File: 0003-Cherry-pick-upstream-fix-for-numpy-transition.patch

package info (click to toggle)
python-skbio 0.5.1-2
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 16,556 kB
  • ctags: 7,222
  • sloc: python: 42,085; ansic: 670; makefile: 180; sh: 10
file content (35 lines) | stat: -rw-r--r-- 1,367 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
From: Kevin Murray <kdmfoss@gmail.com>
Date: Thu, 22 Dec 2016 20:07:13 +1100
Subject: Cherry-pick upstream fix for numpy transition

---
 skbio/stats/composition.py | 9 ++++-----
 1 file changed, 4 insertions(+), 5 deletions(-)

diff --git a/skbio/stats/composition.py b/skbio/stats/composition.py
index eb6b364..95f7820 100644
--- a/skbio/stats/composition.py
+++ b/skbio/stats/composition.py
@@ -973,8 +973,8 @@ def ancom(table, grouping,
 
     # Multiple comparisons
     if multiple_comparisons_correction == 'holm-bonferroni':
-        logratio_mat = np.apply_along_axis(_holm_bonferroni,
-                                           1, logratio_mat)
+        logratio_mat = np.vstack([_holm_bonferroni(logratio_mat[i, :])
+                                  for i in range(logratio_mat.shape[0])])
     np.fill_diagonal(logratio_mat, 1)
     W = (logratio_mat < alpha).sum(axis=1)
     c_start = W.max() / n_feat
@@ -1079,9 +1079,8 @@ def _log_compare(mat, cats,
 
     for i in range(c-1):
         ratio = (log_mat[:, i].T - log_mat[:, i+1:].T).T
-        m, p = np.apply_along_axis(func,
-                                   axis=0,
-                                   arr=ratio)
+        p = np.array([func(ratio[:, i])[1]
+                      for i in range(ratio.shape[1])])
         log_ratio[i, i+1:] = np.squeeze(np.array(p.T))
     return log_ratio