1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712
|
# -----------------------------------------------------------------------------
# Copyright (c) 2013--, scikit-bio development team.
#
# Distributed under the terms of the Modified BSD License.
#
# The full license is in the file COPYING.txt, distributed with this software.
# -----------------------------------------------------------------------------
from cpython cimport bool
import numpy as np
cimport numpy as cnp
from skbio.sequence import Protein, Sequence
cdef extern from "_lib/ssw.h":
ctypedef struct s_align:
cnp.uint16_t score1
cnp.uint16_t score2
cnp.int32_t ref_begin1
cnp.int32_t ref_end1
cnp.int32_t read_begin1
cnp.int32_t read_end1
cnp.int32_t ref_end2
cnp.uint32_t* cigar
cnp.int32_t cigarLen
ctypedef struct s_profile:
pass
cdef s_profile* ssw_init(const cnp.int8_t* read,
const cnp.int32_t readLen,
const cnp.int8_t* mat,
const cnp.int32_t n,
const cnp.int8_t score_size)
cdef void init_destroy(s_profile* p)
cdef s_align* ssw_align(const s_profile* prof,
const cnp.int8_t* ref,
cnp.int32_t refLen,
const cnp.uint8_t weight_gapO,
const cnp.uint8_t weight_gapE,
const cnp.uint8_t flag,
const cnp.uint16_t filters,
const cnp.int32_t filterd,
const cnp.int32_t maskLen)
cdef void align_destroy(s_align* a)
np_aa_table = np.array([
23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23,
23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23,
23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23,
23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23,
23, 0, 20, 4, 3, 6, 13, 7, 8, 9, 23, 11, 10, 12, 2, 23,
14, 5, 1, 15, 16, 23, 19, 17, 22, 18, 21, 23, 23, 23, 23, 23,
23, 0, 20, 4, 3, 6, 13, 7, 8, 9, 23, 11, 10, 12, 2, 23,
14, 5, 1, 15, 16, 23, 19, 17, 22, 18, 21, 23, 23, 23, 23, 23])
np_nt_table = np.array([
4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
4, 0, 4, 1, 4, 4, 4, 2, 4, 4, 4, 4, 4, 4, 4, 4,
4, 4, 4, 4, 3, 0, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
4, 0, 4, 1, 4, 4, 4, 2, 4, 4, 4, 4, 4, 4, 4, 4,
4, 4, 4, 4, 3, 0, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4])
mid_table = np.array(['M', 'I', 'D'])
cdef class AlignmentStructure:
"""Wraps the result of an alignment c struct so it is accessible to Python
Notes
-----
`cigar` may be empty depending on parameters used.
`target_begin` and `query_begin` may be -1 depending on parameters used.
Developer note: `read_sequence` is an alias for `query_sequence` used by
ssw.c as is `reference_sequence` for `target_sequence`
"""
cdef s_align *p
cdef str read_sequence
cdef str reference_sequence
cdef int index_starts_at
cdef str _cigar_string
def __cinit__(self, read_sequence, reference_sequence, index_starts_at):
# We use `read_sequence` and `reference_sequence` here as they are
# treated sematically as a private output of ssw.c like the `s_align`
# struct
self.read_sequence = read_sequence
self.reference_sequence = reference_sequence
self.index_starts_at = index_starts_at
cdef __constructor(self, s_align* pointer):
self.p = pointer
def __dealloc__(self):
if self.p is not NULL:
align_destroy(self.p)
def __getitem__(self, key):
return getattr(self, key)
def __repr__(self):
data = ['optimal_alignment_score', 'suboptimal_alignment_score',
'query_begin', 'query_end', 'target_begin',
'target_end_optimal', 'target_end_suboptimal', 'cigar',
'query_sequence', 'target_sequence']
return "{\n%s\n}" % ',\n'.join([
" {!r}: {!r}".format(k, self[k]) for k in data])
def __str__(self):
score = "Score: %d" % self.optimal_alignment_score
if self.query_sequence and self.cigar:
target = self.aligned_target_sequence
query = self.aligned_query_sequence
align_len = len(query)
if align_len > 13:
target = target[:10] + "..."
query = query[:10] + "..."
length = "Length: %d" % align_len
return "\n".join([query, target, score, length])
return score
@property
def optimal_alignment_score(self):
"""Optimal alignment score
Returns
-------
int
The optimal alignment score
"""
return self.p.score1
@property
def suboptimal_alignment_score(self):
"""Suboptimal alignment score
Returns
-------
int
The suboptimal alignment score
"""
return self.p.score2
@property
def target_begin(self):
"""Character index where the target's alignment begins
Returns
-------
int
The character index of the target sequence's alignment's beginning
Notes
-----
The result is a 0-based index by default
"""
return self.p.ref_begin1 + self.index_starts_at if (self.p.ref_begin1
>= 0) else -1
@property
def target_end_optimal(self):
"""Character index where the target's optimal alignment ends
Returns
-------
int
The character index of the target sequence's optimal alignment's
end
Notes
-----
The result is a 0-based index by default
"""
return self.p.ref_end1 + self.index_starts_at
@property
def target_end_suboptimal(self):
"""Character index where the target's suboptimal alignment ends
Returns
-------
int
The character index of the target sequence's suboptimal alignment's
end
Notes
-----
The result is a 0-based index by default
"""
return self.p.ref_end2 + self.index_starts_at
@property
def query_begin(self):
"""Returns the character index at which the query sequence begins
Returns
-------
int
The character index of the query sequence beginning
Notes
-----
The result is a 0-based index by default
"""
return self.p.read_begin1 + self.index_starts_at if (self.p.read_begin1
>= 0) else -1
@property
def query_end(self):
"""Character index at where query sequence ends
Returns
-------
int
The character index of the query sequence ending
Notes
-----
The result is a 0-based index by default
"""
return self.p.read_end1 + self.index_starts_at
@property
def cigar(self):
"""Cigar formatted string for the optimal alignment
Returns
-------
str
The cigar string of the optimal alignment
Notes
-----
The cigar string format is described in [1]_ and [2]_.
If there is no cigar or optimal alignment, this will return an empty
string
References
----------
.. [1] http://genome.sph.umich.edu/wiki/SAM
.. [2] http://samtools.github.io/hts-specs/SAMv1.pdf
"""
# Memoization! (1/2)
if self._cigar_string is not None:
return self._cigar_string
cigar_list = []
for i in range(self.p.cigarLen):
# stored the same as that in BAM format,
# high 28 bits: length, low 4 bits: M/I/D (0/1/2)
# Length, remove first 4 bits
cigar_list.append(str(self.p.cigar[i] >> 4))
# M/I/D, lookup first 4 bits in the mid_table
cigar_list.append(mid_table[self.p.cigar[i] & 0xf])
# Memoization! (2/2)
self._cigar_string = "".join(cigar_list)
return self._cigar_string
@property
def query_sequence(self):
"""Query sequence
Returns
-------
str
The query sequence
"""
return self.read_sequence
@property
def target_sequence(self):
"""Target sequence
Returns
-------
str
The target sequence
"""
return self.reference_sequence
@property
def aligned_query_sequence(self):
"""Returns the query sequence aligned by the cigar
Returns
-------
str
Aligned query sequence
Notes
-----
This will return `None` if `suppress_sequences` was True when this
object was created
"""
if self.query_sequence:
return self._get_aligned_sequence(self.query_sequence,
self._tuples_from_cigar(),
self.query_begin, self.query_end,
"D")
return None
@property
def aligned_target_sequence(self):
"""Returns the target sequence aligned by the cigar
Returns
-------
str
Aligned target sequence
Notes
-----
This will return `None` if `suppress_sequences` was True when this
object was created
"""
if self.target_sequence:
return self._get_aligned_sequence(self.target_sequence,
self._tuples_from_cigar(),
self.target_begin,
self.target_end_optimal,
"I")
return None
def set_zero_based(self, is_zero_based):
"""Set the aligment indices to start at 0 if True else 1 if False
"""
if is_zero_based:
self.index_starts_at = 0
else:
self.index_starts_at = 1
def is_zero_based(self):
"""Returns True if alignment inidices start at 0 else False
Returns
-------
bool
Whether the alignment inidices start at 0
"""
return self.index_starts_at == 0
def _get_aligned_sequence(self, sequence, tuple_cigar, begin, end,
gap_type):
# Save the original index scheme and then set it to 0 (1/2)
orig_z_base = self.is_zero_based()
self.set_zero_based(True)
aligned_sequence = []
seq = sequence[begin:end + 1]
index = 0
for length, mid in tuple_cigar:
if mid == 'M':
aligned_sequence += [seq[i]
for i in range(index, length + index)]
index += length
elif mid == gap_type:
aligned_sequence += (['-'] * length)
else:
pass
# Our sequence end is sometimes beyond the cigar:
aligned_sequence += [seq[i] for i in range(index, end - begin + 1)]
# Revert our index scheme to the original (2/2)
self.set_zero_based(orig_z_base)
return "".join(aligned_sequence)
def _tuples_from_cigar(self):
tuples = []
length_stack = []
for character in self.cigar:
if character.isdigit():
length_stack.append(character)
else:
tuples.append((int("".join(length_stack)), character))
length_stack = []
return tuples
cdef class StripedSmithWaterman:
"""Performs a striped (banded) Smith Waterman Alignment.
First a StripedSmithWaterman object must be instantiated with a query
sequence. The resulting object is then callable with a target sequence and
may be reused on a large collection of target sequences.
Parameters
----------
query_sequence : string
The query sequence, this may be upper or lowercase from the set of
{A, C, G, T, N} (nucleotide) or from the set of
{A, R, N, D, C, Q, E, G, H, I, L, K, M, F, P, S, T, W, Y, V, B, Z, X, *
} (protein)
gap_open_penalty : int, optional
The penalty applied to creating a gap in the alignment. This CANNOT
be 0.
Default is 5.
gap_extend_penalty : int, optional
The penalty applied to extending a gap in the alignment. This CANNOT
be 0.
Default is 2.
score_size : int, optional
If your estimated best alignment score is < 255 this should be 0.
If your estimated best alignment score is >= 255, this should be 1.
If you don't know, this should be 2.
Default is 2.
mask_length : int, optional
The distance between the optimal and suboptimal alignment ending
position >= mask_length. We suggest to use len(query_sequence)/2, if
you don't have special concerns.
Detailed description of mask_length: After locating the optimal
alignment ending position, the suboptimal alignment score can be
heuristically found by checking the second largest score in the array
that contains the maximal score of each column of the SW matrix. In
order to avoid picking the scores that belong to the alignments
sharing the partial best alignment, SSW C library masks the reference
loci nearby (mask length = mask_length) the best alignment ending
position and locates the second largest score from the unmasked
elements.
Default is 15.
mask_auto : bool, optional
This will automatically set the used mask length to be
max(int(len(`query_sequence`)/2), `mask_length`).
Default is True.
score_only : bool, optional
This will prevent the best alignment beginning positions (BABP) and the
cigar from being returned as a result. This overrides any setting on
`score_filter`, `distance_filter`, and `override_skip_babp`. It has the
highest precedence.
Default is False.
score_filter : int, optional
If set, this will prevent the cigar and best alignment beginning
positions (BABP) from being returned if the optimal alignment score is
less than `score_filter` saving some time computationally. This filter
may be overridden by `score_only` (prevents BABP and cigar, regardless
of other arguments), `distance_filter` (may prevent cigar, but will
cause BABP to be calculated), and `override_skip_babp` (will ensure
BABP) returned.
Default is None.
distance_filter : int, optional
If set, this will prevent the cigar from being returned if the length
of the `query_sequence` or the `target_sequence` is less than
`distance_filter` saving some time computationally. The results of
this filter may be overridden by `score_only` (prevents BABP and cigar,
regardless of other arguments), and `score_filter` (may prevent cigar).
`override_skip_babp` has no effect with this filter applied, as BABP
must be calculated to perform the filter.
Default is None.
override_skip_babp : bool, optional
When True, the best alignment beginning positions (BABP) will always be
returned unless `score_only` is set to True.
Default is False.
protein : bool, optional
When True, the `query_sequence` and `target_sequence` will be read as
protein sequence. When False, the `query_sequence` and
`target_sequence` will be read as nucleotide sequence. If True, a
`substitution_matrix` must be supplied.
Default is False.
match_score : int, optional
When using a nucleotide sequence, the match_score is the score added
when a match occurs. This is ignored if `substitution_matrix` is
provided.
Default is 2.
mismatch_score : int, optional
When using a nucleotide sequence, the mismatch is the score subtracted
when a mismatch occurs. This should be a negative integer.
This is ignored if `substitution_matrix` is provided.
Default is -3.
substitution_matrix : 2D dict, optional
Provides the score for each possible substitution of sequence
characters. This may be used for protein or nucleotide sequences. The
entire set of possible combinations for the relevant sequence type MUST
be enumerated in the dict of dicts. This will override `match_score`
and `mismatch_score`. Required when `protein` is True.
Default is None.
suppress_sequences : bool, optional
If True, the query and target sequences will not be returned for
convenience.
Default is False.
zero_index : bool, optional
If True, all inidices will start at 0. If False, all inidices will
start at 1.
Default is True.
Notes
-----
This is a wrapper for the SSW package [1]_.
`mask_length` has to be >= 15, otherwise the suboptimal alignment
information will NOT be returned.
`match_score` is a positive integer and `mismatch_score` is a negative
integer.
`match_score` and `mismatch_score` are only meaningful in the context of
nucleotide sequences.
A substitution matrix must be provided when working with protein sequences.
References
----------
.. [1] Zhao, Mengyao, Wan-Ping Lee, Erik P. Garrison, & Gabor T.
Marth. "SSW Library: An SIMD Smith-Waterman C/C++ Library for
Applications". PLOS ONE (2013). Web. 11 July 2014.
http://www.plosone.org/article/info:doi/10.1371/journal.pone.0082138
"""
cdef s_profile *profile
cdef cnp.uint8_t gap_open_penalty
cdef cnp.uint8_t gap_extend_penalty
cdef cnp.uint8_t bit_flag
cdef cnp.uint16_t score_filter
cdef cnp.int32_t distance_filter
cdef cnp.int32_t mask_length
cdef str read_sequence
cdef int index_starts_at
cdef bool is_protein
cdef bool suppress_sequences
cdef cnp.ndarray __KEEP_IT_IN_SCOPE_read
cdef cnp.ndarray __KEEP_IT_IN_SCOPE_matrix
def __cinit__(self, query_sequence,
gap_open_penalty=5, # BLASTN Default
gap_extend_penalty=2, # BLASTN Default
score_size=2, # BLASTN Default
mask_length=15, # Minimum length for a suboptimal alignment
mask_auto=True,
score_only=False,
score_filter=None,
distance_filter=None,
override_skip_babp=False,
protein=False,
match_score=2, # BLASTN Default
mismatch_score=-3, # BLASTN Default
substitution_matrix=None,
suppress_sequences=False,
zero_index=True):
# initalize our values
self.read_sequence = query_sequence
if gap_open_penalty <= 0:
raise ValueError("`gap_open_penalty` must be > 0")
self.gap_open_penalty = gap_open_penalty
if gap_extend_penalty <= 0:
raise ValueError("`gap_extend_penalty` must be > 0")
self.gap_extend_penalty = gap_extend_penalty
self.distance_filter = 0 if distance_filter is None else \
distance_filter
self.score_filter = 0 if score_filter is None else score_filter
self.suppress_sequences = suppress_sequences
self.is_protein = protein
self.bit_flag = self._get_bit_flag(override_skip_babp, score_only)
# http://www.cs.utexas.edu/users/EWD/transcriptions/EWD08xx/EWD831.html
# Dijkstra knows what's up:
self.index_starts_at = 0 if zero_index else 1
# set up our matrix
cdef cnp.ndarray[cnp.int8_t, ndim = 1, mode = "c"] matrix
if substitution_matrix is None:
if protein:
raise Exception("Must provide a substitution matrix for"
" protein sequences")
matrix = self._build_match_matrix(match_score, mismatch_score)
else:
matrix = self._convert_dict2d_to_matrix(substitution_matrix)
# Set up our mask_length
# Mask is recommended to be max(query_sequence/2, 15)
if mask_auto:
self.mask_length = len(query_sequence) / 2
if self.mask_length < mask_length:
self.mask_length = mask_length
else:
self.mask_length = mask_length
cdef cnp.ndarray[cnp.int8_t, ndim = 1, mode = "c"] read_seq
read_seq = self._seq_converter(query_sequence)
cdef cnp.int32_t read_length
read_length = len(query_sequence)
cdef cnp.int8_t s_size
s_size = score_size
cdef cnp.int32_t m_width
m_width = 24 if self.is_protein else 5
cdef s_profile* p
self.profile = ssw_init(<cnp.int8_t*> read_seq.data,
read_length,
<cnp.int8_t*> matrix.data,
m_width,
s_size)
# A hack to keep the python GC from eating our data
self.__KEEP_IT_IN_SCOPE_read = read_seq
self.__KEEP_IT_IN_SCOPE_matrix = matrix
def __call__(self, target_sequence):
"""Align `target_sequence` to `query_sequence`
Parameters
----------
target_sequence : str
Returns
-------
skbio.alignment.AlignmentStructure
The resulting alignment.
"""
reference_sequence = target_sequence
cdef cnp.ndarray[cnp.int8_t, ndim = 1, mode = "c"] reference
reference = self._seq_converter(reference_sequence)
cdef cnp.int32_t ref_length
ref_length = len(reference_sequence)
cdef s_align *align
align = ssw_align(self.profile, <cnp.int8_t*> reference.data,
ref_length, self.gap_open_penalty,
self.gap_extend_penalty, self.bit_flag,
self.score_filter, self.distance_filter,
self.mask_length)
# Cython won't let me do this correctly, so duplicate code ahoy:
if self.suppress_sequences:
alignment = AlignmentStructure("", "", self.index_starts_at)
else:
alignment = AlignmentStructure(self.read_sequence,
reference_sequence,
self.index_starts_at)
alignment.__constructor(align) # Hack to get a pointer through
return alignment
def __dealloc__(self):
if self.profile is not NULL:
init_destroy(self.profile)
def _get_bit_flag(self, override_skip_babp, score_only):
bit_flag = 0
if score_only:
return bit_flag
if override_skip_babp:
bit_flag = bit_flag | 0x8
if self.distance_filter != 0:
bit_flag = bit_flag | 0x4
if self.score_filter != 0:
bit_flag = bit_flag | 0x2
if bit_flag == 0 or bit_flag == 8:
bit_flag = bit_flag | 0x1
return bit_flag
cdef cnp.ndarray[cnp.int8_t, ndim = 1, mode = "c"] _seq_converter(
self,
sequence):
cdef cnp.ndarray[cnp.int8_t, ndim = 1, mode = "c"] seq
seq = np.empty(len(sequence), dtype=np.int8)
if self.is_protein:
for i, char in enumerate(sequence):
seq[i] = np_aa_table[ord(char)]
else:
for i, char in enumerate(sequence):
seq[i] = np_nt_table[ord(char)]
return seq
cdef cnp.ndarray[cnp.int8_t, ndim = 1, mode = "c"] \
_build_match_matrix(self, match_score, mismatch_score):
sequence_order = "ACGTN"
dict2d = {}
for row in sequence_order:
dict2d[row] = {}
for column in sequence_order:
if column == 'N' or row == 'N':
dict2d[row][column] = 0
else:
dict2d[row][column] = match_score if row == column \
else mismatch_score
return self._convert_dict2d_to_matrix(dict2d)
cdef cnp.ndarray[cnp.int8_t, ndim = 1, mode = "c"] \
_convert_dict2d_to_matrix(self, dict2d):
if self.is_protein:
sequence_order = "ARNDCQEGHILKMFPSTWYVBZX*"
else:
sequence_order = "ACGTN"
cdef int i = 0
length = len(sequence_order)
cdef cnp.ndarray[cnp.int8_t, ndim = 1, mode = "c"] py_list_matrix = \
np.empty(length*length, dtype=np.int8)
for row in sequence_order:
for column in sequence_order:
py_list_matrix[i] = dict2d[row][column]
i += 1
return py_list_matrix
|