1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542
|
r"""
FASTQ format (:mod:`skbio.io.format.fastq`)
===========================================
.. currentmodule:: skbio.io.format.fastq
The FASTQ file format (``fastq``) stores biological (e.g., nucleotide)
sequences and their quality scores in a simple plain text format that is both
human-readable and easy to parse. The file format was invented by Jim Mullikin
at the Wellcome Trust Sanger Institute but wasn't given a formal definition,
though it has informally become a standard file format for storing
high-throughput sequence data. More information about the format and its
variants can be found in [1]_ and [2]_.
Conceptually, a FASTQ file is similar to paired FASTA and QUAL files in that it
stores both biological sequences and their quality scores. FASTQ differs from
FASTA/QUAL because the quality scores are stored in the same file as the
biological sequence data.
An example FASTQ-formatted file containing two DNA sequences and their quality
scores:
.. code-block:: none
@seq1 description 1
AACACCAAACTTCTCCACCACGTGAGCTACAAAAG
+
````Y^T]`]c^cabcacc`^Lb^ccYT\T\Y\WF
@seq2 description 2
TATGTATATATAACATATACATATATACATACATA
+
]KZ[PY]_[YY^```ac^\\`bT``c`\aT``bbb
Format Support
--------------
**Has Sniffer: Yes**
+------+------+---------------------------------------------------------------+
|Reader|Writer| Object Class |
+======+======+===============================================================+
|Yes |Yes |generator of :mod:`skbio.sequence.Sequence` objects |
+------+------+---------------------------------------------------------------+
|Yes |Yes |:mod:`skbio.alignment.TabularMSA` |
+------+------+---------------------------------------------------------------+
|Yes |Yes |:mod:`skbio.sequence.Sequence` |
+------+------+---------------------------------------------------------------+
|Yes |Yes |:mod:`skbio.sequence.DNA` |
+------+------+---------------------------------------------------------------+
|Yes |Yes |:mod:`skbio.sequence.RNA` |
+------+------+---------------------------------------------------------------+
|Yes |Yes |:mod:`skbio.sequence.Protein` |
+------+------+---------------------------------------------------------------+
Format Specification
--------------------
A FASTQ file contains one or more biological sequences and their corresponding
quality scores stored sequentially as *records*. Each *record* consists of four
sections:
1. Sequence header line consisting of a sequence identifier (ID) and
description (both optional)
2. Biological sequence data (typically stored using the standard IUPAC
lexicon), optionally split over multiple lines
3. Quality header line separating sequence data from quality scores (optionally
repeating the ID and description from the sequence header line)
4. Quality scores as printable ASCII characters, optionally split over multiple
lines. Decoding of quality scores will depend on the specified FASTQ variant
(see below for more details)
For the complete FASTQ format specification, see [1]_. scikit-bio's FASTQ
implementation follows the format specification described in this excellent
publication, including validating the implementation against the FASTQ example
files provided in the publication's supplementary data.
.. note:: IDs and descriptions will be parsed from sequence header lines in
exactly the same way as FASTA headers (:mod:`skbio.io.format.fasta`). IDs,
descriptions, and quality scores are also stored on, and written from,
sequence objects in the same way as with FASTA.
.. note:: Blank or whitespace-only lines are only allowed at the beginning of
the file, between FASTQ records, or at the end of the file. A blank or
whitespace-only line after the header line, within the sequence, or within
quality scores will raise an error.
scikit-bio will ignore leading and trailing whitespace characters on each
line while reading.
.. note:: Validation may be performed depending on the type of object the data
is being read into. This behavior matches that of FASTA files.
.. note:: scikit-bio will write FASTQ files in a normalized format, with each
record section on a single line. Thus, each record will be composed of
*exactly* four lines. The quality header line won't have the sequence ID and
description repeated.
.. note:: `lowercase` functionality is supported the same as with FASTA.
Quality Score Variants
^^^^^^^^^^^^^^^^^^^^^^
FASTQ associates quality scores with sequence data, with each quality score
encoded as a single printable ASCII character. In scikit-bio, all quality
scores are decoded as Phred quality scores. This is the most common quality
score metric, though there are others (e.g., Solexa quality scores).
Unfortunately, different sequencers have different ways of encoding quality
scores as ASCII characters, notably Sanger and Illumina. Below is a table
highlighting the different encoding variants supported by scikit-bio, as well
as listing the equivalent variant names used in the Open Bioinformatics
Foundation (OBF) [3]_ projects (e.g., Biopython, BioPerl, etc.).
+-----------+---------+----+--------+-----------------------------------------+
| Variant | ASCII |Off\|Quality | Notes |
| | Range |set |Range | |
+===========+=========+====+========+=========================================+
|sanger |33 to 126|33 |0 to 93 |Equivalent to OBF's fastq-sanger. |
+-----------+---------+----+--------+-----------------------------------------+
|illumina1.3|64 to 126|64 |0 to 62 |Equivalent to OBF's fastq-illumina. Use |
| | | | |this if your data was generated using |
| | | | |Illumina 1.3-1.7 software. |
+-----------+---------+----+--------+-----------------------------------------+
|illumina1.8|33 to 95 |33 |0 to 62 |Equivalent to sanger but with 0 to 62 |
| | | | |quality score range check. Use this if |
| | | | |your data was generated using Illumina |
| | | | |1.8 software or later. |
+-----------+---------+----+--------+-----------------------------------------+
|solexa |59 to 126|64 |-5 to 62|Not currently implemented. |
+-----------+---------+----+--------+-----------------------------------------+
.. note:: When writing, Phred quality scores will be truncated to the maximum
value in the variant's range and a warning will be issued. This is
consistent with the OBF projects.
When reading, an error will be raised if a decoded quality score is outside
the variant's range.
Format Parameters
-----------------
The following parameters are available to all FASTQ format readers and writers:
- ``variant``: A string indicating the quality score variant used to
decode/encode Phred quality scores. Must be one of ``sanger``,
``illumina1.3``, ``illumina1.8``, or ``solexa``. This parameter is preferred
over ``phred_offset`` because additional quality score range checks and
conversions can be performed. It is also more explicit.
- ``phred_offset``: An integer indicating the ASCII code offset used to
decode/encode Phred quality scores. Must be in the range ``[33, 126]``. All
decoded scores will be assumed to be Phred scores (i.e., no additional
conversions are performed). Prefer using ``variant`` over this parameter
whenever possible.
.. note:: You must provide ``variant`` or ``phred_offset`` when reading or
writing a FASTQ file. ``variant`` and ``phred_offset`` cannot both be
provided at the same time.
The following additional parameters are the same as in FASTA format
(:mod:`skbio.io.format.fasta`):
- ``constructor``: see ``constructor`` parameter in FASTA format
- ``seq_num``: see ``seq_num`` parameter in FASTA format
- ``id_whitespace_replacement``: see ``id_whitespace_replacement`` parameter in
FASTA format
- ``description_newline_replacement``: see ``description_newline_replacement``
parameter in FASTA format
- ``lowercase``: see ``lowercase`` parameter in FASTA format
Examples
--------
Suppose we have the following FASTQ file with two DNA sequences::
@seq1 description 1
AACACCAAACTTCTCCACC
ACGTGAGCTACAAAAG
+seq1 description 1
''''Y^T]']C^CABCACC
`^LB^CCYT\T\Y\WF
@seq2 description 2
TATGTATATATAACATATACATATATACATACATA
+
]KZ[PY]_[YY^'''AC^\\'BT''C'\AT''BBB
Note that the first sequence and its quality scores are split across multiple
lines, while the second sequence and its quality scores are each on a single
line. Also note that the first sequence has a duplicate ID and description on
the quality header line, while the second sequence does not.
Let's define this file in-memory as a ``StringIO``, though this could be a real
file path, file handle, or anything that's supported by scikit-bio's I/O
registry in practice:
>>> from io import StringIO
>>> fs = '\n'.join([
... r"@seq1 description 1",
... r"AACACCAAACTTCTCCACC",
... r"ACGTGAGCTACAAAAG",
... r"+seq1 description 1",
... r"''''Y^T]']C^CABCACC",
... r"'^LB^CCYT\T\Y\WF",
... r"@seq2 description 2",
... r"TATGTATATATAACATATACATATATACATACATA",
... r"+",
... r"]KZ[PY]_[YY^'''AC^\\'BT''C'\AT''BBB"])
>>> fh = StringIO(fs)
To load the sequences into a ``TabularMSA``, we run:
>>> from skbio import TabularMSA, DNA
>>> msa = TabularMSA.read(fh, constructor=DNA, variant='sanger')
>>> msa
TabularMSA[DNA]
-----------------------------------
Stats:
sequence count: 2
position count: 35
-----------------------------------
AACACCAAACTTCTCCACCACGTGAGCTACAAAAG
TATGTATATATAACATATACATATATACATACATA
Note that quality scores are decoded from Sanger. To load the second sequence
as ``DNA``:
>>> fh = StringIO(fs) # reload the StringIO to read from the beginning again
>>> seq = DNA.read(fh, variant='sanger', seq_num=2)
>>> seq
DNA
----------------------------------------
Metadata:
'description': 'description 2'
'id': 'seq2'
Positional metadata:
'quality': <dtype: uint8>
Stats:
length: 35
has gaps: False
has degenerates: False
has definites: True
GC-content: 14.29%
----------------------------------------
0 TATGTATATA TAACATATAC ATATATACAT ACATA
To write our ``TabularMSA`` to a FASTQ file with quality scores encoded using
the ``illumina1.3`` variant:
>>> new_fh = StringIO()
>>> print(msa.write(new_fh, format='fastq', variant='illumina1.3').getvalue())
@seq1 description 1
AACACCAAACTTCTCCACCACGTGAGCTACAAAAG
+
FFFFx}s|F|b}b`ab`bbF}ka}bbxs{s{x{ve
@seq2 description 2
TATGTATATATAACATATACATATATACATACATA
+
|jyzox|~zxx}FFF`b}{{FasFFbF{`sFFaaa
<BLANKLINE>
>>> new_fh.close()
Note that the file has been written in normalized format: sequence and quality
scores each only occur on a single line and the sequence header line is
not repeated in the quality header line. Note also that the quality scores are
different because they have been encoded using a different variant.
References
----------
.. [1] Peter J. A. Cock, Christopher J. Fields, Naohisa Goto, Michael L. Heuer,
and Peter M. Rice. The Sanger FASTQ file format for sequences with quality
scores, and the Solexa/Illumina FASTQ variants. Nucl. Acids Res. (2010) 38
(6): 1767-1771. first published online December 16, 2009.
doi:10.1093/nar/gkp1137
http://nar.oxfordjournals.org/content/38/6/1767
.. [2] http://en.wikipedia.org/wiki/FASTQ_format
.. [3] http://www.open-bio.org/
"""
# ----------------------------------------------------------------------------
# Copyright (c) 2013--, scikit-bio development team.
#
# Distributed under the terms of the Modified BSD License.
#
# The full license is in the file COPYING.txt, distributed with this software.
# ----------------------------------------------------------------------------
import re
import numpy as np
from skbio.io import create_format, FASTQFormatError
from skbio.io.format._base import (
_decode_qual_to_phred, _encode_phred_to_qual, _get_nth_sequence,
_parse_fasta_like_header, _format_fasta_like_records, _line_generator,
_too_many_blanks)
from skbio.alignment import TabularMSA
from skbio.sequence import Sequence, DNA, RNA, Protein
_whitespace_regex = re.compile(r'\s')
fastq = create_format('fastq')
@fastq.sniffer()
def _fastq_sniffer(fh):
# Strategy:
# Ignore up to 5 blank/whitespace-only lines at the beginning of the
# file. Read up to 10 records. If at least one record is read (i.e. the
# file isn't empty) and the quality scores are in printable ASCII range,
# assume the file is FASTQ.
if _too_many_blanks(fh, 5):
return False, {}
try:
not_empty = False
for _, seq in zip(range(10), _fastq_to_generator(fh, phred_offset=33)):
split_length = len((seq.metadata['id'] +
seq.metadata['description']).split(':'))
description = seq.metadata['description'].split(':')
if split_length == 10 and description[1] in 'YN':
return True, {'variant': 'illumina1.8'}
not_empty = True
return not_empty, {}
except (FASTQFormatError, ValueError):
return False, {}
@fastq.reader(None)
def _fastq_to_generator(fh, variant=None, phred_offset=None,
constructor=Sequence, **kwargs):
# Skip any blank or whitespace-only lines at beginning of file
try:
seq_header = next(_line_generator(fh, skip_blanks=True))
except StopIteration:
return
if not seq_header.startswith('@'):
raise FASTQFormatError(
"Expected sequence (@) header line at start of file: %r"
% str(seq_header))
while seq_header is not None:
id_, desc = _parse_fasta_like_header(seq_header)
seq, qual_header = _parse_sequence_data(fh, seq_header)
if qual_header != '+' and qual_header[1:] != seq_header[1:]:
raise FASTQFormatError(
"Sequence (@) and quality (+) header lines do not match: "
"%r != %r" % (str(seq_header[1:]), str(qual_header[1:])))
phred_scores, seq_header = _parse_quality_scores(fh, len(seq),
variant,
phred_offset,
qual_header)
yield constructor(seq, metadata={'id': id_, 'description': desc},
positional_metadata={'quality': phred_scores},
**kwargs)
@fastq.reader(Sequence)
def _fastq_to_sequence(fh, variant=None, phred_offset=None, seq_num=1,
**kwargs):
return _get_nth_sequence(
_fastq_to_generator(fh, variant=variant, phred_offset=phred_offset,
constructor=Sequence, **kwargs),
seq_num)
@fastq.reader(DNA)
def _fastq_to_dna(fh, variant=None, phred_offset=None, seq_num=1, **kwargs):
return _get_nth_sequence(
_fastq_to_generator(fh, variant=variant, phred_offset=phred_offset,
constructor=DNA, **kwargs),
seq_num)
@fastq.reader(RNA)
def _fastq_to_rna(fh, variant=None, phred_offset=None, seq_num=1, **kwargs):
return _get_nth_sequence(
_fastq_to_generator(fh, variant=variant, phred_offset=phred_offset,
constructor=RNA, **kwargs),
seq_num)
@fastq.reader(Protein)
def _fastq_to_protein(fh, variant=None, phred_offset=None, seq_num=1,
**kwargs):
return _get_nth_sequence(
_fastq_to_generator(fh, variant=variant, phred_offset=phred_offset,
constructor=Protein,
**kwargs),
seq_num)
@fastq.reader(TabularMSA)
def _fastq_to_tabular_msa(fh, variant=None, phred_offset=None,
constructor=None, **kwargs):
if constructor is None:
raise ValueError("Must provide `constructor`.")
return TabularMSA(
_fastq_to_generator(fh, variant=variant, phred_offset=phred_offset,
constructor=constructor, **kwargs))
@fastq.writer(None)
def _generator_to_fastq(obj, fh, variant=None, phred_offset=None,
id_whitespace_replacement='_',
description_newline_replacement=' ', lowercase=None):
formatted_records = _format_fasta_like_records(
obj, id_whitespace_replacement, description_newline_replacement, True,
lowercase=lowercase)
for header, seq_str, qual_scores in formatted_records:
qual_str = _encode_phred_to_qual(qual_scores, variant=variant,
phred_offset=phred_offset)
fh.write('@')
fh.write(header)
fh.write('\n')
fh.write(seq_str)
fh.write('\n+\n')
fh.write(qual_str)
fh.write('\n')
@fastq.writer(Sequence)
def _sequence_to_fastq(obj, fh, variant=None, phred_offset=None,
id_whitespace_replacement='_',
description_newline_replacement=' ', lowercase=None):
_sequences_to_fastq([obj], fh, variant, phred_offset,
id_whitespace_replacement,
description_newline_replacement, lowercase=lowercase)
@fastq.writer(DNA)
def _dna_to_fastq(obj, fh, variant=None, phred_offset=None,
id_whitespace_replacement='_',
description_newline_replacement=' ', lowercase=None):
_sequences_to_fastq([obj], fh, variant, phred_offset,
id_whitespace_replacement,
description_newline_replacement, lowercase=lowercase)
@fastq.writer(RNA)
def _rna_to_fastq(obj, fh, variant=None, phred_offset=None,
id_whitespace_replacement='_',
description_newline_replacement=' ', lowercase=None):
_sequences_to_fastq([obj], fh, variant, phred_offset,
id_whitespace_replacement,
description_newline_replacement, lowercase=lowercase)
@fastq.writer(Protein)
def _protein_to_fastq(obj, fh, variant=None, phred_offset=None,
id_whitespace_replacement='_',
description_newline_replacement=' ', lowercase=None):
_sequences_to_fastq([obj], fh, variant, phred_offset,
id_whitespace_replacement,
description_newline_replacement, lowercase=lowercase)
@fastq.writer(TabularMSA)
def _tabular_msa_to_fastq(obj, fh, variant=None, phred_offset=None,
id_whitespace_replacement='_',
description_newline_replacement=' ', lowercase=None):
_sequences_to_fastq(obj, fh, variant, phred_offset,
id_whitespace_replacement,
description_newline_replacement, lowercase=lowercase)
def _blank_error(unique_text):
error_string = ("Found blank or whitespace-only line {} in "
"FASTQ file").format(unique_text)
raise FASTQFormatError(error_string)
def _parse_sequence_data(fh, prev):
seq_chunks = []
for chunk in _line_generator(fh, skip_blanks=False):
if chunk.startswith('+'):
if not prev:
_blank_error("before '+'")
if not seq_chunks:
raise FASTQFormatError(
"Found FASTQ record without sequence data.")
return ''.join(seq_chunks), chunk
elif chunk.startswith('@'):
raise FASTQFormatError(
"Found FASTQ record that is missing a quality (+) header line "
"after sequence data.")
else:
if not prev:
_blank_error("after header or within sequence")
if _whitespace_regex.search(chunk):
raise FASTQFormatError(
"Found whitespace in sequence data: %r" % str(chunk))
seq_chunks.append(chunk)
prev = chunk
raise FASTQFormatError(
"Found incomplete/truncated FASTQ record at end of file.")
def _parse_quality_scores(fh, seq_len, variant, phred_offset, prev):
phred_scores = []
qual_len = 0
for chunk in _line_generator(fh, skip_blanks=False):
if chunk:
if chunk.startswith('@') and qual_len == seq_len:
return np.hstack(phred_scores), chunk
else:
if not prev:
_blank_error("after '+' or within quality scores")
qual_len += len(chunk)
if qual_len > seq_len:
raise FASTQFormatError(
"Found more quality score characters than sequence "
"characters. Extra quality score characters: %r" %
chunk[-(qual_len - seq_len):])
phred_scores.append(
_decode_qual_to_phred(chunk, variant=variant,
phred_offset=phred_offset))
prev = chunk
if qual_len != seq_len:
raise FASTQFormatError(
"Found incomplete/truncated FASTQ record at end of file.")
return np.hstack(phred_scores), None
def _sequences_to_fastq(obj, fh, variant, phred_offset,
id_whitespace_replacement,
description_newline_replacement, lowercase=None):
def seq_gen():
yield from obj
_generator_to_fastq(
seq_gen(), fh, variant=variant, phred_offset=phred_offset,
id_whitespace_replacement=id_whitespace_replacement,
description_newline_replacement=description_newline_replacement,
lowercase=lowercase)
|