File: blast7.py

package info (click to toggle)
python-skbio 0.5.1-2
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 16,556 kB
  • ctags: 7,222
  • sloc: python: 42,085; ansic: 670; makefile: 180; sh: 10
file content (381 lines) | stat: -rw-r--r-- 15,430 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
"""
BLAST+7 format (:mod:`skbio.io.format.blast7`)
==============================================

.. currentmodule:: skbio.io.format.blast7

The BLAST+7 format (``blast+7``) stores the results of a BLAST [1]_ database
search. This format is produced by both BLAST+ output
format 7 and legacy BLAST output format 9. The results
are stored in a simple tabular format with headers. Values are separated by the
tab character.

An example BLAST+7-formatted file comparing two nucleotide sequences, taken
from [2]_ (tab characters represented by ``<tab>``):

.. code-block:: none

    # BLASTN 2.2.18+
    # Query: gi|1786181|gb|AE000111.1|AE000111
    # Subject: ecoli
    # Fields: query acc., subject acc., evalue, q. start, q. end, s. st\
art, s. end
    # 5 hits found
    AE000111<tab>AE000111<tab>0.0<tab>1<tab>10596<tab>1<tab>10596
    AE000111<tab>AE000174<tab>8e-30<tab>5565<tab>5671<tab>6928<tab>6821
    AE000111<tab>AE000394<tab>1e-27<tab>5587<tab>5671<tab>135<tab>219
    AE000111<tab>AE000425<tab>6e-26<tab>5587<tab>5671<tab>8552<tab>8468
    AE000111<tab>AE000171<tab>3e-24<tab>5587<tab>5671<tab>2214<tab>2130

Format Support
==============
**Has Sniffer: Yes**

**State: Experimental as of 0.4.1.**

+------+------+---------------------------------------------------------------+
|Reader|Writer|                          Object Class                         |
+======+======+===============================================================+
|Yes   |No    |:mod:`pandas.DataFrame`                                        |
+------+------+---------------------------------------------------------------+

Format Specification
====================
There are two BLAST+7 file formats supported by scikit-bio: BLAST+ output
format 7 (``-outfmt 7``) and legacy BLAST output format 9 (``-m 9``). Both file
formats are structurally similar, with minor differences.

Example BLAST+ output format 7 file::

    # BLASTP 2.2.31+
    # Query: query1
    # Subject: subject2
    # Fields: q. start, q. end, s. start, s. end, identical, mismatches, sbjct\
frame, query acc.ver, subject acc.ver
    # 2 hits found
    1	8	3	10	8	0	1	query1	subject2
    2	5	2	15	8	0	2	query1	subject2

.. note:: Database searches without hits may occur in BLAST+ output format 7
   files. scikit-bio ignores these "empty" records:

   .. code-block:: none

       # BLASTP 2.2.31+
       # Query: query1
       # Subject: subject1
       # 0 hits found

Example legacy BLAST output format 9 file:

.. code-block:: none

    # BLASTN 2.2.3 [May-13-2002]
    # Database: other_vertebrate
    # Query: AF178033
    # Fields:
    Query id,Subject id,% identity,alignment length,mismatches,gap openings,q.\
 start,q. end,s. start,s. end,e-value,bit score
    AF178033    EMORG:AF178033  100.00  811 0   0   1   811 1   811 0.0 1566.6
    AF178033    EMORG:AF031394  99.63   811 3   0   1   811 99  909 0.0 1542.8

.. note:: scikit-bio requires fields to be consistent within a file.

BLAST Column Types
------------------
The following column types are output by BLAST and supported by scikit-bio.
For more information on these column types, see :mod:`skbio.io.format.blast6`.

+-------------------+----------------------+
|Field Name         |DataFrame Column Name |
+===================+======================+
|query id           |qseqid                |
+-------------------+----------------------+
|query gi           |qgi                   |
+-------------------+----------------------+
|query acc.         |qacc                  |
+-------------------+----------------------+
|query acc.ver      |qaccver               |
+-------------------+----------------------+
|query length       |qlen                  |
+-------------------+----------------------+
|subject id         |sseqid                |
+-------------------+----------------------+
|subject ids        |sallseqid             |
+-------------------+----------------------+
|subject gi         |sgi                   |
+-------------------+----------------------+
|subject gis        |sallgi                |
+-------------------+----------------------+
|subject acc.       |sacc                  |
+-------------------+----------------------+
|subject acc.ver    |saccver               |
+-------------------+----------------------+
|subject accs       |sallacc               |
+-------------------+----------------------+
|subject length     |slen                  |
+-------------------+----------------------+
|q\. start          |qstart                |
+-------------------+----------------------+
|q\. end            |qend                  |
+-------------------+----------------------+
|s\. start          |sstart                |
+-------------------+----------------------+
|s\. end            |send                  |
+-------------------+----------------------+
|query seq          |qseq                  |
+-------------------+----------------------+
|subject seq        |sseq                  |
+-------------------+----------------------+
|evalue             |evalue                |
+-------------------+----------------------+
|bit score          |bitscore              |
+-------------------+----------------------+
|score              |score                 |
+-------------------+----------------------+
|alignment length   |length                |
+-------------------+----------------------+
|% identity         |pident                |
+-------------------+----------------------+
|identical          |nident                |
+-------------------+----------------------+
|mismatches         |mismatch              |
+-------------------+----------------------+
|positives          |positive              |
+-------------------+----------------------+
|gap opens          |gapopen               |
+-------------------+----------------------+
|gaps               |gaps                  |
+-------------------+----------------------+
|% positives        |ppos                  |
+-------------------+----------------------+
|query/sbjct frames |frames                |
+-------------------+----------------------+
|query frame        |qframe                |
+-------------------+----------------------+
|sbjct frame        |sframe                |
+-------------------+----------------------+
|BTOP               |btop                  |
+-------------------+----------------------+
|subject tax ids    |staxids               |
+-------------------+----------------------+
|subject sci names  |sscinames             |
+-------------------+----------------------+
|subject com names  |scomnames             |
+-------------------+----------------------+
|subject blast names|sblastnames           |
+-------------------+----------------------+
|subject super king\|sskingdoms            |
|doms               |                      |
+-------------------+----------------------+
|subject title      |stitle                |
+-------------------+----------------------+
|subject strand     |sstrand               |
+-------------------+----------------------+
|subject titles     |salltitles            |
+-------------------+----------------------+
|% query coverage p\|qcovs                 |
|er subject         |                      |
+-------------------+----------------------+
|% query coverage p\|qcovhsp               |
|er hsp             |                      |
+-------------------+----------------------+

Examples
========
Suppose we have a BLAST+7 file:

>>> from io import StringIO
>>> import skbio.io
>>> import pandas as pd
>>> fs = '\\n'.join([
...     '# BLASTN 2.2.18+',
...     '# Query: gi|1786181|gb|AE000111.1|AE000111',
...     '# Database: ecoli',
...     '# Fields: query acc., subject acc., evalue, q. start, q. end, s. st\
art, s. end',
...     '# 5 hits found',
...     'AE000111\\tAE000111\\t0.0\\t1\\t10596\\t1\\t10596',
...     'AE000111\\tAE000174\\t8e-30\\t5565\\t5671\\t6928\\t6821',
...     'AE000111\\tAE000171\\t3e-24\\t5587\\t5671\\t2214\\t2130',
...     'AE000111\\tAE000425\\t6e-26\\t5587\\t5671\\t8552\\t8468'
... ])
>>> fh = StringIO(fs)

Read the file into a ``pd.DataFrame``:

>>> df = skbio.io.read(fh, into=pd.DataFrame)
>>> df # doctest: +NORMALIZE_WHITESPACE
       qacc      sacc        evalue  qstart     qend  sstart     send
0  AE000111  AE000111  0.000000e+00     1.0  10596.0     1.0  10596.0
1  AE000111  AE000174  8.000000e-30  5565.0   5671.0  6928.0   6821.0
2  AE000111  AE000171  3.000000e-24  5587.0   5671.0  2214.0   2130.0
3  AE000111  AE000425  6.000000e-26  5587.0   5671.0  8552.0   8468.0

Suppose we have a legacy BLAST 9 file:

>>> from io import StringIO
>>> import skbio.io
>>> import pandas as pd
>>> fs = '\\n'.join([
...     '# BLASTN 2.2.3 [May-13-2002]',
...     '# Database: other_vertebrate',
...     '# Query: AF178033',
...     '# Fields: ',
...     'Query id,Subject id,% identity,alignment length,mismatches,gap openin\
gs,q. start,q. end,s. start,s. end,e-value,bit score',
...     'AF178033\\tEMORG:AF178033\\t100.00\\t811\\t0\\t0\\t1\\t811\\t1\\t81\
1\\t0.0\\t1566.6',
...     'AF178033\\tEMORG:AF178032\\t94.57\\t811\\t44\\t0\\t1\\t811\\t1\\t81\
1\\t0.0\\t1217.7',
...     'AF178033\\tEMORG:AF178031\\t94.82\\t811\\t42\\t0\\t1\\t811\\t1\\t81\
1\\t0.0\\t1233.5'
... ])
>>> fh = StringIO(fs)

Read the file into a ``pd.DataFrame``:

>>> df = skbio.io.read(fh, into=pd.DataFrame)
>>> df # doctest: +NORMALIZE_WHITESPACE
     qseqid          sseqid  pident  length  mismatch  gapopen  qstart  qend \\
0  AF178033  EMORG:AF178033  100.00   811.0       0.0      0.0     1.0  811.0
1  AF178033  EMORG:AF178032   94.57   811.0      44.0      0.0     1.0  811.0
2  AF178033  EMORG:AF178031   94.82   811.0      42.0      0.0     1.0  811.0
<BLANKLINE>
   sstart   send  evalue  bitscore
0     1.0  811.0     0.0    1566.6
1     1.0  811.0     0.0    1217.7
2     1.0  811.0     0.0    1233.5

References
==========
.. [1] Altschul, S.F., Gish, W., Miller, W., Myers, E.W. & Lipman, D.J. (1990)
   "Basic local alignment search tool." J. Mol. Biol. 215:403-410.
.. [2] http://www.ncbi.nlm.nih.gov/books/NBK279682/
"""

# ----------------------------------------------------------------------------
# Copyright (c) 2013--, scikit-bio development team.
#
# Distributed under the terms of the Modified BSD License.
#
# The full license is in the file COPYING.txt, distributed with this software.
# ----------------------------------------------------------------------------

import pandas as pd

from skbio.io import create_format, BLAST7FormatError
from skbio.io.format._blast import _parse_blast_data

blast7 = create_format('blast+7')

column_converter = {'query id': 'qseqid', 'query gi': 'qgi',
                    'query acc.': 'qacc', 'query acc.ver': 'qaccver',
                    'query length': 'qlen', 'subject id': 'sseqid',
                    'subject ids': 'sallseqid', 'subject gi': 'sgi',
                    'subject gis': 'sallgi', 'subject acc.': 'sacc',
                    'subject acc.ver': 'saccver', 'subject accs.': 'sallacc',
                    'subject length': 'slen', 'q. start': 'qstart',
                    'q. end': 'qend', 's. start': 'sstart', 's. end': 'send',
                    'query seq': 'qseq', 'subject seq': 'sseq',
                    'evalue': 'evalue', 'bit score': 'bitscore',
                    'score': 'score', 'alignment length': 'length',
                    '% identity': 'pident', 'identical': 'nident',
                    'mismatches': 'mismatch', 'positives': 'positive',
                    'gap opens': 'gapopen', 'gaps': 'gaps',
                    '% positives': 'ppos', 'query/sbjct frames': 'frames',
                    'query frame': 'qframe', 'sbjct frame': 'sframe',
                    'BTOP': 'btop', 'subject tax ids': 'staxids',
                    'subject sci names': 'sscinames',
                    'subject com names': 'scomnames',
                    'subject blast names': 'sblastnames',
                    'subject super kingdoms': 'sskingdoms',
                    'subject title': 'stitle', 'subject titles': 'salltitles',
                    'subject strand': 'sstrand',
                    '% query coverage per subject': 'qcovs',
                    '% query coverage per hsp': 'qcovhsp',
                    'Query id': 'qseqid', 'Subject id': 'sseqid',
                    'gap openings': 'gapopen', 'e-value': 'evalue'}


@blast7.sniffer()
def _blast7_sniffer(fh):
    # Smells a BLAST+7 file if the following conditions are present
    #   -First line contains "BLAST"
    #   -Second line contains "Query" or "Database"
    #   -Third line starts with "Subject" or "Query" or "Database"
    lines = [line for _, line in zip(range(3), fh)]
    if len(lines) < 3:
        return False, {}

    if not lines[0].startswith("# BLAST"):
        return False, {}
    if not (lines[1].startswith("# Query:") or
            lines[1].startswith("# Database:")):
        return False, {}
    if not (lines[2].startswith("# Subject:") or
            lines[2].startswith("# Query:") or
            lines[2].startswith("# Database:")):
        return False, {}

    return True, {}


@blast7.reader(pd.DataFrame, monkey_patch=False)
def _blast7_to_data_frame(fh):
    line_num = 0
    columns = None
    skiprows = []
    for line in fh:
        if line == "# Fields: \n":
            # Identifies Legacy BLAST 9 data
            line = next(fh)
            line_num += 1
            if columns is None:
                columns = _parse_fields(line, legacy=True)
                skiprows.append(line_num)
            else:
                next_columns = _parse_fields(line, legacy=True)
                if columns != next_columns:
                    raise BLAST7FormatError("Fields %r do not equal fields %r"
                                            % (columns, next_columns))
                skiprows.append(line_num)
        elif line.startswith("# Fields: "):
            # Identifies BLAST+7 data
            if columns is None:
                columns = _parse_fields(line)
            else:
                # Affirms data types do not differ throught file
                next_columns = _parse_fields(line)
                if columns != next_columns:
                    raise BLAST7FormatError("Fields %r do not equal fields %r"
                                            % (columns, next_columns))
        line_num += 1
    if columns is None:
        # Affirms file contains BLAST data
        raise BLAST7FormatError("File contains no BLAST data.")
    fh.seek(0)

    return _parse_blast_data(fh, columns, BLAST7FormatError,
                             "Number of fields (%r) does not equal number"
                             " of data columns (%r).", comment='#',
                             skiprows=skiprows)


def _parse_fields(line, legacy=False):
    """Removes '\n' from fields line and returns fields as a list (columns)."""
    line = line.rstrip('\n')
    if legacy:
        fields = line.split(',')
    else:
        line = line.split('# Fields: ')[1]
        fields = line.split(', ')
    columns = []
    for field in fields:
        if field not in column_converter:
            raise BLAST7FormatError("Unrecognized field (%r)."
                                    " Supported fields: %r"
                                    % (field,
                                       set(column_converter.keys())))
        columns.append(column_converter[field])
    return columns