1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
|
# ----------------------------------------------------------------------------
# Copyright (c) 2013--, scikit-bio development team.
#
# Distributed under the terms of the Modified BSD License.
#
# The full license is in the file COPYING.txt, distributed with this software.
# ----------------------------------------------------------------------------
from abc import ABCMeta, abstractmethod
import numpy as np
import pandas as pd
class _Indexing(metaclass=ABCMeta):
def __init__(self, instance, axis=None):
self._obj = instance
self._axis = axis
def __call__(self, axis=None):
"""Set the axis to index on."""
# verify axis param, discard value
self._obj._is_sequence_axis(axis)
return self.__class__(self._obj, axis=axis)
def __getitem__(self, indexable):
if self._axis is not None:
if self._obj._is_sequence_axis(self._axis):
return self._slice_on_first_axis(self._obj, indexable)
else:
return self._slice_on_second_axis(self._obj, indexable)
if type(indexable) is tuple:
if len(indexable) > 2:
raise ValueError("Can only slice on two axes. Tuple is length:"
" %r" % len(indexable))
elif len(indexable) > 1:
return self._handle_both_axes(*indexable)
else:
indexable, = indexable
return self._slice_on_first_axis(self._obj, indexable)
def _handle_both_axes(self, seq_index, pos_index):
seq_index = self._convert_ellipsis(seq_index)
pos_index = self._convert_ellipsis(pos_index)
if not hasattr(seq_index, '__iter__') and seq_index == slice(None):
# Only slice second axis
return self._slice_on_second_axis(self._obj, pos_index)
else:
r = self._slice_on_first_axis(self._obj, seq_index)
if type(r) is self._obj.dtype:
# [1, 1] [1, *]
return r[pos_index]
else:
# [*, 1] [*, *]
return self._slice_on_second_axis(r, pos_index)
def _slice_on_second_axis(self, obj, indexable):
indexable = self._convert_ellipsis(indexable)
if self.is_scalar(indexable, axis=1):
# [..., 1]
return self._get_position(obj, indexable)
else:
# [..., *]
return self._slice_positions(obj, indexable)
def _slice_on_first_axis(self, obj, indexable):
indexable = self._convert_ellipsis(indexable)
if self.is_scalar(indexable, axis=0):
# [1]
return self._get_sequence(obj, indexable)
else:
# [*]
return self._slice_sequences(obj, indexable)
def _convert_ellipsis(self, indexable):
if indexable is Ellipsis:
return slice(None)
return indexable
@abstractmethod
def is_scalar(self, indexable, axis):
raise NotImplementedError
@abstractmethod
def _get_sequence(self, obj, indexable):
raise NotImplementedError
@abstractmethod
def _slice_sequences(self, obj, indexable):
raise NotImplementedError
def _get_position(self, obj, indexable):
return obj._get_position_(indexable)
def _slice_positions(self, obj, indexable):
indexable = self._assert_bool_vector_right_size(indexable, axis=1)
indexable = self._convert_iterable_of_slices(indexable)
return obj._slice_positions_(indexable)
def _convert_iterable_of_slices(self, indexable):
# _assert_bool_vector_right_size will have converted the iterable to
# an ndarray if it wasn't yet.
if isinstance(indexable, np.ndarray) and indexable.dtype == object:
indexable = np.r_[tuple(indexable)]
return indexable
def _assert_bool_vector_right_size(self, indexable, axis):
if isinstance(indexable, np.ndarray):
pass
elif hasattr(indexable, '__iter__'):
indexable = np.asarray(list(indexable))
else:
return indexable
if indexable.dtype == bool and len(indexable) != self._obj.shape[axis]:
raise IndexError("Boolean index's length (%r) does not match the"
" axis length (%r)" % (len(indexable),
self._obj.shape[axis]))
return indexable
class TabularMSAILoc(_Indexing):
def is_scalar(self, indexable, axis):
return np.isscalar(indexable)
def _get_sequence(self, obj, indexable):
return obj._get_sequence_iloc_(indexable)
def _slice_sequences(self, obj, indexable):
indexable = self._assert_bool_vector_right_size(indexable, axis=0)
indexable = self._convert_iterable_of_slices(indexable)
return obj._slice_sequences_iloc_(indexable)
class TabularMSALoc(_Indexing):
def is_scalar(self, indexable, axis):
"""
Sometimes (MultiIndex!) something that looks like a scalar, isn't
and vice-versa.
Consider:
A 0
1
2
B 0
1
2
'A' looks like a scalar, but isn't.
('A', 0) doesn't look like a scalar, but it is.
"""
index = self._obj.index
complete_key = False
partial_key = False
duplicated_key = False
if axis == 0 and self._has_fancy_index():
try:
if type(indexable) is tuple:
complete_key = (len(indexable) == len(index.levshape) and
indexable in index)
partial_key = not complete_key and indexable in index
except TypeError: # Unhashable type, no biggie
pass
if index.has_duplicates:
duplicated_key = indexable in index.get_duplicates()
return (not duplicated_key and
((np.isscalar(indexable) and not partial_key) or complete_key))
def _get_sequence(self, obj, indexable):
self._assert_tuple_rules(indexable)
return obj._get_sequence_loc_(indexable)
def _slice_sequences(self, obj, indexable):
self._assert_tuple_rules(indexable)
if (self._has_fancy_index() and
type(indexable) is not tuple and
pd.core.common.is_list_like(indexable) and
len(indexable) > 0):
if not self.is_scalar(indexable[0], axis=0):
raise TypeError("A list is used with complete labels, try"
" using a tuple to indicate independent"
" selections of a `pd.MultiIndex`.")
# prevents
# pd.Series.loc[['x', 'b', 'b', 'a']] from being interepereted as
# pd.Series.loc[[('a', 0), ('b', 1)]] who knows why it does this.
elif indexable[0] not in self._obj.index:
raise KeyError(repr(indexable[0]))
# pandas acts normal if the first element is actually a scalar
self._assert_bool_vector_right_size(indexable, axis=0)
return obj._slice_sequences_loc_(indexable)
def _assert_tuple_rules(self, indexable):
# pandas is scary in what it will accept sometimes...
if type(indexable) is tuple:
if not self._has_fancy_index():
# prevents unfriendly errors
raise TypeError("Cannot provide a tuple to the first axis of"
" `loc` unless the MSA's `index` is a"
" `pd.MultiIndex`.")
elif self.is_scalar(indexable[0], axis=0):
# prevents unreasonable results
# pd.Series.loc[('a', 0), ('b', 1)] would be interpreted as
# pd.Series.loc[('a', 1)] which is horrifying.
raise TypeError("A tuple provided to the first axis of `loc`"
" represents a selection for each index of a"
" `pd.MultiIndex`; it should not contain a"
" complete label.")
def _has_fancy_index(self):
return hasattr(self._obj.index, 'levshape')
|