(</span><span class="n">number</span><span class="o">=</span><span class="n">maxNumber</span><span class="p">,</span> <span class="n">interval</span><span class="o">=</span><span class="n">ARRint</span><span class="p">),</span> <span class="n">at</span><span class="o">=</span><span class="mf">0.0</span><span class="p">)</span>
        <span class="bp">self</span><span class="o">.</span><span class="n">simulate</span><span class="p">(</span><span class="n">until</span><span class="o">=</span><span class="n">maxTime</span><span class="p">)</span>

<span class="c">## Experiment data -------------------------</span>

<span class="n">maxNumber</span> <span class="o">=</span> <span class="mi">5</span>
<span class="n">maxTime</span> <span class="o">=</span> <span class="mf">400.0</span>    <span class="c"># minutes</span>
<span class="n">timeInBank</span> <span class="o">=</span> <span class="mf">12.0</span>  <span class="c"># mean, minutes</span>
<span class="n">ARRint</span> <span class="o">=</span> <span class="mf">10.0</span>      <span class="c"># mean, minutes</span>
<span class="n">Nc</span> <span class="o">=</span> <span class="mi">2</span>             <span class="c"># number of counters</span>
<span class="n">seedVal</span> <span class="o">=</span> <span class="mi">787878</span>

<span class="c">## Experiment ------------------------------</span>

<span class="n">mymodel</span> <span class="o">=</span> <span class="n">BankModel</span><span class="p">()</span>
<span class="n">mymodel</span><span class="o">.</span><span class="n">run</span><span class="p">(</span><span class="n">aseed</span><span class="o">=</span><span class="n">seedVal</span><span class="p">)</span>
</pre></div>
</td></tr></table></div>
<p>The results show how the customers choose the counter with the
smallest number. Unlucky <tt class="docutils literal"><span class="pre">Customer02</span></tt> who joins the wrong queue has
to wait until <tt class="docutils literal"><span class="pre">Customer00</span></tt> finishes at time <tt class="docutils literal"><span class="pre">55.067</span></tt>. There are,
however, too few arrivals in these runs, limited as they are to five
customers, to draw any general conclusions about the relative
efficiencies of the two systems.</p>
<div class="highlight-python"><pre> 0.0000 Customer00: Here I am. [0, 0]
 0.0000 Customer00: Waited  0.000
 9.7519 Customer00: Finished
12.0829 Customer01: Here I am. [0, 0]
12.0829 Customer01: Waited  0.000
25.9167 Customer02: Here I am. [1, 0]
25.9167 Customer02: Waited  0.000
38.2349 Customer03: Here I am. [1, 1]
40.4032 Customer04: Here I am. [2, 1]
43.0677 Customer02: Finished
43.0677 Customer04: Waited  2.664
44.0242 Customer01: Finished
44.0242 Customer03: Waited  5.789
60.1271 Customer03: Finished
70.2500 Customer04: Finished
</pre>
</div>
</div>
</div>
<div class="section" id="monitors-and-gathering-statistics">
<span id="index-13"></span><h2>Monitors and Gathering Statistics<a class="headerlink" href="#monitors-and-gathering-statistics" title="Permalink to this headline">¶</a></h2>
<p>The traces of output that have been displayed so far are valuable for
checking that the simulation is operating correctly but would become
too much if we simulate a whole day. We do need to get results from
our simulation to answer the original questions. What, then, is the
best way to summarize the results?</p>
<p>One way is to analyze the traces elsewhere, piping the trace output,
or a modified version of it, into a <em>real</em> statistical program such as
<em>R</em> for statistical analysis, or into a file for later examination by
a spreadsheet. We do not have space to examine this thoroughly here.
Another way of presenting the results is to provide graphical
output.</p>
<p>SimPy offers an easy way to gather a few simple statistics such as
averages: the <tt class="docutils literal"><span class="pre">Monitor</span></tt> and <tt class="docutils literal"><span class="pre">Tally</span></tt> classes. The <tt class="docutils literal"><span class="pre">Monitor</span></tt>
records the values of chosen variables as time series.
(but see the comments in <a class="reference internal" href="#final-remarks">Final Remarks</a>).</p>
<div class="section" id="the-bank-with-a-monitor">
<span id="index-14"></span><h3>The Bank with a Monitor<a class="headerlink" href="#the-bank-with-a-monitor" title="Permalink to this headline">¶</a></h3>
<p>We now demonstrate a <tt class="docutils literal"><span class="pre">Monitor</span></tt> that records the average waiting
times for our customers. We return to the system with random arrivals,
random service times and a single queue and remove the old trace
statements.  In practice, we would make the printouts controlled by a
variable, say, <tt class="docutils literal"><span class="pre">TRACE</span></tt> which is set in the experimental data (or
read in as a program option - but that is a different story). This
would aid in debugging and would not complicate the data analysis. We
will run the simulations for many more arrivals.</p>
<p>In addition to the imports in the programs shown before, we now have
to import the <tt class="docutils literal"><span class="pre">Monitor</span></tt> class (line 2).</p>
<p>A Monitor, <tt class="docutils literal"><span class="pre">wM</span></tt>, is created in line 37. We make the monitor an
attribute of the <tt class="docutils literal"><span class="pre">BankModel</span></tt> by the assignment to <tt class="docutils literal"><span class="pre">self.wM</span></tt>.
The monitor <tt class="docutils literal"><span class="pre">observes</span></tt> the
waiting time mentioned in line 25. As the monitor is an attribute
of the <tt class="docutils literal"><span class="pre">BankModel</span></tt> to which the customer belongs,
<tt class="docutils literal"><span class="pre">self.sim.wM</span></tt> can refere to it. We run
<tt class="docutils literal"><span class="pre">maxNumber</span> <span class="pre">=</span> <span class="pre">50</span></tt> customers (in the call of <tt class="docutils literal"><span class="pre">generate</span></tt> in line
39) and have increased <tt class="docutils literal"><span class="pre">maxTime</span></tt> to <tt class="docutils literal"><span class="pre">1000.0</span></tt> minutes.</p>
<div class="highlight-python"><table class="highlighttable"><tr><td class="linenos"><div class="linenodiv"><pre> 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60</pre></div></td><td class="code"><div class="highlight"><pre><span class="sd">&quot;&quot;&quot; bank11: The bank with a Monitor&quot;&quot;&quot;</span>
<span class="kn">from</span> <span class="nn">SimPy.Simulation</span> <span class="kn">import</span> <span class="n">Simulation</span><span class="p">,</span> <span class="n">Process</span><span class="p">,</span> <span class="n">Resource</span><span class="p">,</span> <span class="n">Monitor</span><span class="p">,</span> <span class="n">hold</span><span class="p">,</span>\
                               <span class="n">request</span><span class="p">,</span> <span class="n">release</span>
<span class="kn">from</span> <span class="nn">random</span> <span class="kn">import</span> <span class="n">expovariate</span><span class="p">,</span> <span class="n">seed</span>

<span class="c">## Model components ------------------------</span>

<span class="k">class</span> <span class="nc">Source</span><span class="p">(</span><span class="n">Process</span><span class="p">):</span>
    <span class="sd">&quot;&quot;&quot; Source generates customers randomly&quot;&quot;&quot;</span>

    <span class="k">def</span> <span class="nf">generate</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">number</span><span class="p">,</span> <span class="n">interval</span><span class="p">):</span>
        <span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="n">number</span><span class="p">):</span>
            <span class="n">c</span> <span class="o">=</span> <span class="n">Customer</span><span class="p">(</span><span class="n">name</span><span class="o">=</span><span class="s">&quot;Customer</span><span class="si">%02d</span><span class="s">&quot;</span> <span class="o">%</span> <span class="p">(</span><span class="n">i</span><span class="p">),</span> <span class="n">sim</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">sim</span><span class="p">)</span>
            <span class="bp">self</span><span class="o">.</span><span class="n">sim</span><span class="o">.</span><span class="n">activate</span><span class="p">(</span><span class="n">c</span><span class="p">,</span> <span class="n">c</span><span class="o">.</span><span class="n">visit</span><span class="p">(</span><span class="n">b</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">sim</span><span class="o">.</span><span class="n">k</span><span class="p">))</span>
            <span class="n">t</span> <span class="o">=</span> <span class="n">expovariate</span><span class="p">(</span><span class="mf">1.0</span> <span class="o">/</span> <span class="n">interval</span><span class="p">)</span>
            <span class="k">yield</span> <span class="n">hold</span><span class="p">,</span> <span class="bp">self</span><span class="p">,</span> <span class="n">t</span>


<span class="k">class</span> <span class="nc">Customer</span><span class="p">(</span><span class="n">Process</span><span class="p">):</span>
    <span class="sd">&quot;&quot;&quot; Customer arrives, is served and leaves &quot;&quot;&quot;</span>

    <span class="k">def</span> <span class="nf">visit</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">b</span><span class="p">):</span>
        <span class="n">arrive</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">sim</span><span class="o">.</span><span class="n">now</span><span class="p">()</span>
        <span class="k">yield</span> <span class="n">request</span><span class="p">,</span> <span class="bp">self</span><span class="p">,</span> <span class="n">b</span>
        <span class="n">wait</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">sim</span><span class="o">.</span><span class="n">now</span><span class="p">()</span> <span class="o">-</span> <span class="n">arrive</span>
        <span class="bp">self</span><span class="o">.</span><span class="n">sim</span><span class="o">.</span><span class="n">wM</span><span class="o">.</span><span class="n">observe</span><span class="p">(</span><span class="n">wait</span><span class="p">)</span>
        <span class="n">tib</span> <span class="o">=</span> <span class="n">expovariate</span><span class="p">(</span><span class="mf">1.0</span> <span class="o">/</span> <span class="n">timeInBank</span><span class="p">)</span>
        <span class="k">yield</span> <span class="n">hold</span><span class="p">,</span> <span class="bp">self</span><span class="p">,</span> <span class="n">tib</span>
        <span class="k">yield</span> <span class="n">release</span><span class="p">,</span> <span class="bp">self</span><span class="p">,</span> <span class="n">b</span>

<span class="c">## Model -----------------------------------</span>

<span class="k">class</span> <span class="nc">BankModel</span><span class="p">(</span><span class="n">Simulation</span><span class="p">):</span>
    <span class="k">def</span> <span class="nf">run</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">aseed</span><span class="p">):</span>
        <span class="sd">&quot;&quot;&quot; PEM &quot;&quot;&quot;</span>
        <span class="n">seed</span><span class="p">(</span><span class="n">aseed</span><span class="p">)</span>
        <span class="bp">self</span><span class="o">.</span><span class="n">k</span> <span class="o">=</span> <span class="n">Resource</span><span class="p">(</span><span class="n">capacity</span><span class="o">=</span><span class="n">Nc</span><span class="p">,</span> <span class="n">name</span><span class="o">=</span><span class="s">&quot;Clerk&quot;</span><span class="p">,</span> <span class="n">sim</span><span class="o">=</span><span class="bp">self</span><span class="p">)</span>
        <span class="bp">self</span><span class="o">.</span><span class="n">wM</span> <span class="o">=</span> <span class="n">Monitor</span><span class="p">(</span><span class="n">sim</span><span class="o">=</span><span class="bp">self</span><span class="p">)</span>
        <span class="n">s</span> <span class="o">=</span> <span class="n">Source</span><span class="p">(</span><span class="s">&#39;Source&#39;</span><span class="p">,</span> <span class="n">sim</span><span class="o">=</span><span class="bp">self</span><span class="p">)</span>
        <span class="bp">self</span><span class="o">.</span><span class="n">activate</span><span class="p">(</span><span class="n">s</span><span class="p">,</span> <span class="n">s</span><span class="o">.</span><span class="n">generate</span><span class="p">(</span><span class="n">number</span><span class="o">=</span><span class="n">maxNumber</span><span class="p">,</span> <span class="n">interval</span><span class="o">=</span><span class="n">ARRint</span><span class="p">),</span> <span class="n">at</span><span class="o">=</span><span class="mf">0.0</span><span class="p">)</span>
        <span class="bp">self</span><span class="o">.</span><span class="n">simulate</span><span class="p">(</span><span class="n">until</span><span class="o">=</span><span class="n">maxTime</span><span class="p">)</span>

<span class="c">## Experiment data -------------------------</span>

<span class="n">maxNumber</span> <span class="o">=</span> <span class="mi">50</span>
<span class="n">maxTime</span> <span class="o">=</span> <span class="mf">1000.0</span>   <span class="c"># minutes</span>
<span class="n">timeInBank</span> <span class="o">=</span> <span class="mf">12.0</span>  <span class="c"># mean, minutes</span>
<span class="n">ARRint</span> <span class="o">=</span> <span class="mf">10.0</span>      <span class="c"># mean, minutes</span>
<span class="n">Nc</span> <span class="o">=</span> <span class="mi">2</span>             <span class="c"># number of counters</span>
<span class="n">seedVal</span> <span class="o">=</span> <span class="mi">99999</span>

<span class="c">## Experiment   -----------------------------</span>

<span class="n">experi</span> <span class="o">=</span> <span class="n">BankModel</span><span class="p">()</span>
<span class="n">experi</span><span class="o">.</span><span class="n">run</span><span class="p">(</span><span class="n">aseed</span><span class="o">=</span><span class="n">seedVal</span><span class="p">)</span>

<span class="c">## Result  ----------------------------------</span>

<span class="n">result</span> <span class="o">=</span> <span class="n">experi</span><span class="o">.</span><span class="n">wM</span><span class="o">.</span><span class="n">count</span><span class="p">(),</span> <span class="n">experi</span><span class="o">.</span><span class="n">wM</span><span class="o">.</span><span class="n">mean</span><span class="p">()</span>
<span class="k">print</span><span class="p">(</span><span class="s">&quot;Average wait for </span><span class="si">%3d</span><span class="s"> completions was </span><span class="si">%5.3f</span><span class="s"> minutes.&quot;</span> <span class="o">%</span> <span class="n">result</span><span class="p">)</span>
</pre></div>
</td></tr></table></div>
<p>In previous programs, we have generated the <tt class="docutils literal"><span class="pre">BankModel</span></tt>
anonymously. Here, we do it differently: we assign the <tt class="docutils literal"><span class="pre">BankModel</span></tt>
object to the variable <tt class="docutils literal"><span class="pre">experi</span></tt> (line 53). This way,
we can reference its monitor attribute by <tt class="docutils literal"><span class="pre">experi.wM</span></tt> (line 58).
The average waiting time for 50 customers in this 2-counter system is
more reliable (i.e., less subject to random simulation effects) than
the times we measured before but it is still not sufficiently reliable for
real-world decisions. We should also replicate the runs using different
random number seeds. The result of this run is:</p>
<div class="highlight-python"><pre>Average wait for  50 completions was 8.941 minutes.
</pre>
</div>
</div>
<div class="section" id="multiple-runs">
<span id="index-15"></span><h3>Multiple runs<a class="headerlink" href="#multiple-runs" title="Permalink to this headline">¶</a></h3>
<p>To get a number of independent measurements we must replicate the runs
using different random number seeds. Each replication must be
independent of previous ones so the Monitor and Resources must be
nely generated for each run.</p>
<p><tt class="docutils literal"><span class="pre">model()</span></tt> is run for several different random-number seeds to get a set
of replications (lines 55-58). The seeds are stored in a list <tt class="docutils literal"><span class="pre">seedVals</span></tt>
(line 50). The <tt class="docutils literal"><span class="pre">for</span></tt> loop walks through this list and runs the model&#8217;s <tt class="docutils literal"><span class="pre">run</span></tt> method
for each entry.</p>
<p>Note that the <tt class="docutils literal"><span class="pre">bankModel</span></tt> is only generated once (line 54). This
is sufficient, as the <tt class="docutils literal"><span class="pre">run</span></tt> method freshly generates an empty event list,
a new counter resource, a new monitor, and a new source. This way, all
iterations are independent of each other.</p>
<div class="highlight-python"><table class="highlighttable"><tr><td class="linenos"><div class="linenodiv"><pre> 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59</pre></div></td><td class="code"><div class="highlight"><pre><span class="sd">&quot;&quot;&quot; bank12_OO: Multiple runs of the bank with a Monitor&quot;&quot;&quot;</span>
<span class="kn">from</span> <span class="nn">SimPy.Simulation</span> <span class="kn">import</span> <span class="n">Simulation</span><span class="p">,</span> <span class="n">Process</span><span class="p">,</span> <span class="n">Resource</span><span class="p">,</span> <span class="n">Monitor</span><span class="p">,</span> <span class="n">hold</span><span class="p">,</span>\
                               <span class="n">request</span><span class="p">,</span> <span class="n">release</span>
<span class="kn">from</span> <span class="nn">random</span> <span class="kn">import</span> <span class="n">expovariate</span><span class="p">,</span> <span class="n">seed</span>

<span class="c">## Model components ------------------------</span>

<span class="k">class</span> <span class="nc">Source</span><span class="p">(</span><span class="n">Process</span><span class="p">):</span>
    <span class="sd">&quot;&quot;&quot; Source generates customers randomly&quot;&quot;&quot;</span>

    <span class="k">def</span> <span class="nf">generate</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">number</span><span class="p">,</span> <span class="n">interval</span><span class="p">):</span>
        <span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="n">number</span><span class="p">):</span>
            <span class="n">c</span> <span class="o">=</span> <span class="n">Customer</span><span class="p">(</span><span class="n">name</span><span class="o">=</span><span class="s">&quot;Customer</span><span class="si">%02d</span><span class="s">&quot;</span> <span class="o">%</span> <span class="p">(</span><span class="n">i</span><span class="p">),</span> <span class="n">sim</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">sim</span><span class="p">)</span>
            <span class="bp">self</span><span class="o">.</span><span class="n">sim</span><span class="o">.</span><span class="n">activate</span><span class="p">(</span><span class="n">c</span><span class="p">,</span> <span class="n">c</span><span class="o">.</span><span class="n">visit</span><span class="p">(</span><span class="n">b</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">sim</span><span class="o">.</span><span class="n">k</span><span class="p">))</span>
            <span class="n">t</span> <span class="o">=</span> <span class="n">expovariate</span><span class="p">(</span><span class="mf">1.0</span> <span class="o">/</span> <span class="n">interval</span><span class="p">)</span>
            <span class="k">yield</span> <span class="n">hold</span><span class="p">,</span> <span class="bp">self</span><span class="p">,</span> <span class="n">t</span>


<span class="k">class</span> <span class="nc">Customer</span><span class="p">(</span><span class="n">Process</span><span class="p">):</span>
    <span class="sd">&quot;&quot;&quot; Customer arrives, is served and leaves &quot;&quot;&quot;</span>

    <span class="k">def</span> <span class="nf">visit</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">b</span><span class="p">):</span>
        <span class="n">arrive</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">sim</span><span class="o">.</span><span class="n">now</span><span class="p">()</span>
        <span class="k">yield</span> <span class="n">request</span><span class="p">,</span> <span class="bp">self</span><span class="p">,</span> <span class="n">b</span>
        <span class="n">wait</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">sim</span><span class="o">.</span><span class="n">now</span><span class="p">()</span> <span class="o">-</span> <span class="n">arrive</span>
        <span class="bp">self</span><span class="o">.</span><span class="n">sim</span><span class="o">.</span><span class="n">wM</span><span class="o">.</span><span class="n">observe</span><span class="p">(</span><span class="n">wait</span><span class="p">)</span>
        <span class="n">tib</span> <span class="o">=</span> <span class="n">expovariate</span><span class="p">(</span><span class="mf">1.0</span> <span class="o">/</span> <span class="n">timeInBank</span><span class="p">)</span>
        <span class="k">yield</span> <span class="n">hold</span><span class="p">,</span> <span class="bp">self</span><span class="p">,</span> <span class="n">tib</span>
        <span class="k">yield</span> <span class="n">release</span><span class="p">,</span> <span class="bp">self</span><span class="p">,</span> <span class="n">b</span>

<span class="c">## Model  ----------------------------------</span>

<span class="k">class</span> <span class="nc">BankModel</span><span class="p">(</span><span class="n">Simulation</span><span class="p">):</span>
    <span class="k">def</span> <span class="nf">run</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">aseed</span><span class="p">):</span>
        <span class="bp">self</span><span class="o">.</span><span class="n">initialize</span><span class="p">()</span>
        <span class="n">seed</span><span class="p">(</span><span class="n">aseed</span><span class="p">)</span>
        <span class="bp">self</span><span class="o">.</span><span class="n">k</span> <span class="o">=</span> <span class="n">Resource</span><span class="p">(</span><span class="n">capacity</span><span class="o">=</span><span class="n">Nc</span><span class="p">,</span> <span class="n">name</span><span class="o">=</span><span class="s">&quot;Clerk&quot;</span><span class="p">,</span> <span class="n">sim</span><span class="o">=</span><span class="bp">self</span><span class="p">)</span>
        <span class="bp">self</span><span class="o">.</span><span class="n">wM</span> <span class="o">=</span> <span class="n">Monitor</span><span class="p">(</span><span class="n">sim</span><span class="o">=</span><span class="bp">self</span><span class="p">)</span>
        <span class="n">s</span> <span class="o">=</span> <span class="n">Source</span><span class="p">(</span><span class="s">&#39;Source&#39;</span><span class="p">,</span> <span class="n">sim</span><span class="o">=</span><span class="bp">self</span><span class="p">)</span>
        <span class="bp">self</span><span class="o">.</span><span class="n">activate</span><span class="p">(</span><span class="n">s</span><span class="p">,</span> <span class="n">s</span><span class="o">.</span><span class="n">generate</span><span class="p">(</span><span class="n">number</span><span class="o">=</span><span class="n">maxNumber</span><span class="p">,</span> <span class="n">interval</span><span class="o">=</span><span class="n">ARRint</span><span class="p">),</span> <span class="n">at</span><span class="o">=</span><span class="mf">0.0</span><span class="p">)</span>
        <span class="bp">self</span><span class="o">.</span><span class="n">simulate</span><span class="p">(</span><span class="n">until</span><span class="o">=</span><span class="n">maxTime</span><span class="p">)</span>
        <span class="k">return</span> <span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">wM</span><span class="o">.</span><span class="n">count</span><span class="p">(),</span> <span class="bp">self</span><span class="o">.</span><span class="n">wM</span><span class="o">.</span><span class="n">mean</span><span class="p">())</span>

<span class="c">## Experiment data -------------------------</span>

<span class="n">maxNumber</span> <span class="o">=</span> <span class="mi">50</span>
<span class="n">maxTime</span> <span class="o">=</span> <span class="mf">2000.0</span>    <span class="c"># minutes</span>
<span class="n">timeInBank</span> <span class="o">=</span> <span class="mf">12.0</span>   <span class="c"># mean, minutes</span>
<span class="n">ARRint</span> <span class="o">=</span> <span class="mf">10.0</span>       <span class="c"># mean, minutes</span>
<span class="n">Nc</span> <span class="o">=</span> <span class="mi">2</span>              <span class="c"># number of counters</span>
<span class="n">seedVals</span> <span class="o">=</span> <span class="p">[</span><span class="mi">393939</span><span class="p">,</span> <span class="mi">31555999</span><span class="p">,</span> <span class="mi">777999555</span><span class="p">,</span> <span class="mi">319999771</span><span class="p">]</span>

<span class="c">## Experiment/Result  ----------------------------------</span>

<span class="n">mymodel</span> <span class="o">=</span> <span class="n">BankModel</span><span class="p">()</span>
<span class="k">for</span> <span class="n">Sd</span> <span class="ow">in</span> <span class="n">seedVals</span><span class="p">:</span>
    <span class="n">mymodel</span><span class="o">.</span><span class="n">run</span><span class="p">(</span><span class="n">aseed</span><span class="o">=</span><span class="n">Sd</span><span class="p">)</span>
    <span class="n">moni</span> <span class="o">=</span> <span class="n">mymodel</span><span class="o">.</span><span class="n">wM</span>
    <span class="k">print</span><span class="p">(</span><span class="s">&quot;Average wait for </span><span class="si">%3d</span><span class="s"> completions was </span><span class="si">%6.2f</span><span class="s"> minutes.&quot;</span> <span class="o">%</span> <span class="p">(</span><span class="n">moni</span><span class="o">.</span><span class="n">count</span><span class="p">(),</span> <span class="n">moni</span><span class="o">.</span><span class="n">mean</span><span class="p">()))</span>
</pre></div>
</td></tr></table></div>
<p>The results show some variation. Remember, though, that the system is still
only operating for 50 customers so the system may not be in
steady-state.</p>
<div class="highlight-python"><pre>Average wait for  50 completions was   3.66 minutes.
Average wait for  50 completions was   2.62 minutes.
Average wait for  50 completions was   8.97 minutes.
Average wait for  50 completions was   5.34 minutes.
</pre>
</div>
</div>
</div>
<div class="section" id="final-remarks">
<span id="index-16"></span><h2>Final Remarks<a class="headerlink" href="#final-remarks" title="Permalink to this headline">¶</a></h2>
<p>This introduction is too long and the examples are getting
longer. There is much more to say about simulation with <em>SimPy</em> but no
space. I finish with a list of topics for further study:</p>
<ul class="simple">
<li><strong>GUI input</strong>. Graphical input of simulation parameters could be an
advantage in some cases. <em>SimPy</em> allows this and programs using
these facilities have been developed (see, for example, program
<tt class="docutils literal"><span class="pre">MM1.py</span></tt> in the examples in the <em>SimPy</em> distribution)</li>
<li><strong>Graphical Output</strong>. Similarly, graphical output of results can
also be of value, not least in debugging simulation programs and
checking for steady-state conditions. SimPlot is useful here.</li>
<li><strong>Statistical Output</strong>. The <tt class="docutils literal"><span class="pre">Monitor</span></tt> class is useful in
presenting results but more powerful methods of analysis are often
needed. One solution is to output a trace and read that into a
large-scale statistical system such as <em>R</em>.</li>
<li><strong>Priorities and Reneging in queues</strong>. <em>SimPy</em> allows processes to
request units of resources under a priority queue discipline
(preemptive or not). It also allows processes to renege from a queue.</li>
<li><strong>Other forms of Resource Facilities</strong>. <em>SimPy</em> has two other
resource structures: <tt class="docutils literal"><span class="pre">Levels</span></tt> to hold bulk commodities, and
<tt class="docutils literal"><span class="pre">Stores</span></tt>   to contain an inventory of different object types.</li>
<li><strong>Advanced synchronization/scheduling commands</strong>. <em>SimPy</em> allows
process synchronization by events and signals.</li>
</ul>
</div>
<div class="section" id="acknowledgements">
<h2>Acknowledgements<a class="headerlink" href="#acknowledgements" title="Permalink to this headline">¶</a></h2>
<p>I thank Klaus Muller, Bob Helmbold, Mukhlis Matti and other developers
and users of SimPy for improving this document by sending their
comments. I would be grateful for further suggestions or
corrections. Please send them to: <em>vignaux</em> at
<em>users.sourceforge.net</em>.</p>
</div>
<div class="section" id="references">
<h2>References<a class="headerlink" href="#references" title="Permalink to this headline">¶</a></h2>
<ul class="simple">
<li>Python website: <a class="reference external" href="http://www.Python.org">http://www.Python.org</a></li>
<li>SimPy website: <a class="reference external" href="http://sourceforge.net/projects/simpy">http://sourceforge.net/projects/simpy</a></li>
</ul>
</div>
</div>


          </div>
        </div>
      </div>
      <div class="sphinxsidebar">
        <div class="sphinxsidebarwrapper">
            <p class="logo"><a href="../index.html">
              <img class="logo" src="../_static/sm_SimPy_Logo.png" alt="Logo"/>
            </a></p>
  <h3><a href="../index.html">Table Of Contents</a></h3>
  <ul>
<li><a class="reference internal" href="#">The Bank (Object Oriented version)</a><ul>
<li><a class="reference internal" href="#introduction">Introduction</a></li>
<li><a class="reference internal" href="#a-single-customer">A  single Customer</a><ul>
<li><a class="reference internal" href="#a-customer-arriving-at-a-fixed-time">A Customer arriving at a fixed time</a></li>
<li><a class="reference internal" href="#a-customer-arriving-at-random">A Customer arriving at random</a></li>
</ul>
</li>
<li><a class="reference internal" href="#more-customers">More Customers</a><ul>
<li><a class="reference internal" href="#many-customers">Many Customers</a></li>
<li><a class="reference internal" href="#many-random-customers">Many Random Customers</a></li>
</ul>
</li>
<li><a class="reference internal" href="#a-service-counter">A Service counter</a><ul>
<li><a class="reference internal" href="#one-service-counter">One Service counter</a></li>
<li><a class="reference internal" href="#a-server-with-a-random-service-time">A server with a random service time</a></li>
</ul>
</li>
<li><a class="reference internal" href="#several-service-counters">Several Service Counters</a><ul>
<li><a class="reference internal" href="#several-counters-but-a-single-queue">Several Counters but a Single Queue</a></li>
<li><a class="reference internal" href="#several-counters-with-individual-queues">Several Counters with individual queues</a></li>
</ul>
</li>
<li><a class="reference internal" href="#monitors-and-gathering-statistics">Monitors and Gathering Statistics</a><ul>
<li><a class="reference internal" href="#the-bank-with-a-monitor">The Bank with a Monitor</a></li>
<li><a class="reference internal" href="#multiple-runs">Multiple runs</a></li>
</ul>
</li>
<li><a class="reference internal" href="#final-remarks">Final Remarks</a></li>
<li><a class="reference internal" href="#acknowledgements">Acknowledgements</a></li>
<li><a class="reference internal" href="#references">References</a></li>
</ul>
</li>
</ul>

  <h4>Previous topic</h4>
  <p class="topless"><a href="OO_Approach.html"
                        title="previous chapter">Tutorial: An Object Oriented Approach to Using SimPy</a></p>
  <h4>Next topic</h4>
  <p class="topless"><a href="TheBank2OO.html"
                        title="next chapter">The Bank Tutorial (OO API) Part 2: More  examples of SimPy Simulation</a></p>
  <h3>This Page</h3>
  <ul class="this-page-menu">
    <li><a href="../_sources/Tutorials/TheBankOO.txt"
           rel="nofollow">Show Source</a></li>
  </ul>
<div id="searchbox" style="display: none">
  <h3>Quick search</h3>
    <form class="search" action="../search.html" method="get">
      <input type="text" name="q" />
      <input type="submit" value="Go" />
      <input type="hidden" name="check_keywords" value="yes" />
      <input type="hidden" name="area" value="default" />
    </form>
    <p class="searchtip" style="font-size: 90%">
    Enter search terms or a module, class or function name.
    </p>
</div>
<script type="text/javascript">$('#searchbox').show(0);</script>
        </div>
      </div>
      <div class="clearer"></div>
    </div>
    <div class="related">
      <h3>Navigation</h3>
      <ul>
        <li class="right" style="margin-right: 10px">
          <a href="../genindex.html" title="General Index"
             >index</a></li>
        <li class="right" >
          <a href="TheBank2OO.html" title="The Bank Tutorial (OO API) Part 2: More examples of SimPy Simulation"
             >next</a> |</li>
        <li class="right" >
          <a href="OO_Approach.html" title="Tutorial: An Object Oriented Approach to Using SimPy"
             >previous</a> |</li>
        <li><a href="../index.html">SimPy 2.3.1 documentation</a> &raquo;</li>
          <li><a href="../SimPy_Tutorials.html" >SimPy Tutorials</a> &raquo;</li> 
      </ul>
    </div>
    <div class="footer">
        &copy; Copyright 2002-2011, Klaus Müller, Tony Vignaux, Ontje Lünsdorf, Stefan Scherfke.
      Created using <a href="http://sphinx.pocoo.org/">Sphinx</a> 1.1.2.
    </div>
  </body>
</html>