1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351
|
# ----------------------------------------------------------------------------
# Copyright (c) 2013--, scikit-bio development team.
#
# Distributed under the terms of the Modified BSD License.
#
# The full license is in the file COPYING.txt, distributed with this software.
# ----------------------------------------------------------------------------
import re
from skbio.metadata import IntervalMetadata
from skbio.io.format._base import _line_generator
from skbio.io import FileFormatError
def _vocabulary_change(format='insdc', read_in=True):
'''Return a dict that converts between memory and output vocabulary.'''
convert = {'phase': {'insdc': 'codon_start'},
'source': {'insdc': 'inference'},
'db_xref': {'gff3': 'Dbxref'},
'note': {'gff3': 'Note'}}
if read_in:
return {v[format]: k for k, v in convert.items() if format in v}
else:
return {k: v[format] for k, v in convert.items() if format in v}
def _vocabulary_skip(format='insdc'):
'''Return a list of vocabularies that should be skipped when auto
output to disk for the specified format.
'''
skip = {'type': ('insdc', 'gff3'),
'ID': ('insdc'),
'translation': ('gff3'),
'strand': ('insdc')}
return [k for k, v in skip.items() if format in v]
def _yield_section(is_another_section, **kwargs):
'''Returns function that returns successive sections from file.
Parameters
----------
is_another_section : callable
It takes a string as input and return a boolean indicating
a new section starts.
kwargs : dict, optional
Keyword arguments will be passed to `_line_generator`.
Returns
-------
function
A function accept a list of lines as input and return
a generator to yield section one by one.
'''
def parser(lines):
curr = []
for line in _line_generator(lines, **kwargs):
# if we find another, return the previous section
if is_another_section(line):
if curr:
yield curr
curr = []
curr.append(line)
# don't forget to return the last section in the file
if curr:
yield curr
return parser
def _parse_section_default(
lines, label_delimiter=None, join_delimiter=' ', return_label=False):
'''Parse sections in default way.
Do 2 things:
1. split first line with label_delimiter for label
2. join all the lines into one str with join_delimiter.
'''
data = []
label = None
line = lines[0]
items = line.split(label_delimiter, 1)
if len(items) == 2:
label, section = items
else:
label = items[0]
section = ""
data.append(section)
data.extend(lines[1:])
data = join_delimiter.join(i.strip() for i in data)
if return_label:
return label, data
else:
return data
def _serialize_section_default(header, obj, indent=12):
return '{header:<{indent}}{obj}\n'.format(
header=header, obj=obj, indent=indent)
def _parse_feature_table(lines, length):
'''parse DDBJ/ENA/GenBank Feature Table.'''
imd = IntervalMetadata(length)
# skip the 1st FEATURES line
if lines[0].startswith('FEATURES'):
lines = lines[1:]
# magic number 21: the lines following header of each feature
# are indented with 21 spaces.
feature_indent = ' ' * 21
section_splitter = _yield_section(
lambda x: not x.startswith(feature_indent),
skip_blanks=True, strip=False)
for section in section_splitter(lines):
_parse_single_feature(section, imd)
return imd
def _parse_single_feature(lines, imd):
'''Parse a feature.
Parse a feature and add it to ``IntervalMetadata`` object.
Parameters
----------
imd : IntervalMetadata
'''
voca_change = _vocabulary_change('insdc')
# each component of a feature starts with '/', except the 1st
# component of location.
section_splitter = _yield_section(
lambda x: x.startswith('/'), strip=True)
section_iter = section_splitter(lines)
# 1st section is location
section = next(section_iter)
feature_type, feature_loc = _parse_section_default(
section, join_delimiter='', return_label=True)
metadata = {'type': feature_type, '__location': feature_loc}
intvl = imd.add(*_parse_loc_str(feature_loc))
for section in section_iter:
# following sections are Qualifiers
k, v = _parse_section_default(
section, label_delimiter='=',
join_delimiter=' ', return_label=True)
# 1st char is '/'
k = k[1:]
if k in voca_change:
k = voca_change[k]
if k == 'phase':
v = int(v) - 1
# some Qualifiers can appear multiple times
if k in metadata:
if not isinstance(metadata[k], list):
metadata[k] = [metadata[k]]
metadata[k].append(v)
else:
metadata[k] = v
intvl.metadata.update(metadata)
def _parse_loc_str(loc_str):
'''Parse location string.
.. warning: This converts coordinates to 0-based from 1-based
GenBank coordinate system.
The location descriptor can be one of the following [1]_:
(a) a single base number. e.g. 467
(b) a site between two indicated adjoining bases. e.g. 123^124
(c) a single base chosen from within a specified range of bases (not
allowed for new entries). e.g. 102.110
(d) the base numbers delimiting a sequence span. e.g.340..565
(e) a remote entry identifier followed by a local location
descriptor (i.e., a-d). e.g. J00194.1:100..202
Notes
-----
This does not fully handle (e) case. It will discard the remote
entry part and only keep the local part. When it parses locations
across strand (e.g. "complement(123..145),200..209"), it will
record all the span parts but will record strand as negative.
References
----------
.. [1] http://www.insdc.org/files/feature_table.html#3.4
'''
# define the tokens
operators = ['join', 'complement', 'order']
LPAREN = r'(?P<LPAREN>\()'
RPAREN = r'(?P<RPAREN>\))'
COMMA = r'(?P<COMMA>,)'
WS = r'(?P<WS>\s+)'
a = r'(?P<A>\d+)'
b = r'(?P<B>\d+\^\d+)'
c = r'(?P<C>\d+\.\d+)'
d = r'(?P<D><?\d+\.\.>?\d+)'
e_left = r'(?P<EL><?[a-zA-Z_0-9\.]+:\d+\.\.>?\d+)'
e_right = r'(?P<ER><?\d+\.\.>?[a-zA-Z_0-9\.]+:\d+)'
illegal = r'(?P<ILLEGAL>.+)'
# The order of tokens in the master regular expression also
# matters. When matching, re tries to match pattens in the order
# specified. Thus, if a pattern happens to be a substring of a
# longer pattern, you need to make sure the longer pattern goes
# first.
master_pat = re.compile('|'.join(
operators + [WS, LPAREN, RPAREN, COMMA,
b, c, d, e_left, e_right, a,
illegal]))
scanner = master_pat.scanner(loc_str)
bounds = []
fuzzy = []
metadata = {'strand': '+'}
for m in iter(scanner.match, None):
p, v = m.lastgroup, m.group()
if v == 'complement':
metadata['strand'] = '-'
elif p == 'A':
start = int(v)
bounds.append((start-1, start))
fuzzy.append((False, False))
elif p == 'B':
start, end = v.split('^')
start = int(start)
bounds.append((start-1, start))
fuzzy.append((False, False))
elif p == 'C' or p == 'D':
if p == 'C':
start, end = v.split('.')
else:
start, end = v.split('..')
fuzzy_s = fuzzy_e = False
if start.startswith('<'):
start = start[1:]
fuzzy_s = True
if end.startswith('>'):
end = end[1:]
fuzzy_e = True
bounds.append((int(start)-1, int(end)))
fuzzy.append((fuzzy_s, fuzzy_e))
elif p == 'ILLEGAL':
raise FileFormatError(
'Could not parse location string: "%s"' % loc_str)
return bounds, fuzzy, metadata
def _serialize_feature_table(intervals, indent=21):
'''
Parameters
----------
intervals : list of ``Interval``
'''
for intvl in intervals:
yield _serialize_single_feature(intvl, indent)
def _serialize_single_feature(intvl, indent=21):
'''
Parameters
----------
intvl : Interval
'''
# there are 5 spaces before Feature Key starts.
padding = ' ' * 5
qualifiers = []
md = intvl.metadata
voca_skip = _vocabulary_skip('insdc')
voca_change = _vocabulary_change('insdc', read_in=False)
# sort it so the output order is deterministic
for k in sorted(md):
if k.startswith('__') or k in voca_skip:
continue
v = md[k]
if k == 'phase':
v = str(v + 1)
if k in voca_change:
k = voca_change[k]
if isinstance(v, list):
for vi in v:
qualifiers.append(_serialize_qualifier(k, vi))
else:
qualifiers.append(_serialize_qualifier(k, v))
if '__location' in md:
loc = md['__location']
else:
loc = _serialize_location(intvl)
# the qualifiers start at column 22
qualifiers = [' ' * indent + i for i in qualifiers]
return '{header:<{indent}}{loc}\n{qualifiers}\n'.format(
header=padding + md['type'],
loc=loc,
indent=indent,
qualifiers='\n'.join(qualifiers))
def _serialize_location(intvl):
loc = []
for bound, fuzzy in zip(intvl.bounds, intvl.fuzzy):
start, end = bound
start += 1
if start == end:
s = str(start)
elif fuzzy[0] and fuzzy[1]:
s = '<%d..>%d' % (start, end)
elif fuzzy[0] and not fuzzy[1]:
s = '<%d..%d' % (start, end)
elif not fuzzy[0] and fuzzy[1]:
s = '%d..>%d' % (start, end)
else:
s = '%d..%d' % (start, end)
loc.append(s)
if len(loc) > 1:
loc_str = 'join({})'.format(','.join(loc))
else:
loc_str = loc[0]
if intvl.metadata.get('strand') == '-':
loc_str = 'complement({})'.format(loc_str)
return loc_str
def _serialize_qualifier(key, value):
'''Serialize a Qualifier in a feature.
Parameters
----------
value : int, str
'''
# if value is empty
if not value:
return '/%s' % key
return '/{k}={v}'.format(k=key, v=value)
|